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Abstract: Pierre de Fermat in 17th century wrote as a marginal note (later published by his son Samuel de Fermat) on the Diophantus’ 

book Arithmetica (Latin translation with commentary of the Greek book by Claude Gaspard de Bachet), while studying the natural number 

solutions of equation x2 + y2 = z2, that, “No cubes of natural numbers can be split in to two cubes or a biquadrate can be split into two 

biquadrates or no other higher order greater than 2 of a natural number can be split in to the sum of two natural numbers having the 

same order, in which I have found a marvellous demonstration that this margin is narrow to contain.” Ironically, Fermat didn’t give the 

proof for this proposition during his life time. It was the last of his propositions to be decided true and hence historically called as Fermat’s 

Last Theorem. In modern terms the theorem can be stated as “xn +yn = zn has no solutions for n > 2 in natural numbers.” Mathematicians 

tried for centuries but could not construct the proof for general case. In 1994 Prof. Andrew Wiles (with the help of Richard Taylor) 

published a proof using the advanced ideas and techniques of mathematics and is significantly long and deep. But the attempt here is to 

understand the fundamental relationships of natural number system, the linear and trilinear (triangle inequality) relationships in which 

the number system manifests its significance in physical world since the time of early civilizations. Fermat’s Last Theorem is here by 

demonstrated as a statement about the uniqueness of the trilinear relationship in natural number system by establishing the unique and 

comprehensive correlation between Euclidean geometry and natural number system (geometric algebra of natural number system). Both 

of them in conjunction demonstrates the principle of true model of relational dominance of trilinear relationships in natural number 

system, in which the triangle law of addition of physical quantities and the trigonometry of the space fundamentally depends upon.  

1. Natural Numbers 

 

Natural numbers are represented as N=1, 2, 3, 4, 5…… As we 
all know that natural numbers are counting numbers and they 
are fundamentally used to count objects in nature.  

 

2. Natural numbers can be represented on a 

Euclidean line in order with some scale unit 

for1.  

 

 
Or - Origin 

 

As we represent the counting numbers or natural numbers on 
a Euclidean line in order with some scale unit for 1, the 
property of the natural numbers dramatically changes. Now 
the line with numbers represented on it (the number line) 
looks like a marked straight edge and the combination of 
numbers and the line or part of line becomes suitable as a 
system for making lengthwise (geometric) measurements.  

 

Also, another important fact is that the natural numbers now 
form the part of the line, and the numbers can be represented 
as line segments of corresponding length (or a number 
corresponds to the specified magnitude of line segment with 
which the number is represented on a number line in relative 
to a scale unit for 1) and are bound to obey the relationships 
that can be developed for the line or part of the line (line 
segments) in a logical manner.  

Therefore, the statement, “Natural numbers can be 
represented on a Euclidean line in order with some scale unit 
for 1,” may be treated as an axiom and be called as the 
“linearity axiom” of natural numbers.  

 

3. Linear relationship between three numbers is 

a fundamental relationship in natural number 

system 

 

Linear relationships between three natural numbers can be 
expressed as follows. 

 

    1)  x + y = z 

    2)  x - y = z (x > y) 

    3)  x × y = z 

    4)  x ÷ y = z (y is a factor of x) 

 

The second, third and fourth relations as shown above are the 
manifestation of the fundamental linear relationship x + y = 
z. They are called linear relationships or linear operations 
because all the above operations can be demonstrated as 
linear transformations on a number line. In the first case of 
addition of two numbers, the line segments representing the 
corresponding numbers to be added are combined together to 
get the line segment representing the resultant number. And 
the second case, to subtract a number from another, the line 
segment representing the former is deducted from that 
representing the latter and the remaining line segment 
represents the resultant number. The third case of 
multiplication of two numbers can be demonstrated as the 
recurrent addition of the line segment representing either of 
the two numbers, and the remaining number represents the 
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number of recurrences its counterpart has to involve in the 
operation of addition to give the line segment representing the 
resultant number. The fourth case of division of two numbers 
can be demonstrated as the recurrent elimination of the line 
segment representing the dividend by the line segment 
representing the divisor and the number of recurrences needed 
for the total elimination of the dividend is the resultant 
number.  

 

4. Trilinear relationship - another fundamental 
relationship in natural number system 

 

4.1The trilinear relationship between three natural 
numbers 

 

Trilinear relationship is also a fundamental relationship 
between three natural numbers which is well known as the 
triangle inequality relationship in geometry. The term trilinear 
is used intentionally to specify that the relationship is 
fundamental in natural number system and in natural number 
system there is no notion of angles.  

 

If three natural numbers x, y and z hold the following 
relationship between them, then a trilinear inequality 
relationship is said to exist between them.  

 

x < z + y 

y < z + x      Each number of the triple is less than sum of  

z < x + y       the other two.  

 

4.2 Lemma 1 

 

The complete expression of trilinear relationship for three 

natural numbers can be stated that, for z ≥ y ≥ x, if z < x + y, 

there exists a trilinear relationship between them.  

 

Proof 

 

The logically possible relation between any three natural 

numbers is one of the following.  

 

1) Three numbers are same.  

z = y = x 

 

2) Two numbers same and greater than the third.  

z = y > x 

 

3) One number greater than the other two equal numbers.  

z > y = x 

 

4) All the numbers different.  

z > y > x 

 

Here z may be taken as the large number in all the four 

relations. The large number reference does not indicate that 

there is a specific large number, but only to the number which 

can be considered as large in the triple. For the numbers x, y, 

z, if all are equal, then the large number is the number itself. 

It can be easily seen, if the large number is less than the sum 

of the other two numbers, other two of the trilinear inequality 

naturally follow.  

 

We can see that in the first two cases, z = y = x and z = y > x, 

the large number z is always less than the sum of the other 

two numbers and there always exists a trilinear relationship 

between them. In the other two cases, z > y = x and z > y > x, 

a trilinear relationship exists between three numbers if and 

only if, the large number is less than the sum of the other two 

numbers. 

  

Therefore, the complete expression of trilinear relationship in 

natural number system can be stated as, for three natural 

numbers z ≥ y ≥ x, if z < x + y, there exists a trilinear 

relationship between them.  

 

4.3 Lemma2.  

 

The number of trilinears of the form z < x + y exists for a 

natural number y with x such that y ≥ x and z the large number 

is y (y + 1)/2 and the set of triples for each y is unique.  

  

Proof 

 

The triples formed for y with the given condition z ≥ y ≥ x,  

z < x + y are as follows. 

 

Case (1), (z = y = x), ∴ y = y = y, y < y + y, there exists 1 

trilinear triple. 

 

Case (2), (z = y > x), ∴ y = y > x, y < y + x, x can be 1, 2, . . 

