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Abstract: In this work, we solve the problem of optimal investment for the hedging of a European option with a portfolio
made up of three financial assets: A risky asset of price S, an asset whose price S} is a deterministic function of a stochastic
interest rate r, and finally, a non-risky asset of price S?. We assume that the payoff II of the option at maturity date 7" does
not only depend on the strike price St of the underlying risky asset but also on an unobservable random variable B. We put
ourselves in the situation where the short term interest rate (r+)o<t<7 is rather a stochastic variable. The two observable vari-
ables are: The price of the risky asset S; and the interest rate r,. We propose to determine a vector (0)g<; <7 = (i, 49) o<t <7
of optimal strategies giving at each date ¢ before maturity the optimal amount of assets to invest in the portfolio. We base
our determination on maximizing the utility of the terminal wealth of the portfolio. We first transform the problem into a full
information problem using the theory of filtering with the stochastic partial differential equations (SPDE).
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1 Introduction

Nowadays, derivatives have taken an increasingly important place at the global level in the risk profile and profitability of finan-
cial institutions. They are used by banking institutions both as risk management instruments and as sources of income. If the
use of options is an effective instrument for risk management, calculate its price and cover its requirements is a fair deal for its
issuer to account for the risks that it incurs in the bank with a payoff at uncertain character. Several authors have attempted to
solve this problem (see [28, 5, 26, 8, 25, 3]).

In order to diversify risk and optimize gain, most portfolio managers spread their wealth across several financial assets. Unfor-
tunately in theory the majority of the models of portfolio management(see [28, 5, 26, 18, 10, 12, 3, 16, 8, 25, 3]) consider the
case to essentially consist of two financial assets.

As in incomplete but viable markets, in the absence of a strategy replicating an option, for the management of the portfolio
or the price calculation, one is led either to the maximization of the usefulness of the terminal wealth of the portfolio (see
[5, 28, 26, 10]), or to the end minimization of the risks (see [18, 16]). One of the main causes of inflation is the excessive
increase in the money supply as a function of the interest rate in conventional monetary policies. Here we consider a stochastic
interest rate and two observable variables. We solve the problem of optimal investment in a portfolio established on three finan-
cial assets and a stochastic interest rate for the hedging of a European option of maturity 7". The hedging is done with a portfolio
made up of three financial assets: A risky asset with price S, an asset whose price S} is a deterministic function of a stochastic
interest rate r; and finally a non-risky asset with price SY. We assume that the payoff IT of the option depends on the expiry
price of the observable risky asset S7 and on an unobservable random event Z that we describe with the Vasicek model. As in
[28, 26, 10, 5] using the improved Black-Scholes model, we assume that a factor u of the risky asset’s drift is a function of both
the interest rate r; and the unobservable variable Z;. However here, we consider the general case where p is not only one linear
function has of this variables but any deterministic function. This is also contrary to certain articles [ 14, 28]) where it is rather the
volatility that is the unobservable variable. We propose to determine an optimal strategy (ﬁt)ogt <1 = (4,0 )o< <1 vector rep-
resenting on each date before maturity the optimal quantity of risky assets and not risky to invest in a portfolio in the presence of
the option and the same strategy (u})o<t<r = (4}, 49*)o<¢<7 Without the option. Optimal control (u¢)o<t <7 = (i, 49)o< <
represents at each time ¢ € [0, 7] the quantity of risky and non-risky assets to invest in portfolio subject to the maximization
of the utility of the terminal wealth of the portfolio and must be adapted to the natural filtration generated by the observable
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variables S; and r;. This being seen as a problem under full information. Unfortunately the direct resolution of this problem can
lead to the fact that this optimal control also depends on the unobservable variable (Z;)o<¢<7; which makes it a problem under
partial information. With a Black Scholes financial portfolio model, we base our hedging strategy on maximizing the utility of
the portfolio’s terminal wealth.

Use of the unobservable variable Z, leads to consider the problem as being under partial information.

The authors in [26], [5], [10] considered this problem, but with a constant or deterministic interest rate, as the only observable
variable the risky asset price .S; and a portfolio consisting only of two financial assets (risky asset and non-risky asset).

