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1. Introduction

The study of rings, which are special reveals that
multiplicative structure are quite independent of their
additive structures are abelian groups. However in semirings
it is possible to derive the additive structures from their
special multiplicative structures and vice versa. The partial
order allows to simulate a number of basic notions and
results of idempotent analysis at the purely algebraic level,
since 1934, when the first abstract concept of this kind was
introduced by Vandiver [1]. Semirings have been studied by
various researchers in an attempt to broaden techniques
coming from the semigroup theory orring theory or in
connection with applications. In recent times the study of
partially  ordered  semigroups,  groups,  semirings,
semimodules, rings and fields have been increasing widely.
M. Sathyanarayana [2], J. Hanumanthachari [3], K.P. Shum

[4], Jonathan S. Golan [5] are worth mentioning. Heinz
Mitsch [6] defined natural partial order relation on a
semigroup and proved that it is a totally ordered relation with
respect to its natural partial order if and only if it is an
idempotent semigroup. In this paper we extended his results
in semirings and proved they are partially ordered
semirings.

Definition 1.1: A triple (S,+,.) is said to be a semiring if S
is a non-empty set and “+, .” are binary operations on S
satisfying that

(i) (S, +) isasemigroup

(ii) (S,.) is asemigroup

(iii) a (b+c) = ab + ac and
all ab,c in S.

(b+c) a = ba+ca. for

Examples:

(i) The set of natural numbers under the usual addition,
multiplication

(if) Every distributive lattice (L, A, V)

(iii) Any ring (R,+,.).

Definition 1.2: A semigroup is a non empty set S together
with an associative binary operation from S x S -> S. The
associative condition on S states that a(b c) = (a b)c. for a, b,
cins.

Definition 1.3: A semigroup (S, . ) is said to be left (right)
regular for any a in S there exists x in S such that xa” = a (a’
X=a).

Definition 1.4: A system (S, <), where the relation ‘< ‘on S
satisfying the following axioms.

1) Reflexivity: a<a

2) Antisymmetry:a<b,b<aimplya=b

3) Transitivity ta<b,b<cimplya<c

4) Linearity:a<bor b<a

forall a, b, cin S, is called a totally (linearly) ordered set.

If (S, <) satisfies (3) alone then R is called ordered set .

If (1) and (2) are satisfied then itis called quasi — ordered set.
If (2) and ( 3) are satisfied then it is called pseudo — ordered
set.

(1), (2) and (3) are together is called partially ordered set.
usual

Examples: The set of natural number the

multiplication and ordering

Theorem 1.5: Let(S, + , . ) beasemiring in which (S,
.) is left(right) regular band. If a relation ‘B’ defined by the
rue a B b <= a = xb=by , xa =
aforalla,binSandxyinS* then( S, + , . , B
) is apartially ordered semiring.

Proof: Leta, b in Sand x,y in S*

Define ‘B’ on Sby theruleaBb<=>a=xb=by,xa=a.
Fora=la=ala=1.a,

where “1° is the identity elementin (S,.) =>a pa.
Therefore ‘B’ is reflexive.

Let a p bandb B athena = xb= by ,a = xaandb =
ua = av, ub = b for some x,y , u,v in S*
Now a = xb = x (

v=av = b. Hence ‘B’ is anti symmetric
Let afb , bpcthena=xb=by,xa=aandb=uc=cv
,ub = b for some x,y ,u,vinS!

We want to prove thata 3 ¢

Leta=xb=x ( uc) = ( XU) c
uin S* then xu is in S* for xu = s)
Similarlya=by=( cv ) y=c ( vy) = ct (v, y inS!
then vy isin S' forvy =t)

Also (xu) a=( xu) ( by)=x( ub ) y=x by=x
(by)=xa=a=>sa=a=>a= sc=ct,a=sa=> a B
c. Therefore B’ is transitive

Therefore (S, B) is a partially ordered set.

Again apb =>a=xb=Dby, a=xa=>ac=xbc=byc,ac =
xac, for somecin S

av) = ( Xa)

=sc (%,
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=>ac = x(bc) = byc?, ac = xac => ac = x ( bc ) = bc, ac = x (
ac) (Since S is left regular, yc?= c)

=>ac = x (bc) = be?y, ac = x (ac) => ac = x (bc) = (bc) vy, ac
=X (ac)

=>ac < bc. Similarly we prove that capcb

Therefore ‘B’ is compatible with respect to multiplication.
Now we prove B is compatible with respect to addition i.e, a
+cBb+c

Letapb=>a=xb=by,a=xa
=>a+c=xb+c=by+c,a=xa+c
=>a+c=xb+xc?=by+c’,a=xa+xc
=>a+c=xb+xc=hy+cy,a=xa+xc
=>a+c=x(b+c) =(b+c)y,a=x(a+¢c)

=> a+cfb+c

Similarly we prove c+afc+b

Therefore (S, +, ., B) is a partially ordered semiring.