., y-1, ∴ y-1 trilinear triples. 

 

Case (3), (z  >  y  =  x), In this case x = y, but z < x + y, ∴ z 

can take a minimum value of y+1 and maximum value of  

2y-1, (2y - 1 <  y + y). 

∴ number of trilinear triples = (2y - 1) - (y + 1) + 1= y - 1.  

 

Case (4), (z > y > x), in this case x can be 1, 2, . . . . . . ., y-1, 

but z < x + y, ∴ for x = 1, There will not be any trilinear as 

there would not be any z < y+1, between y and y+1.  

Similarly, for x=2, there would be 1 trilinear and so on. ∴for 

x = y-1, there would be y-2 trilinear triples. 

∴ total number of triples for case (4) = 1 + 2 + 3 +. . . +  y - 2 

= (y-2) (y-1)/2 = (y2-3y +2)/2.  

 

The total of all the triples for the four cases = (1+ y-1 +y-1 + 

(y2-3y +2)/2) = (y2+ y)/2  = y (y+1)/2.  

 

To show the trilinear triples are unique for each y.  

 

Let the triples are formed for the 4 cases as shown above for 
the natural numbers y1 and y such thaty1 > y. For case (1), the 
triple consists of only y1 and y in each case and in the next 
two cases, each of them contains two y1  or y accordingly. Let 
the triples for y by case (4) are of the form z > y > x, and for 
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y1 as z1 > y1 > x1 (z, x and z1, x1 take suitable values in 
respective cases). Therefore it can be seen that any of the 
triples formed by cases (1) and (4) of y1 and y respectively 
cannot be identical with any of them of cases (1) to (3) of y 
and y1 respectively. Comparing cases (2) and (3) of y1 and y 
together, as each of them contains two y1 or y accordingly, 
whatever be the third one in both of them, they cannot be 
identical. As the triples for y by case (4) are of the form z > y 
> x and for y1 as z1 > y1 > x1 and since. y1 > y, y can take only 
the position of x1in the triple formed by y1. Now, if any of the 
triples formed by y and y1 by case (4) has to be same, then 
either z1 or y1 has to take one of the x values of the triples 
formed by y. This is not possible as y > x and z1, y1 > y. 
Therefore, none of the triples formed by y and y1 for case (4) 
is identical. Hence the set  of triples formed for each y is 
unique.  

 

Let us demonstrate the above lemma with an example.  

 

Consider the case y = 4, then x = 1, 2, 3, 4.  

The trilinear relations for y = 4 are shown below.  

 

Case (1), (z = y = x), i.e. the trilinear is 4, 4, 4.  

 

Case (2), (z = y > x), x=1, 2, 3. y - 1 = 4 - 1=3 triples.  

The trilinear triples are (1) 4, 4, 1 (2) 4, 4, 2 (3) 4, 4, 3.  

 

Case (3), (z > y = x), x = 4. y - 1 = 4 - 1=3 triples.  

The trilinear triples are (1) 7, 4, 4 (2) 6, 4, 4 (3) 5, 4, 4.  

 

Case (4), (z > y > x), x=1, 2, 3.  

There will be no triple possible with x=1.  

The triples are (1) 5, 4, 2 (2) 5, 4, 3 (3) 6, 4, 3.  

i.e. (y2-3y +2)/2 = (42-3 x 4 +2)/2 = 3.  

 

The total number of triples, 4 cases, is 3+3+3+1=10.  

y (y+1)/2 = 4 (4+1)/2 = 10.  

 

In fact, for each y, we get a unique set of triples as per the 
lemma above and therefore there exists infinite number of 
trilinear triples in natural number system and they are 
countable also.  

 

5. The natural numbers x, y and z holding the 

relationship x2 + y2 = z2 represents a class of 

trilinears in natural number system.  

 

5.1 The relationship x2 + y2 = z2 in the natural number 
system.  

 

The relationship x2 + y2 = z2, in which there are large number 
of natural number triples holding the relation was known to 
be understood by human civilisation before 1600 BC. The 
solution to the equation was given in 3rd century AD by 
Diophantus of Alexandria, in Book II of his Arithmetica, and 
a more geometric version can be found in Book X of Euclid’s 
Elements. The solution for x2 + y2 = z2 is given as x = u2 - v2,  

y = 2uv and z = u2 + v2, where u and v are any two natural 
numbers such that u > v. The relationship (u2 - v2)2 + (2uv)2 = 
(u2 + v2)2 always holds true and it is an identity in the system 
of natural numbers. As any pair of natural numbers of the 
form u > v can satisfy x2 + y2 = z2, if x is arranged as u2 - v2, 
y as 2uv and z as u2 + v2, shows the relationship is well spread 
throughout the natural number system. In fact, all the 
solutions to x2 + y2 = z2 can be given as x = m (u2 - v2), y = 
2muv and z = m (u2 + v2) (x, y possibly transposed, u > v, u, 
v coprime and of opposite parity) and m, any natural number, 
is a proven fact. 

 

5.2 Lemma 3.  

 

The relationship x2+ y2 = z2 represents an equality relationship 
of a class of triples holding trilinear inequality in natural 
number system.  

 

Proof.  

 

The numbers holding the relation x2 + y2 = z2 forms a distinct 
class in natural number system is described in 5.1.  

 

Let x2 + y2 = z2, then z2 > y2, z2 > x2, ∴ z > y, z >  x. x may or 
may not be equal to y does not affect the proof, but Fermat 
had proved that there are no isosceles triples for this case and 
the solution will be of the form z > y > x. Now x2 + y2 <  (x + 
y)2, as (x + y)2 contains an additive term other than x2 + y2 => 
z2 < (x + y)2  => z < (x + y). Since z < x + y and z > y > x, the 
other two inequalities x < z + y and y < z + x naturally follow 
and there exists a trilinear inequality in between them.  

 

The solution to the equation x2 + y2 = z2, x = u2 - v2, y = 2uv 
and z = u2 + v2, fundamentally develops as an inequality from 
u > v as u2 - v2+ 2uv > u2 + v2, (z < x + y) and if z > y, x, they 
also hold a trilinear inequality relationship, is demonstrated 
as follows.  

 

u > v => 2uv >2v2 =>2uv - v2 > v2, adding u2 on both sides => 
u2 - v2+ 2uv > u2 + v2 => z < x + y. In this u2 - v2 < u2 + v2 and 
to show 2uv < u2 + v2, put u = v + p, p a natural number.2uv 
=>2 (v+ p) v = 2v2 + 2vp. u2 + v2 => (v + p)2 + v2 =2v2 + 2vp 
+ p2. ∴ 2uv < u2 + v2 for all p and u2 + v2 > u2 - v2, 2uv, (z > y, 
x) and as z < x + y, the other two inequalities naturally follow 
and there exists a trilinear inequality in between them.  