The following section 2 presents the problem, the model, the resolution- method. Section 3 presents the necessary mathemat-
ical tools. We go from partial information to complete information thanks to Girsanov’s theorem. Indeed any control strategy
(ut)o<¢<7 must be adapted to the generated o algebra by observable variables (.S; and r;)). In section 4, we establish a stochas-
tic maximum principle necessary to determine the optimal strategies and therefore the optimal portfolio using the Hamiltonian
and the adjoint equations. Section 5 is devoted to the application of the previous tools to the resolution of the problem.

2 Motivations, problem,model

Any business is seen as a collection of opportunities for profitability and growth, risks and vulnerabilities. Consequently, the
entrepreneur is called upon to achieve the strategic objectives that he has set for himself, taking into account these risks and these
opportunities. However, the globalization of economies, the globalization of commercial transactions and trade, the expansion
of activities, the financing of companies and the opening of markets have influenced a new dynamic in the business world, and
companies have a permanent concern; that of making profits, of being competitive both internationally and locally. After the
sale of an option, one of the major concerns for its issuer is to cover and meet the commitments made in this contingent asset.
Therefore, he must invest optimally in his portfolio. In this paper, we consider the problem of an economic agent who is in a
situation of selling-buying of a European option on a financial asset whose exercise price is St and the related payoff is II. He
sells the contingent asset at price 2 considered to be his initial wealth and buys the same derivative at price p® from another
economic agent. For the coverage of this option, it assumes that the payoff of the option is rather II (ST, B(Zr) + B) which
depends on the exercise price St and is subject to certain basic uncertain risks and events related to the market environment
denoted B(Zr) + B which is an unobservable random variable due for example to the cost of transactions (cost of transport,
transit etc.), inflation, natural disasters etc. The financial agent holds in his portfolio at date ¢ in addition to the risky asset whose
price is S, a non-risky asset of price Sy, an asset whose price S; is a deterministic function of a stochastic interest rate r;.

Given a finite horizon 7', we consider a complete filtered probability space (2, §, {St}oc[o 71 ; F). Improving and generalizing
the Black-Scholes model, we assume that a factor y of the drift of the risky asset’s price S; is a function of the interest rate ry
and Z;. This is less than and more realistic on financial markets. In fact, the action of the interest rate, risk and uncertainty
general on the prices of products and financial products in particular is unavoidable. Moreover, according to Milton Friedman,
a monetarist economist, one of the main causes of inflation is the increase in the money supply which is itself a function of the
interest rate. Thus, we assume that part of the drift of our risky asset p = (¢, Z¢) is a function of the interest rate r; and the
uncertainty Z;. Joining the Black-Scholes model, we describe our dynamics of the price of the risked asset by:

dSt = /,L(’I"t’ Zt)Stdt+ UlStdm1’ SO =S (21)

Where W is a Brownian motion on (0,5, {5t} oe 0.7] i P)
Taking the constant or deterministic interest rate is not a reality of short-term rates on the financial markets. In fact, they are
volatile there. In current financial markets is possible that interest rate is been negative. We retain for the dynamic of our interest
rate, Vasicek model:

dry = a(b—r)dt + oodW2, 19, 059 >0, (2.2)

Where W? is a Brownian motion on (2, §, {St}oe 0,17 5 P).
Throughout our study, we consider this model. On financial markets, the more time passes, the more economic agents have
market information and tend to control and eliminate uncertainty. Therefore, the Vasicek model below takes this fact into
account. The unobservable variable (Z t)OStéT represents all of the uncertain unobservable events in the market environment.
It is assumed that over time, all of the information collected helps to reduce risk and uncertainty. Thus, Z; tends to become
constant over time. Z; is described with the Vasicek model:

dZ, = k(3  Z,)dt + o3dWE, Zo, o3>0 (2.3)

which is a Gaussian process called Ornstein-Uhlenbeck process. k and 3 the constancies. In explicit form, we have

t
Zi=B+e *(Zo ﬂ)+03/ e M Sawd,
0
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E[Z] = B+ e *(Zy - B)

and
o3 93
2k
The observable variables from which we construct the control #; = (u, u?) are: The risky asset price S; and the interest rate
r¢. (W', W?) and W* are Brownian motions on the filtered probability space (2, F, {St}oco 113 P)-
The price dynamics of the semi-risky asset is described by:

Var|Z;] = 2(1 — e %),

dSF = r,S;dt, Si>0 2.4)

The non-risky asset dynamic is given by:
ds? = RVS?dt, Sy >0 (2.5)

where R is a deterministic function.
The wealth of the portfolio at each instant ¢ is represented by the variable X" and its dynamics is given by:

o dSy 0 dS? o os A5} o
dXt = Ut?t + t SO + (X Ut ut)Si;’ Xo =x > 0 (26)

= [re X7 w (re p(re, Zt)) up (e R?)] dt + orurdW}
Atdate t < T, the economic agent invests the quantity u; in the risky asset, u? in the non-risky asset and the rest X" — u; — u?

in the "semi-risky" asset considering x as its initial wealth.
Finally we have the system:

dS, = Suu(re, Z,)dt + Syory WL, Sp=5>0

dry = a(b —ry)dt + oodW2, ro >0

A7, = KB Z,)dt+ o5dWP, Zo o
ds? = RYSVdt, S8 >0 .
dS;: = rySrdt, S5 >0

dX;" = [r X" =y (ry — plre, Zy)) —ul(re — R))] dt + oywdWi, X" =2>0

where o1 > 0,05 > 0,035 > 0 are positive constancies. f a deterministic function, a, b, k, 3 are constancies.

Problem:

For a European option of payoff II(St, B) and a utility function U, the economic agent sells the option at the price x. He
receives x and uses it to reinsure himself with another economic agent by buying the same contract at price p°. By buying this
same option at price p? his initial wealth becomes = — p°. While seeking to maximize the expected utility of the terminal wealth
of his portfolio, his problem of is: Determine the optimal management strategies (ftt)ogth, (ﬁ:)OStST vectors giving the
quantities to invest in each of the assets respectively in the presence of the option and in its absence, in the aim of maximizing
the utility of the terminal wealth of its portfolio. Say the following problem:

Determine optimal strategies ({lt)ogth’ ({Lt*)ogtST,SO that:

Vi(z p?) = sup E[U(XE"" 4+ (Sy, B)] = E[U(XE """ +1(Sr, B))] 2.8)
ﬁeUad
Vo(2) = sup E[U(X2")] = E[U(XZ)] (2.9)
ueUad

With U,q C R? the set of admissible strategies u, F(*")- progressively measurable, contained in a closed set.
The optimal control (&t)o << is the optimal strategy allowing the economic agent to cover the option with payoff I1(S7, B(Z7)+
B)) by maximizing the utility of the terminal wealth of its portfolio with the purchase of this option, (u})o<;<7 this optimal
strategy in the absence of this contingent asset. Since the observable variables are S; and r,, set of information at date ¢ is the
o algebra §; = F*") = o(sy,,71,,0 < t; < t) generated by all random variables s;, and r;,,0 <t; < t.

By setting: Y,! =log S;,Y,? = r;, we have S; = exp Y,! and (2.7) becomes:

= [u(r, Z) — Lo?]dt + o dW}, Yyt = log(s)
= a(b — ry)dt + o2dW2, Y2 =g
2 hlp it p103th1 4 paad W+ o3 /T AW 4 os /T RAWE, Zo 210
dX;[ = [ X" — g (ry — p(re, Z4)) — ud(RY — 1) dt + oyu dW, X3 =2>0

where p; = corr(W? W?3), po = corr(W?2,W?3) are respectively the correlation coefficients between W ! and W3, W? and
W3, (W', W2) and (W', W2 ) independent.
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With assumption B = B(Zr) + B where B is a smooth function and B is a random variable independent of §r. we can write
(2.8) as follows:
Vir(z) = sup E[U(X7" +T(Sp, B))]

u€Uad

= sup E [A U(X7" +(Sr, B(Z1) + b)) d]P’B} by independence of B and Zr. 2.11)

u€Uqd

- E {/}RU(X;’ﬁ—i—H(ST,B(ZT)—i-b))dIPB}

3 Passage from partial to full information

In this section, we go as in [2], [10], [5], [28], [26] using filtering theory with the Zakai equations to transform the control
problem (2.10)-(2.11) from partial information to complete information problem. Unlike in [28] where one replaces only Z;
with its conditional expectation knowing @T/here, we are going to use as in [2], [10], [5], [26] the property of iterated conditional
expectation and replace any function f(Z7)with its conditional expectation knowing F¥, but here with two observable variables.
Let us summarize a brief general result presented in [10], [5] and [26]. Given two independent Brownian movements W and W+
respectively p and ¢— dimensional, (Y; )<< the observable variable n—dimensional, (Z;)o<¢<7 the variable not observable
m dimensional with dynamics o o