Definition 1.6: A semigroup (S, .) is said to be regular for

each a in S there exists a unique element a' in S such that a
1

aa= a.

Theorem 1.7: Let (S, +, .) be a semiring in which (S, . ) is
regular. A relation on this regular semigroup, by a ¢b<=>a
= eb = bf for some e , f in E(S) where E(S) is a set of
multiplicative idempotentsin Sanda, binS. If (S,.)is
permutable then (S, +, .) is a partially ordered semiring.

Proof: Let( S, +,.)beasemiringin which (S, .) is
regular.

Leta,b € S. Define a relation ¢ on S by

a ¢b< =>a =eb = bf for some e, fin E(S).

Since S is regular , for any a in S there exists a unique
element a* in S such thata a' a = a.
=>a=(aa')aza(@a)=>a=l.a=a.l=>a¢a.

Therefore ¢° is reflexive .

Letadpband b¢pathena=eb=Dbfand b=ga=ahfore,f,
g,hinE(S)anda,bin$S

Nowa=eb=e(ah)=e(eb)h=(eb)h=ah=b=>a=b
Therefore ¢’ is anti symmetric

Leta¢p band b <cthena=eb =Dbf, b =gc =ch forall e, f,
g,h in E(S)

Considera=¢eb =e(gc)=(eg)c=sc, foreg=s e E(S)
Similarly a = bf = ch f = c(hf) = ct, for hf =t € E(S)
=>a=sc=ctforallstinE(S)=>ad¢c.

Therefore ‘¢’ is transitive.

Let apb => a = eb = bf => ac = ebc = bfc

=>ac = e(bc) = (bc) f (since S is pemutable)

=>ac ¢bc. Similarly ca ¢ cb.

Letad b=>a=eb=hbf

=>a+c=eb+c=bf+c

=>a+c=eb+ec=Dbf+cf
=>a+c=e(b+c)=(b+c)f
=>a+c¢b+c.Similarly we provec+a¢ c+b.
Therefore ('S, +, ., ¢ ) is a partially ordered semiring.

Theorem 1.8: Let (S, + , .) be a commutative semiring in
which (S ,.) is rectangular band . Define a relation p on a
semigroup S as followingapb <=>
a’=ab=haforalla,binS.If(S,.)isright regular then (S
,*,., p) is a partial order semiring.

Proof: Define a relation p on a semigroup S as follows a p b
<=>a’=ab=haforalla binS.
Fora’=a.a=aa=>apa.Therefore p’ is reflexive
Letapbandb pathena®=ab=ba b’=ba=ab

consider a> = ab => a .a = ab => a( aba ) = (aba) b ( since S
is rectangular band)

aba = a (ab) b (since S is right regular, aba = ba)

= ba ba (since S is comutative )

=b (aba) =b(ba)=b (ab)=bab=>a=hb

Hence ‘p’ is anti symmetric.

Letapbandb pcthena’=ab=baandb’=bc =ch
consider a’= ab= (aba) b ( since aba =a )= a (ab) b = a’ b* =
a’bc = ab bc =ab’c=a(ch) c= a (chc) =>a’= ac

Similarly we provea’ = ca => a> = ca = ac => a p C.
Therefore ‘p’ is transitive
Letapb=>a’=ab=ba=>a’c?=ab c?*=bhac’

=> a% ¢* = a(bc) ¢ = b(ac)c => a’ ¢® = (ac) (bc) = (bc)(ac) =>
ac p bc . Similarly ca p cb

Letapb=>a’=ab=bha

Consider (a+c)?=(a+c)(a+c)
=a’+ac +ca+ c?
—ab+ac+ca+c.c
=za(b+c)+c(aba)+c.c
=za(b+c)+ca.ab+c.c
za(b+c)+ca’b+c.c
=za(b+c)+c(ba)b+c.c
=za(b+c)+c(bab)+c.c
za(b+c)+cb+c.c
za(b+c)+c(b+c)

= (a+c)’=(@+c)(b+c)

Similarly we prove (a + c)?= (b +c) (a + c)
=>a+cpb+c.

Similarly c+ap c+b .
Therefore (S, + .., p) is a partially ordered semiring.
2. Conclusion

We have proved some structural properties of ordered
properties in semirings
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