 

 [The relationship x2 + y2 = z2 represents a class of trilinear 
relationship and therefore a unique one in natural number 
system and may be considered as equivalent to the 
fundamental linear relationship x + y = z. It is important here 
to note that the equality x2 + y2 = z2 is not obtained from the 
inequality relationship between them but we are only showing 
the otherwise that x2 + y2 = z2 is holding a trilinear inequality 
relationship. ] 

 

6. The equality relationship of all the trilinears 

in natural number system 

 

As we can see that the relationship x2 + y2 = z2and its solution 

as x = u2 - v2, y = 2uv and z = u2 + v2, represents a class of 

trilinears in the natural number system. It can be seen that 
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there exists lot more trilinear triples not holding the 

relationship x2 + y2 = z2 in natural system by lemma1. The 

number of triples holding a trilinear relation as per case (4) 

lemma1for a natural number y is (y2-3y+2)/2 in which a 

relation of the form x2 + y2 = z2 exists (as isosceles triples do 

not form this relation). And in many cases of y, there are no 

triples holding the relation x2 + y2 = z2. As an example, for y 

= 5, the number of trilinear triples exist as per case (4) 

lemma1is 6 and none of these is of the form x2 + y2 = z2. Hence 

there are infinite number of trilinear triples which cannot be 

expressed as x2 + y2 = z2. As in the case of 10, 11, 12 where x 

= 10, y = 11, z = 12, z2 is less than x2 + y2, and for10, 11, 15 

where x= 10, y = 11, z = 15, z2 is greater than x2 + y2. All the 

triples formed by the relation z ≥ y ≥ x and z < x + y, excluding 

those satisfying x2 + y2 = z2, may be tentatively included in 

either of the following class x2 + y2 < z2 or x2 + y2 > z2.  

 

It is not at all surprising that as per the linearity axiom natural 

numbers can be represented as line segments, the inequality 

to equality transformation of all the trilinears is not 

established by algebra, as the general theory of straight-line 

segments holding triangle inequality relationship is Euclidean 

geometry.  

 

7. The Euclidean geometry and the natural 

number system.  

 

7.1 Outline of Euclidean Geometry.  

 
Euclid has given his geometry in the book Elements which 
comprises of thirteen books (includes number theory and 
geometry of solids) and the Book1 deals with plane geometry. 
Euclidean geometry is built up of definitions of general terms 
occurring in geometry such as points, lines, surfaces, plane 
angles, circles, triangles (trilateral figures) etc. and the five 
postulates and the common notions which are logical 
statements in mathematics such as “Things equal to the same 
thing are also equal to one another.” 
 
The five postulates.  
 
It is postulated  
1) To draw a straight line from any point to any point.  
2) And to produce a finite straight line continuously in a 

straight line.  
3) And to draw a circle with any centre and radius.  
4) And all right angles are equal to one another.  
5) And if a straight line falling across two straight lines 

make internal angles less than two right angles, then the 
two straight lines, on the same side on which the internal 
angles are subtended, produced sufficiently will meet 
together.  

 

The last axiom was a point of contention for mathematicians 
for centuries as they tried to derive it as a result from the other 
four axioms and failed, which eventually led to new 
developments in geometry. A statement considered as 
equivalent for the fifth postulate by the Scottish 
mathematician John Playfair is, “Given a line and a point 
outside the line, all the lines drawn through the point meet the 
given line except one parallel to it.” The last postulate was 
eventually called as the parallel postulate of Euclidean 
geometry.  

It is to be noted that a triangle can be constructed using 
unmarked ruler and compass with all the first three postulates 
and the Book1 Elements begins with the proposition to 
construct an equilateral triangle. As the fourth one gives the 
sense of orthogonality, the sum of three angles of a triangle is 
180º (proposition 32, Book1, Elements), the Pythagorean 
theorem of right triangles and the similar triangles holding 
equality in ratio of corresponding sides can only be proved 
with the help of 5th postulate.  

 

 [Even though Playfair’s statement is considered equivalent 
to Euclid’s 5th postulate, the intuitions created by two 
statements are little bit different. In Playfair’s statement, if the 
given line and the point are far apart and even if a non-parallel 
line or to say an apparent parallel to the given line passes 
through the given point, we may not get a better perception 
whether the lines will meet together after a sufficient 
extension of the both. But Euclid’s 5th postulate makes no 
distinction between, if the two straight lines in which the third 
line crosses over lay near to each other or far apart. This 
means if two straight lines L1 and L2 are sufficiently near to 
each other and even each of the internal angles subtended by 
the third line L3 on the same side of L3 crossing over L1 and 
L2 is near to a right angle or one of them a right angle or a 
little more and that sum of both is less than two right angles, 
we may get an intuition that L1 and L2 on the same side of the 
subtended angles sufficiently produced will meet together. 
And this further makes us intuit that if a straight line L4 is set 
far apart L1 such that internal angle subtended by L3 with L4 

is same and on the same side of the former case considered as 
that subtended by L3 with L2, then the two straight lines L1 
and L4 on the same side of the subtended internal angles 
sufficiently extended will also meet together. This implied 
characteristic of the 5th postulate is the basis of existence of 
similar triangles (triangles having similar shapes with 
included angles same, but the corresponding sides scaled in 
equal ratio) in Euclidean geometry. However, the 5th 
postulate of Euclid gives an intuition about parallel lines; the 
statement may also be referred as parallel postulate.] 

 

7.2. Euclid’s propositions 20, 22 of Book 1 Elements.  

 

 [The facts regarding Euclid’s propositions throughout this 
paper are taken from the book of Euclid’s Elements of 
Geometry, the Greek text written by J. L. Heiberg and 
translated into English by Richard Fitzpatrick. To the English 
author, the text in parenthesis of the propositions is material, 
which is implied but not actually present in Greek text. ] 

 

Euclid in his book Elements (Book 1) has stated in its 
proposition 20 that, “In any triangle, (the sum of) two sides 
taken together in any (possible way) is greater than the 
remaining (side).” Also, in proposition 22 of the same book it 
is stated that, “To construct a triangle from three straight lines 
which are equal to three given (straight lines). It is necessary 
for (the sum of) two (of the straight lines) taken together in 
any (possible way) to be greater than the remaining (one), (on 
account of the fact said in proposition 20).” 