{ dYy = h(t, Z;, Yy )dt + o(t, Y1) dWy, Yo=1y (3.1a)
dZy = g(t, Z,, Yy)dt + ot, Z,, Y)W (£) + v(t, Z, V) dW-,  Zg =« (3.1b)

We assume the following:

D) h(t,z,y) :[0,T] x R™ x R™ — R" is globally continuous and of linear growth (in z and y:
At 2, 9)| < k(14 2z )+ |y )

i) g(t, z,y) : [0,T] x R™ xR™ — R™ is uniformly continuous in z, y is bounded and twice continuously differentiable with
bounded derivatives.

ii)o(t,y) : [0,T] x R® — L (R™,RP) is uniformly continuous, bounded, three times continuously differentiable with
bounded derivative, satisfies the following: o' > AI ! for all y and t, for some constant A > 0 (uniform ellipticity
condition).

iv) a(t, z,y) : [0,T] x R™ x R" — L (R™,RY) (¢, z,y) : [0,T] x R™ x R* — L (R™,R?) are uniformly continuous
and « is uniformly elliptic.

v) h, o, g and y are globally lipschitz of ¥ and z.

Remark 3.1. .
As mentioned in [10], [5], [26], these general results can well be applied to our initial model although the drifts are not bounded.

A standard localization of the argument can be used to have a linearly increasing drift.

Let D; = D(t,Y;) = (o0?)(t,Y;) which we assume to be symmetrical and invertible. ¢, defined by :

1
dspt = @tht(t» Zta K)Dt 2 (t7 th)thu Yo = 12

¢ is a supermartingale with E[p;] = 1 V¢ € [0, T]. Therefore by Girsanov’s theorem, we define a new probability measure P
such that V¢t € [0, T']: .
dP

dP =P ( d]?):sotdp on St,Vt € [O,T])

St

and there exists a Brownian motion W under P such that: dYy = o(t, Yt)th
1
dZt = |:g(t,Zt,}/t) at(tvzta}/t)ht(tvztayt)Dt 2j| dt+
Val(t, Z,, YD, 2dY; +~(t, Z,, Yy)dW™ ().

Let (Y3, t € [0,T]) be the process defined by:
. 1
Y, = D, 2dY,. (3.2)

ot denote the transposed of &
2pt the transposed vector of h
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Then Y is a Brownian motion under P and }7 and W+ are two independent Brownian motions(see[2]). In addition, using the
fact that D, is invertible, we have : %’f = SZ/
Let us set

1 t
K o= — = exp{/ hi(s, Zs,Ys) D™ (s)dW,
Pt 0

+ %/ ht(s,Zs,Y(s)D1(5)h(s,ZS,Y(s)d(s)}

- eXp{O/ (s, Zs, Ys) D~} (s)dY,
/hts Z,.Y.)D ()h(s,ZS,Ys)d(s>}

Then K, is a martingale.
Let ¢ = (¢(t, z,w), (t,z,w) € [0,T] x R? x Q), be a process such that for all f € C5°(R?) 3. We have:

B(HzmfsY] = [ 7)ot (3

F its expectation under P. Then #(t, z) is called the unormalized conditional density of Z; given § Applying the theorem of
Ito to (K f(Z;))and using the integration by parts, ¢ satisfy a backward stochastic partial differential equation precisely the
following Zakai equation (see [10], [5], [26], [2]):

1 o dgio(t, 2)
3 EJ: 2 5007, {7 +aat], ; olt.2) ) - Z | it

(3.4)

)| dYe,  6(0,2) = £(2)

= z¢(t72)dt + M*p(t,2)dYy,  $(0,2) = £(2)
where £(z) is the density of Z,

Lyo(tz) = QZZ azzazj{Wt+aathj¢(t,z)} Z%jz))
= £¢(t,z)+2¢(t,z)
M*¢(t,z) = h—za%(a

By combining (2.10), (2.11), (3.3) and (3.4) we transform the control problem under partial observation into a problem with
SDE into a control problem (2.10) - (2.11) at full information with PSDE:

Vi) = sup EU/ (X2 4 TSy, B(2) + b)$(T, z))d]P’de}

w€U 4

(3.5)
E [/ / U(X5™ +TI(Sp, B(2) +b))p(T, z))d]P’de}
R JR
With ¢(t, z) according to (3.4) solution of the stochastic PDE:
2
dolt.2) = [03%L(t.2) k(B 2)52(t,2) + kolt, 2)] at
+ {,u(rt’Zt) %0’% plag%(t,z)} df/;l + {a(b ) agpg%] d}7t2 3.6
= Lyo(t, 2)dt + Mi(t, 2)dY," + Mg o(t, z)dY?
(4(0,2) =&(2)
let’s remind that Y,' = logS, Y2 = r¢, we have S; = exp Y,!, from (2.10):
ds; = D5t + S,dYy, So=s
dry = dY?2, ro (3.7

dXp" = [r X" w(ry 502) wd(r,  RY)]dt +wdY}!, Xi' ==

3 Cg°(RY) = space of functions C'> on R with compact support
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Finally by combining (2.10), (3.7), (3.6), we have:

dS; = D5t dt + 01 5,dV}, So=s
d’rt = UQdY]f27 To,
dXtI’ﬂ = [Ttth’ﬂ —ug(ry — %O’%) —ud(ry — R?)} dt + utaldfftl, Xg’ﬁ =z
5% P
2
9(t.2) = [T 0.5~ k(5 - 9 509+ bolt )| a 63)
1 8 -~ a ~ = .
+ |pu(re, 2) — fof — plag—(b(t, z) dY;l + la(b—ry) — ngg—(b de 6(0,2) = £(2)
2 0z 0z
= Ly ¢(t, 2)dt + M7 g(t, z)dY;' + M5 (t, z)dY}?

4 Sufficient stochastic maximum principle

We will establish in this section, a stochastic maximum principle that we will use in the next section to determine the optimal
amount to invest in the risky asset, the optimal value of the portfolio at each instant. Unlike as in [5, 26, 10], we will use two
observable variables.

Let T be a fixed exercise date, (2, §, {St}OG[O,T] ,IP) a filtered probability space on which we have two Brownian motions W'

and W2. We consider the controlled diffusion below which describes the dynamics of the various state processes:

t, Y ug)dt + o1 (t, Y ug) dWE + o2 (t, YL g ) dW2, Yy =y}
£, Y2 ug)dt + 091 (8, V.2 ug) AW + o9o(t, Y2, ug ) dWE, YE =2
dXt = b3(t7 Xt7 Y;17 }/;527 Ut)dt + 031 (t; Xt7 ut)thl + 032(t7 Xt7 ut)thQ; XO =T

46(t,2) = [L6(t,2) + balts2,9(6,2), 50 (8, 2)),ueldt + 02162, 9(6,2), 9 (8, 2), )W} @1

b aialts2,9(6,2), 920 2),w)dIVE, 6(0,2) =€), = € R
lim ¢(t,z) =0 Vt € [0,T]

llzl| =00

AY;! = by (
dY2 = by(

. where L is a linear differential operator. by, ba, bs, by, 011,012, 021, 022,031, 032, 041, 042 the given functions satisfying the
conditions of existence and uniqueness of strong solutions of the above system, and L* the formal adjoint of L.
Let f and g be given functions C! in their arguments. We consider the objective function:

T
J(u) =R V //f(t,z,Ytl,Yf,Xt,qﬁ(t,z),E,Ut)dzdIP’Bdt
0 JRJR (4.2)

+ / / (2, Y, Y2, X, (T, 2), b, urp)dzdPs
RJR

We note U,y the set of admissible controls contained in the set of controls §;— predictable such that the above system has a
single strong solution and

E UOT e le |f(t,z,i@l,iﬁ27Xt,¢(t,z),5,ut)’ dzdPgdt+ [, [o ’g(z,Y%,YI%,XT,qﬁ(T, 2),b, uT)’ dzdPg] < oo.