 

He has given proof for both the statements in the said book, 
as the book Elements itself is a remarkable achievement of 
mankind.  
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But if we analyse both the statements, the proposition 22 is 
framed in accordance with the facts established in proposition 
20, which means that the proposition 20 is a necessary 
condition to form a triangle and if that condition is met there 
always exists a triangle by proposition 22. This means that to 
construct a triangle, “For the sum of two of the straight lines 
taken together in any possible way to be greater than the 
remaining one, ” is not only a necessary condition but also a 
sufficient condition, and the method of construction given by 
Euclid (for demonstrating proposition 22) itself proves that 
the condition is sufficient.  

 

The construction by Euclid for demonstrating proposition 22 
is explained below to show that, “For the sum of two of the 
straight lines taken together in any possible way to be greater 
than the remaining one, ” is also a sufficient condition to 
constitute a triangle.  

 

 
Let the given line segments be AB, CD and EF, such that AB 
< CD + EF, CD < AB +EF and EF < AB +CD. Set out AB, 
CD and EF on the line segment AK as shown in the figure. 
Construct the first circle with B as centre and AB as radius. 
The condition AB < CD + EF is sufficient to ensure that the 
circle intersects the line segment BK somewhere only in 
between B and F, say at H (let H be in between B and E). Now 
construct the second circle with E as centre and EF as radius. 
Likewise, as the first circle, the condition EF < AB +CD 
ensures that the second circle would intersect line segment 
AE somewhere only in between A and E. But the condition 
CD < AB + EF is sufficient to ensure that the constructed 
circle will intersect line segment AE only somewhere in 
between A and H, say at G (otherwise, if it intersects at the 
point H means that CD = AB +EF or on a point in between H 
and E means that CD > AB + EF). If H happens to be at E or 
in between E and F, then G will be in between A and E. The 
second circle thus constructed has its diameter GF with the 
point G always laying inside the first circle on its diameter 
and the point F always laying outside the first circle on the 
same line segment of the diameter of the first circle extended 
(HK), imposes the trajectory of the second circle to intersect 
the first circle at points P and Q (above and below the line 
segment AK respectively) as shown in the figure. Joining P 
or Q with the centres of the circles at B and E gives the 
required triangle (BPE or BQE) with its sides as AB, CD and 
EF. It can be seen that the construction is independent of the 
order in which the line segments are set out initially and 
whether it is carried out from left to right or vice versa. Hence 
to construct the triangle, the given condition, two of the 

straight lines taken together in any possible way to be greater 
than the remaining one is sufficient.  

   

 [Accordingly, the construction is valid for all three-line 
segments z ≥ y ≥ x (as it represents all possible logical 
relationships in between them) and if z < x + y. ] 

 

 [Now, a new model, the triangle is formed from three line 
segments holding triangle inequality relationship between 
them, which has additional three parameters, the included 
angles between its sides. ] 

 

7.3 Lemma 4.  

 

All the trilinears in natural number system formed by the 
relation z ≥ y ≥ x, z < x + y are represented as triangles in 
Euclidean geometry.  

 

Proof 

 

The necessary and sufficient condition to form a triangle is 
given by propositions 20, 22 of Book 1 Elements, that is the 
triangle inequality relationship between three-line segments. 
The construction of a triangle can be carried out with the 
unmarked ruler and compass with all the first three postulates 
with the given three-line segments satisfying the triangle 
inequality relationship.  

 

By the linearity axiom, natural numbers can be represented as 
straight line segments with some scale unit for 1. The line 
segments constituting the trilinears are of specified 
magnitudes representing their corresponding numbers. But 
the logical relationship between these given three-line 
segments (z ≥ y ≥ x, z < x + y) to form a triangle is prime 
significant, and is same as the necessary and sufficient 
condition to construct a triangle, a triangle can always be 
constructed with the three-line segments. Therefore, all the 
trilinears in natural number system are represented as 
triangles in Euclidean geometry.  

 

7.4 The Pythagorean theorem.  

 

The Pythagorean theorem states that in a right-angled 
triangle, if z is the hypotenuse, x, y the other two sides then 
z2 = x2 + y2. The proof (as believed due to Pythagoras) can be 
by simple reasoning (but with an intuition about space) as 
shown below.  
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On the left side we have square S with sides of length x + y 
containing four copies of the right-angled triangle, one in each  

corner, the region of S not covered by the triangles is another  

square of area z2. On the right, the four triangles have been 
moved around with in S to form two rectangles, the uncovered 
region S now consists of two squares of areas x2 and y2. Since 
moving the triangle leaves their areas unchanged, the two 
uncovered regions have equal areas so that x2 + y2 = z2.  

 

The theorem is proved with the help of the fifth postulate of 
Euclidean geometry (which is an axiomatic system) in 
proposition 47, Book 1, Elements and the theorem 
representing the right triangle is unique in the sense that 
Euclidean geometry is a consistent geometry and cannot get 
contradictory results from its postulates. The converse of 
Pythagorean theorem, “If the square on one of the sides of a 
triangle is equal to the sum of squares on the remaining sides, 
then the angle included in the remaining sides is a right 
angle,” is stated and proved in proposition 48, Book 1, 
Elements.  

 

7.5 Lemma 5.  

 

The trilinear inequalities holding the relation x2 + y2 = z2 
representing the well identified trilinear class in natural 
number system constitute right angled triangles in Euclidean 
geometry, and the Pythagorean theorem of right triangles 
demonstrates their unique trilinear inequality to equality 
transformation.  

 

Proof 

 

It is demonstrated in lemma4 that all the trilinears in natural 
number system are represented as triangles in Euclidean 
geometry and include that of the well identified class of 
trilinears represented by the relation x2 + y2 = z2. By 
proposition 48, Book 1, Elements, the triangle holding the 
relation x2 + y2 = z2 should be a right triangle.  

 
The constituted triangle represents itself the trilinear 

inequality between its sides and by Pythagorean Theorem, 

relation between the sides of a right triangle is x2 + y2 = z2, 

and there by demonstrates their unique trilinear inequality to 

equality transformation.  

 

 [The above lemma establishes a comprehensive and unique 

correlation between natural number system and Euclidean 

geometry as the lemma is demonstrated with the Pythagorean 

Theorem which is the fundamental theorem establishing the 

relation between sides of a triangle in Euclidean geometry and 

is unique. By the algebra of natural numbers, it is shown that 

the relationship x2 + y2 = z2 represents a trilinear in equality in 

between them. Now the geometry demonstrates how this 

trilinear inequality looks like and why this relationship 

transforms in to equality. Understanding the beauty of such 

relationships in nature is a marvel to human mind. ] 

 

7.6 The cosine law - the general law of triangles in 

Euclidean geometry 

 

 

 

As by the propositions 20 and 22 of Book I of Elements, there 

exists a triangle for any three-line segments satisfying the 

triangle inequality relationships. The triangles are classified 

according to the large angle, θ (large angle means, angle 

which can be considered as large of the three angles, i.e., if all 

the angles are same then the angle itself is the large angle), as 

obtuse angled triangle (90º < θ < 180º), right angled triangle 

(θ = 90º), acute angled triangle (60º ≤ θ < 90º). The cosine law 

generalises Pythagorean theorem for general triangles in 

Euclidean geometry. It represents the relationship of a side of 

triangle with the other two sides and the cosine of included 

angle between them. The equality relationship of side z with 

the other two sides of the triangle, x, y and the cosine of 

included angle (cosθ1) between them, is z2=x2 + y2 -2xycos θ1. 