Problem 4.1. Determine the value function
J(@) = sup J(u) (4.3)

ueU,q
under conditions (4.1).
That is to say to seek the optimal control 4 € U,q which maximizes the objective function .J

As such, we define the associated Hamiltonian by :
H:0,T]x RxRZPxRxR*xR xR xR*xR* —R

H(ﬁ,Z,yl,y2,$7¢, ¢/7U,p17p27p3,p4,(h,Q27Q3,Q4,q/17q/27Qé7q4/1) = H(t,z7y7$,¢,¢/7u7paq7ql)
with y = (y1,%2),p = (p1,p2,3,P4), ¢ = (q1,42, 43, 41), 4" = (¢1, db, a5, 44 )-

H(tazaylay%xa(ba ¢’,u7p,q,q') :/ f(tazvylay27xa¢; b;u)d]P)B + bl(t7yl7u)p1 + b2(tay27u)p2
R

+b3(t, Y1, 42, T, u)ps +ba(t, 2,0, ¢, wpa + o11(t,y1, w1 + o2 (LY, W) (4.4)
+oai(t, o, u)g + ou(t,z,6,¢' W + oty wag

+022(t, Y2, u)gy + o32(t, T, u)gs + oa2(t, 2,0, ¢, u)q)
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Where ¢ = %.We suppose that H is differentiable in the variables y1, y2, z, ¢ and ¢ .

For v € U,q, we consider the adjoint processes satisfying the backward stochastic differential equations in the unknown
P1 (ta Z)7 q1 (t7 Z)a Qi (tv Z)7p2(t7 Z)) q2(ta Z)v qa(t Z)ap3(t7 Z)a Q3(t7 Z)7 Qé(ta Z)’ p4(ta Z)v q4(t7 Z)a QZL(t? Z) € R with the system of

adjoint equations:

—dpy = ﬁ( ,2)dt — qudW} — g dW2, pi(T,z) = [ %l(z,l;)dﬂ”];

—dpy = §EL(t,2)dt — q2dW}! — god WP, p2(T,2) = [y 5k (2, 0)dP

—dps = G (1, 2)dt — gsdW} — gzdW?, ps(T,2) = Jy 52(2 b)dPp

—dpy = [%—g(t, 2) + L*py(t, z) — aaz (8}22:/@)} dt — qudW} — qudW2, ps(T, z) = Jr %(z,l_))dPB
,  lim py(t,2) =0

llzll =00

With short notations: g(z,b) = g(z, Y}, Y2, X7, #(T, 2), b, ur) and
H(ta Z) = H(t7 Z, Yt17 }/1527 Xta ¢(t7 Z)y ¢ (tv Z)7 Ut,p(t, Z)7 q(ta Z)a q (tv Z))

Remark 4.2. .

(4.5)

If we suppose for example that the coefficients of the controlled diffusion, and our functions are fairly regular then there
is existence and uniqueness of classical strong solutions of our backward stochastic differential equations as well as of the

backward stochastic partial differential equation constituting the process of associated adjunct equations.
We have the following theorem:

Theorem 1. (A Stochastic maximum principle)

Let u S U ad with the corresponding solutions Y; ,Yg ,Xt,gi)(t z) of(4.1); p = (P1,P2,P3,04),4 = (41, &,d3,44), ¢’ =

(ql, q2, q37 q4) of (4.3) and (4.5). Let the following conditions be satisfied:

1. The function g : (y1,y2, 2, ¢, u) — g(z,y1,y2, 2, P, b,w) is concave iny1,y2,x and ¢ forall z € R, b € R, u € Uyg,

2. H(t72,y17y2,$,ﬁ,¢,¢ aﬁvdqu/) = Sllljp H(t,Z,y1,y27l',¢,¢ au7ﬁ7d7qA/) exists Vy17y27x7¢7¢’
ucUad

3. The function h : (y1,vys,2, ¢, qﬁ/) — H(t,2,Y1,%,%, ¢, (i)’,ﬁ,ﬁ, 4,q') is concave in y1, Y3, x, ¢ and ¢/ forall (t,z) €