The relationship for each of the other two sides of the triangle 

with the remaining sides can also be established in the same 

form as y2 = z2 + x2 - 2xz cos θ2 and x2 = z2 + y2 - 2zy cosθ3 

where θ2 is the included angle between sides z and x and θ3, 

between z and y of the triangle.  

 

In the case of obtuse angled triangle, where large angle θ (let 

θ1= θ in triangle XYZ) is between 90º and180º, cosθ is 

negative and the - 2xycosθ term becomes additive. Therefore, 

in this case, it can be shown that the relationship of the larger 

side z (opposite to θ) with the other two sides is x2 + y2 < z2, 

and in the case of right triangle, cosθ = 0 and the relationship 

of larger side z with other two sides is x2 + y2 = z2. And for 

acute angled triangle, large angle θ is such that60º ≤ θ < 90º 

and cosθ takes only positive values and therefore the 

relationship of the larger side z with the other two sides of the 

triangle will be of the form x2 + y2 >  z2. The cosine law 

relationships of the other two sides of the triangle (other than 

the larger side), with their corresponding sides in each of the 

three cases (obtuse angled, right angled and acute angled) 

have no special significance, as the angle opposite to them 

will always be less than 90º and cos θ will always be positive 

and the normal representation of cosine law will be prevalent. 

Therefore, a more general statement of cosine law of triangles 

will be z2 = x2 + y2 - 2xycosθ where z is the larger side and θ 

the included angle between x and y, because this relation 

defines the triangle completely and one could understand it as 

an obtuse angled, right angled or acute angled triangle. As the 
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large angle θ = 180º, cosθ = -1, the cosine law expression 

becomes z2 = x2 + y2 + 2xy, in turn reduces to x + y = z, linear.  

 

[The relation between sides of an obtuse angled triangle is 
given in proposition 12 and that of acute angled triangle is 
given in proposition 13 of Book 2 Elements, as statements 
demonstrated geometrically using Pythagorean theorem. 
Cosine law represents the Pythagorean theorem and both the 
above said relations and is a conclusive generalisation of the 
relation between sides of a triangle in Euclidean geometry 
which explicitly demonstrates that a side of a triangle related 
to the other two sides is also dependent on the included angle 
between them. ] 

 

7.7 Lemma 6.  

 

All the trilinears in the natural number system which are 
represented as triangles in Euclidean geometry can be 
uniquely and invariantly expressed as z2 = x2 + y2 -  2xycosθ 
where z , the large number and θ is the included angle between 
x and y and they are classified in to three classes according to 
the relations x2 + y2 = z2, x2 + y2 < z2, x2 + y2 > z2.  

 

Proof.  

 

According to lemma 4, all the trilinears in natural number 
system are represented as triangles in Euclidean geometry.  

 

All triangles in Euclidean geometry are the result of the same 
postulates and the Pythagorean theorem establishing the 
relation between three sides of a right triangle is the 
fundamental theorem of triangles in Euclidean geometry and 
is unique in this regard. The general law of triangles, the 
cosine law, is the generalisation of Pythagorean theorem.  

 

The trilinears holding the relation x2 + y2 = z2 in natural 
number system constitute right triangles in Euclidean 
geometry. The transformation of trilinear inequality to 
equality relation of this well identified class by Pythagorean 
theorem is shown in lemma 5.  

 

As all the trilinears in natural number system are represented 
as triangles in Euclidean geometry, cosine law, the general 
law of triangles is applicable to all of them. Hence all the 
trilinears in natural number systems can be uniquely and 
invariantly transformed to the equality by cosine law as x2 + 
y2 - 2xycosθ = z2, where z is the larger number and θ is the 
included angle between x and y.  

 

The trilinears in the natural numbers system, other than in the 
class of x2 + y2 = z2can be tentatively included in the class of 
x2 + y2 > z2or in x2 + y2 < z2 where z is the large number. The 
triples forming the relationships x2 + y2 > z2 and., x2 + y2 < z2 
can be uniquely represented as acute angled triangles and 
obtuse angled triangles respectively by cosine law of 
triangles. As z represents the larger number, the included 
angle between x and y in the case of acute angled triangles 
lays between 60º and 90º (inclusive of 60º and exclusive of 
90º) and in the case of obtuse angled triangles, the included 
angle between x and y lays between 90º and 180º (both 
exclusive). Cosine law  validates the tentative classification 
of all the trilinears other than x2 +y2 = z2 and belongs to x2 + 

y2 < z2 or x2 + y2 > z2 as genuine trilnear classification in 
natural number system. Therefore, for z ≥ y ≥ x, z < x + y, 
there exists only three classes of trilinears in natural number 
system, x2 + y2 = z2, x2 + y2 < z2 and x2 + y2 > z2.  

 

 [ It can be easily seen for triangles with natural number sides, 
from the cosine law expression z2 = x2 + y2 - 2xycosθ, the term 
2xycosθ turns out to be a negative integer in an obtuse angled 
triangle and to be a positive integer in an acute angled triangle 
and therefore cosθ will always be a negative or positive 
rational number (fraction) accordingly.] 

 

 [As lemma 2 demonstrates that the trilinear triples in natural 
number system are countable, lemma 6 demonstrates that they 
are classifiable also.] 

 

7.8  Euclidean geometry and the scaling property of linear 
and trilinear relationships in natural number system.  

 

It can be easily seen if the linear relationship x + y = z holds 
between three natural numbers, then the relation mx + my = 
mz, where m is a natural number also holds true and is known 
as the scaling property of linear relationship in natural number 
system. The scaling property can be easily demonstrated as, a 
straight line segment representing mx combined with another 
of length my representing line segment mx + my is same as 
arranging each of the x of line segment mx with each of the y 
of line segment my to form x + y and all of them combined 
together to form m (x + y) as a single line segment which is 
equal to mz, showing mx + my = mz.  

 

The scaling property is true for trilinear relationships as well. 
For z ≥ y ≥ x, if z < x +y then it follows mz ≥ my ≥ mx and 
mz < mx + my, and a trilinear inequality relationship exists 
between mx, my and mz. The scaling property of trilinear 
relationships is demonstrated by similar triangles (triangles 
having similar shapes with included angles same, but the 
corresponding sides scaled in equal ratio) in Euclidean 
geometry. That is, if a triangle with sides x, y, z exists, then a 
scaled triangle similar to the former with sides mx, my, mz, 
where m is a natural number, also exists can be established 
with the 5th or parallel postulate which establishes a unique 
relationship between natural number system and Euclidean 
geometry.  

 

The scaling property of trilinears using similar triangles is 

demonstrated below.  
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Construct a triangle XYZ as shown above with line segments 

representing numbers x, y, z holding trilinear inequality. 

Extend the line segment XY sufficiently to R. Scale out AB 

in line segment YR such that AB = mz represented by the side 

c. Construct parallels to XZ and YZ through A and B 

respectively. Let the intersection of them be C. Now triangle 

ABC is constituted... Let AC = b and BC = a. As y parallel b 

and x parallel a, in triangles ABC and XYZ, angle CAB 

equals angle ZXY (θ1), angle ABC equals angle XYZ (θ2) and 

therefore angle ACB equals angle XZY (θ3).  

 

 Now in triangle XYZ, by sine law of triangles 

 x    =   y   =   z 

sinθ1 sin θ2 sin θ3 

 i.e., x: y: z :: sin θ1 : sin θ2 : sin θ3 

 

and in triangle ABC   a    =   b   =   c 

                                 sinθ1   sin θ2  sin θ3 

i e. a: b: c :: sin θ1 : sin θ2 : sin θ3 

 

∴ a :  b : c :: x : y : z                        a   =    b  =    c 

                                                         x        y        z 

 

Since c = mz, a= mx and b = my. Therefore, the scaling 

property of trilinears is demonstrated by the triangle ABC, 

similar to triangle XYZ representing the trilinear x, y, z, with 

its corresponding sides scaled in equal ratio to XYZ, (mx, my, 

mz), is shown to exist.  

 

[Unlike the cosine law, for a triangle with sides as natural 

numbers and θ is one of the included angles between its sides, 

can have only rational fractions for cosθ, for sine law of 

triangles, sinθ may turn out to be fractions with irrational 

numbers (incommensurables in Elements) also. The scaling 

property of similar triangles is demonstrated here with sine 

law of triangles is only due to simplicity. The results for 

similar triangles are geometrically demonstrated in Book 6, 

Elements which deals with similar figures. In proposition 4 of 

the Book, it is stated that, “In equiangular triangles the sides 

about the equal angles are proportional and those (sides) 

subtending equal angles correspond,” and in proposition 5, it 

is stated that, “If two triangles have proportional sides then 

the triangles will be equiangular and will have the angles 

which subtend corresponding sides subtend equal.”] 

 

8. The principle of true model of relational 
dominance or the genesis principle of trilinear 
relationships in natural number system 
 

8.1 The principle of relational dominance.  

 

For a finite collection of entities (more than two) of same 
characteristic with absolute magnitudes, for example, length 
of line segments represented by l1, l2, l3…… ln and if, either l1 = 
l2 + l3+…+ ln, or l1 > l2 + l3+…+ ln, l1 is said to hold a dominant 
relation with l2, l3……. ln and if  l1 <  l2 + l3+…+ ln, l1 is said to 
hold a dormant relation with l2, l3……… ln.  

 

Explanation 

 

For any given l1, l2, l3, …, ln, if l1 has sufficient magnitude to 
hold l1 = l2 + l3+…+ ln, then the relation necessarily implies 
that l1 > l2, l3, …, ln, , and it is implied that l1has sufficient 
magnitude to imply its dominance over all of l2, l3, …, ln in 
the relation. . If l1 has more magnitude than to hold l1 =  l2 + l3 

+…..+ ln, then it holds the relation, l1  > l2 + l3 +…..+ ln. .  

 

Even though l1 > l2, l3, …, ln, if the magnitude of l1 is not 
sufficient enough to hold the relationl1= l2 + l3+…+ ln, then it  

holds the relation l1< l2 + l3+…+ ln and the relation fails to 
imply l1 > l2, l3, …, ln. Moreover, the relation l1 < l2 + l3+…+ 
ln  always holds true if l1 is either less than or equal to all of l2, 
l3, …, ln and also if l1 is greater than, equal to or less than some 
of them (all possible combinations in between them), means 
that the relation does not imply a particular condition, but in 
general, it is implied that l1 does not have sufficient magnitude 
to imply its dominance over l2, l3, …, ln in the relation.  

 

In general, if, either l1= l2 + l3+…+ ln, or l1 > l2 + l3+…+ ln, as 
the dominance of l1 is quite evident in the relation, l1 is said 
to hold a dominant relation with l2, l3……. ln and since the 
relation l1 < l2 + l3+…+ ln represents the deficiency of 
dominance of l1 over l2, l3, …, ln in the relation, l1 is said to 
hold a dormant relation with l2, l3……. ln.  

 

8.2 Lemma7 

 

For the three cases of triangles in Euclidean geometry, the 
obtuse angled, the right angled and the acute angled triangles, 
there exists a symmetry of logic between the relationship of 
square of large side with the sum of squares of the other two 
sides (established by cosine law) and the relationship of the 
large angle of the triangle with the sum of the other two 
angles.  

 

Proof 

 

Let z be the large side and the other two sides be y and x (z ≥ 
y ≥ x, z < x +y) in each case (obtuse angled, right angled and 
acute angled triangles). Let θ1 be the large angle opposite to 
the large side and θ2, θ3 be the other two angles opposite to 
the corresponding sides y and x. The sum of the three angles 
of a Euclidean triangle is 180º (Proposition 32 of Book 1 
Elements).  

 

Case-1 Obtuse angled triangle.  

 

As in this case θ1 > 90º and θ2 + θ3 < 90º (sum of angles has to 
be 180º). ∴θ1 > θ2 + θ3. The relationship of the larger side 
square with sum of squares of the other two sides is z2 > x2 + 
y2 (follows the same relational logic as the angles).  

 

Case-2 Right angled triangle.  

 

As in this case θ1 = 90º and θ2 + θ3 = 90º (sum of angles has 
to be 180º). ∴ θ1 = θ2  + θ3. The relationship of the larger side 
square with sum of squares of the other two sides is z2 = x2 + 
y2 (follows the same relational logic as the angles).  
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Case-3 Acute angled triangle.  

 

As in this case θ1 < 90º and θ2 + θ3 > 90º (sum of angles has to 
be 180º). ∴ θ1 < θ2 + θ3. The relationship of the larger side 
square with sum of squares of the other two sides is z2 < x2 + 
y2 (follows the same relational logic as the angles).  

 

8.3 The principle of true model of relational dominance or 
the genesis principle of trilinear relationships in natural 
number system 

 

The linear relationship x + y = z and the trilinear relationships, 
x2 + y2 < z2, x2 + y2 = z2 and x2 + y2 > z2 (z ≥ y ≥ x, z < x + y), 
are the fundamental relationships of natural number system. 
As the natural number system follows the linearity axiom, x 
+ y = z is represented as two straight line segments x and y 
combined to form the straight line segment z, and the relations 
x2 + y2 > z2, x2 + y2 = z2 and x2 + y2 < z2are represented by the 
acute angled, the right angled and the obtuse angled triangles 
respectively, in which the numbers x, y, z are represented by 
the corresponding line segments forming the linear and 
trilinear relations.  

 

A new model, the triangle is formed from three line segments 
holding triangle inequality relationship, which has additional 
three parameters, the included angles between its sides. 
According to Euclid’s proposition 18 of Book 1 Elements it 
has been stated and proved that “In any triangle, the greater 
side subtends the greater angle, ” and in proposition 19 of the 
same book it has been stated and proved that “In any triangle, 
the greater angle is subtended by the greater side.” From both 
the propositions it is clear that if a specific large side exists it 
would subtend a specific large angle and also if a specific 
large angle exists in a triangle there would be a specific large  

 

side subtending it, which implies that the largeness of angles 
and sides of a triangle are mutually interconnected. And by 
lemma 7, it can be seen that in the three cases of triangles, the 
acute angled, the right angled and the obtuse angled triangles, 
according to the logic of relational dominance of the large 
angle over sum of the other two angles in turn represents the 
logic of relational dominance of the large side (square) over 
(the sum of squares of) the other two sides. Regarding 
dominance, conversely also it is true as there exists symmetry 
of logic for the relation between sides of a triangle in second 
degree to that of angles in all the three cases. Since the 
dominance characteristic of the three triangle models 
(trilinear structures) is determined by the concord between 
logic of relational dominance of angles and sides, each of 
them can be called as true model of relational dominance of 
their corresponding trilinear relationships.  

 

The property of the obtuse angled triangle and the right-
angled triangle is that there is always a predominant large 
angle and therefore a predominant large side opposite to that. 
As demonstrated in lemma 7, in the case of acute angled 
triangle, even if there is a specific large angle, it is not 
relationally dominant as in the case of right angle or more, as 
the larger angle is less than 90º and is always less than the 
sum of other two angles in the triangle. It can also be 
understood from the fact that the relational logic of each of 
the angles (even if there is a specific large angle) with the sum 
of other two angles for all the three cases is same for an acute 
angled triangle contrary to the relation of the large angle with 
the sum of other two angles of obtuse angled and right-angled 
triangles. Therefore, the larger angle in the acute angled 
triangle model fails to assert sufficient dominance over the 
other two and correspondingly the largeness of the large side 
(even if it is specifically large) turns out to be dormant in the 
relation connecting sides. 

 

 

 

The acute angled triangle is a model that can have two large 

sides and correspondingly two large angles or all the three 

sides and angles same as in the case of equilateral triangle. 

The model manifests itself with its sides as a relatively good 

proportioned one, more often when it has all the sides 

different, such that the dominance of a single side is not 

sharply evident contrary to obtuse angled or right-angled 

triangles. Thus, the relational dominance of the large side 

over the other two sides in the three types of triangles is also 

reflected in the corresponding homogeneous second degree 

relations representing them. In the relations x2 + y2 = z2 and 

x2+ y2 < z2, one can easily identify the large side as z (z2 > y2, 

x2 => z > y, x). Therefore, the right angled triangle is the true 

model that represents a triangle inequality relationship in 

which the large side has its magnitude sufficient enough to 

imply its dominance over the other two and an obtuse angled 

triangle represents the more than sufficient case of it. But the 

relations connecting each side of acute angled triangle with 

other two sides are all of the same form x2 + y2 > z2, where x 

and y interchange with z only in each case and as the 

relational logic remains same, the largeness of z (even if z > 

y, x) cannot be explicitly or implicitly understood from the 
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relations or remains dormant unless the sides or angles are 

measured and specified. Therefore, it is implied that for an 

acute angled triangle, none of its sides has sufficient 

magnitude to imply its dominance over the other two and it is 

a true model that represents the dormant relation of any of its 

sides with the other two sides. In general, the triangles classify 

into three classes according to the sufficiency of magnitude 

of the large side to imply its dominance over the other two. 

  

The above said characteristic of the triangles forms the 

genesis of the trilinear relations in natural number system. 

The trilinear triples orient themselves as obtuse angled, right 

angled or acute angled triangles according to the relational 

dominance of the large number over the other two and the 

relation between the sides of the triangles in each case reflects 

the same. It is interesting to note that the four fundamental 

relationships in the natural number system x + y = z, x2 + y2 

< z2, x2 + y2 = z2 and x2 + y2 > z2 can be demonstrated by the 

first six natural numbers i.e., 1, 2, 3, 4, 5, 6, with all numbers 

different for each relation.  

 

         1  +  2  =  3 => x + y = z 

         22 + 32  < 42 => x2 + y2 < z2  

              32 + 42  = 52 => x2 + y2 = z2             z > y > x, z < x + y 
              42 + 52  > 62 => x2 + y2 > z2 

 

The “principle of true model of relational dominance” or the 

“genesis principle” of the trilinear relationships in natural 

number system may be stated as, “The trilinear triples in 

natural number system classify in to three different classes 

according to the relational dominance of the large number 

over the other two numbers present in them based on the three 

types of triangles, the obtuse angled, right angled and acute 

angled triangles, as they are true models of relational 

dominance representing them, correspondingly represented 

by the homogeneous second degree relations between their 

sides.” It also shows that the natural number system which is 

otherwise well ordered is well structured too.  

 

9. Fermat’s Last Theorem and its proof.  

 

Pierre de Fermat in 17th century stated that, “No cubes of 
natural numbers can be split in to two cubes or a biquadrate 
can be split into two biquadrates or no other higher order 
number greater than 2 can be split into the sum of two natural 
numbers having the same order.” In modern terms the 
theorem can be stated as xn + yn = zn has no solutions for n >2.  

 

Proof.  

 

It can be seen xn + yn = zn is homogeneous in n and we may  
assume that there exists solution for the relation for all n ≥ 2.  
 
              Let  xn  +  yn  =  zn                      (1) 
 

Then zn  > xn,  zn  > yn  ∴ z > x, z > y. The relation between y 
and x is insignificant to affect the proof any way. Let one of 
them be equal to or greater than the other. i.e. y ≥ x.  

 

Now, xn + yn  < (x + y)n (by binomial theorem for 
corresponding n and n ≥ 2).  

 

      ∴ by (1) zn  < (x + y)n  i.e. z < (x + y)  
 
This shows that the larger number z is less than the sum of the 
other two numbers and the other two inequalities x < z + y, y 
<  z + x, naturally follow and it is a sufficient condition to 
form a trilinear. Also the scaling property of the trilinear 
relationship in natural number system is held true by the 
equation xn +yn = zn, n ≥ 2, as it can be easily seen if x, y, z is 
a solution then mx, my, mz, m a natural number, holding 
trilinear inequality relation among them is also a solution. 
This leads to a class of triples satisfying the relation for any 
n. Therefore, xn + yn =zn represents an equality relation of 
trilinear inequality in disguise, for all n ≥ 2. This is a 
contradiction except for the case n=2.  
 
There are infinite number of solutions for the relation x2 + y2 

= z2 representing the fundamental trilinears in the natural 
number system. Natural numbers follow the linearity axiom 
and in turn follows the general theory of relationships of 
straight-line segments, the Euclidean geometry. All the 
trilinears in the natural number system are represented as 
triangles in Euclidean geometry and only be represented as an 
equality by the general law of triangles, the cosine law, which 
is a unique and invariant second order relationship between 
the three sides of the triangle and each of them belongs to one 
of the following classes, x2 + y2 =z2, x2 + y2 < z2, x2 + y2 > z2, 
z the large number, correspondingly represented by their true 
models of relational dominance, right angled, obtuse angled 
and the acute angled triangles, enunciated by Lemma 6 and 
the principle of true model of relational dominance of trilinear 
relationships in natural number system.  
 
Now, let us analyse the case of raising the power of the triples 
of the three true modelled trilinear classes to higher orders and 
see whether they can be transformed to relations of the form 
xn + yn = zn, n ≥ 3. It is proved above that the relation 
represents a trilinear inequality for n ≥ 2. And it is large 
number dominant for n ≥ 1 (zn  > yn, xn  => z > y, x).  
 
Consider the case of triples in acute angled triangle class 
holding the relation x2 + y2  > z2 

 
The acute angled triangle model implies that none of its sides 
has sufficient magnitude to imply its dominance over the 
other two and it is the true model representation of the large 
number dormant trilinear relationships in natural number 
system. Though the relations of the form xn + yn = zn, n ≥ 3, 
represent a trilinear inequality relationship, they also imply 
that z > y, x, the dominance of the large number. Therefore, 
the transformation of any of the triples represented by the 
acute angled triangle model to any of these large number 
dominant trilinear relations turns out to be a clear 
contradiction and not possible, as the model demonstrates the 
relational dormancy of the large number, the relations imply 
the contrary. Moreover, this condition also contradicts the 
existence of the well-structured (true modelled) trilinear 
classification (the principle of true model of relational 
dominance of trilinear relationships) in natural number 
system. In other words, raising the power of the numbers 
representing the sides of a triangle cannot alter the concord 
between the relational logic of angles and sides (as shown in 
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lemma 7) that determines the relational dominance 
characteristic of the triangles (trilinear structures).  
 
Checking whether the trilinear relations x2 + y2 = z2 and x2 + 
y2 < z2 which are large number dominant represented by right 
angled and obtuse angled triangles respectively can hold the 
large number dominant trilinear relations of the form xn + yn 

= zn, n ≥ 3.  
 
Let as consider the case of trilinear triples that belong to the 
class x2 + y2 = z2. It can be shown that they cannot hold a 
relation of the form xn + yn = zn, n ≥ 3 as follows.  
 
Multiply both sides of the equation x2 + y2 =z2 with zk, k, a 
natural number.  
 
             Then zk. x2 + zk. y2 = zk+2.  
 
As z > y, x => zk > yk, xk  => zk. x2 + zk. y2 > xk. x2 + yk. y2 => 
zk+2 > xk+2 + yk+2. As k = 1, 2, 3…. and let k + 2 = n => n ≥ 3.  
Hence the relation x2 + y2 = z2 can only shift to xn  + y n   < zn, 
n ≥ 3 when raised to the powers above 2. Now the same 
argument can be applied to the trilinears holding the relation 
x2 + y2 < z2 and shown that they also can only shift to the form 
xn + yn  < zn, n ≥ 3 when raised to the powers above 2 and 
therefore cannot hold the relation of the form x3 + y3 = z3 or 
higher order.  
 
Hence solutions for xn + yn = zn, n > 2 do not exist and proved.  
 

10. Illustration of the theorem with examples 

 
Let us demonstrate the above discussions, by considering the 

case of three triples, each fromvx2 + y2 < z2, x2 + y2 = z2, x2 + 

y2 > z2and raise it  to the power of three to see what way their 

relational logic shifts.  

 

          22 + 32 < 42 => x2 + y2 < z2             23 + 33 < 43 

          32 + 42 = 52 => x2 + y2 = z2            33 + 43 < 53 

          52 + 62 > 72 => x2 + y2 > z2            53 + 63 < 73 

 

It can be seen that all of them shifts to the same relational logic 

when they are raised to the power of three and hence, they 

cannot be associated with the trilinear structures. Here in the 

case of x2 + y2 > z2, when raised to higher powers above 2, it 

may not shift always to the form xn + yn < zn contrary to that of  

x2 + y2 < z2 and x2 + y2 = z2. For example, in the case of 7, 8, 9 

72 + 82 > 92, when the triple is raised to the power of 3, 73 + 83 

> 93, holds the same relational logic, contrary to the case of 5, 

6, 7. But they will never shift to the form xn + yn = zn, n ≥ 3, as 

it represents a trilinear relation that contradicts the logic of 

relational dominance of the trilinear structures.  

 

Accordingly, the natural numbers holding the trilinear 

inequality relationship among them are no more a 

representation of trilinear inequality when they are raised above 

the power of two.  

 

11. Inference 

 

To summarise, the natural number system obeys the linearity 

axiom and there exists a transformation logic, the Euclidean 

geometry, that uniquely transforms the trilinear inequalities 

in natural number system to an equality as a second-degree 

relationship (cosine law), thereby also demonstrates that these 

inequalities do not get transformed into equality relationships 

of the form xn + yn = zn, n > 2, as it contradicts the principle 

of true model of relational dominance of trilinear 

relationships.  

 

The natural number system, otherwise well ordered, is well 

structured too. It is not only the fundamental system for 

counting objects and combining their counts but also the 

fundamental system for measuring physical quantities and 

combining them to get resultant (the triangle law of addition 

of physical quantities). Euclidean geometry provides a 

theoretical frame work for the scheme and Fermat’s Last 

Theorem demonstrates the system is unique.  
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