[0,T] xR,
4. With the integrability conditions below satisfied:
N2
E [foT Je {(au — 1) 5t ) + (012 — 612) B (1, 2) + (Vi = V) @t 2)+
N2
(vt - oo = 621) B3(1,2) + (020 — 622) B3 (1, 2) + (VP — V) dB(t,2) +

N 2
LoV () +
. 2A2 R R R R A \2
(YtZ Yf) ot z) + (031 631)° 3t 2) + (032 032)2p§(t,2)+(xt Xt) 43 (t,z) +
2
3

1?2 A
q/
q
A\ 2 ~,
(Xt — Xt) q'5(t ,Z)}dtdz] < 00.and
T A \2 a2 A \2 82 n 2 ~2
E|fy fid (o0 =000 B3t 2) + (o0 = 2) (6, 29) + (0(2) = hi(t.2)) @ (t,2) +
N 2 .2
(qb(t, 2) qbl(t,z)) q’ﬁt,z)}dtdz} < 00.
Then the control Uy is optimal for the problem (4.3).
Proof. .

Let us show that J(4) > J(u) Yu € Uyq.
Recall that

H<t7 Z,Y1,Y2,, ¢7 ¢/,U,p, qvql) :/ f(tv 2, Y1,Y2, T, ¢7 bvu)dPB + bl(ta ZUl,U)Pl + b2(t7y27u)p2
R

+ b3 (t, g1, y2, @, w)ps + balt, 2,0, @', w)ps + o011 (8,1, u)gr + 021 (¢, y2, u)ge

+o31(t 2, u)gs + our(t, 2, ¢, ¢’ u)qs + o12(t, y1, w)qy

+ 022 (t? Y2, U)q; + 032 (t7 €, U)Q;) + 042(t7 2, d)) ¢/7 U)Q:;
Let’s pose

H(LZ) = H(t 2 Yl Y2 Xtaut (b( ,Z) (b/(taz)vﬁaq\aq,)’
H(t7z):H(tZ)/t7Yt7Xt ﬁ’tvqs(vz) (taz)aﬁquq/)’
11
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f(t,2,0) = f(t,2, Y Y2 Xy, 0(8,2), b, ), f(E, 2, )ZAf(t»AZ,f’flv AEQ»Xm Mt,2), b, ),
9(2,0) = g(2, Y3, Y2, X1, (T, )bU) §(z,b) = g(z, X7, Y}, Y2, ¢(T, 2),b,u)
bi(t) = by, Vi ue) bi(t) = ba(t, Y, 0y)
bo(t) = bo(t, V! up) bo(t) = bo(t, Y, 0)
by (t) = by(t, Xs, Y}, V2 ur) ba(t) = bs(t, Xo, Y1, V2, )
ba(t, 2) = by(t, 2, d(t, 2), 8 (t,2)),up) ba(t,2) = ba(t, 2, b(t, 2), (L, 2), (L))
on(t) = o (Y w) 611(t) = 6114 Y, )
T1a2(t) = 012 (. Y} w) G12(t) = 12(8, Y]}, Gy
o21(t) = o21(t, Y2, ue) 621(t) = 621(t, Y7, )
022 (t) = Taa(t, Y2 ur) Gao(t) = 6aalt, V2, )
o31(t) = o31(t, Xo, ur) G31(t) = Ga1(t, X, )
032(t) = 032(t, Xy, ur) G32(t) = Gaalt, Xo, )
o1 (t,2) = our(t, 2, 0(t,2), 6 (8, 2), ) 641ty 2) = 641 (t, 2, 9(t, 2), b (8, 2), 00y
o42(t,z) = 042(t’27¢(taz)3¢, (t,2),ut) 642(t) = 542(t,Z,gg(t,z),(g(t,z),ﬁt)
Pr = it 2), po = Palt,2), Py = Palt,2),pa = Pa(t,2), G0 = Gi(t,2), 42 = Go(t,2),43 = Galt, 2),4a = Gu(t,2), ¢+ =
01 (t,2), 05 =5t 2), 0’5 = q'5(t,2), ¢4 = ¢ 4(1, 2), we have :

/ F(t, 2, b)dP g = H(t, 2) — by (£)f1 — ba(t)ps — ba(8)ps — ba(D)ps — o o
R .
— 09102 — 03143 — 04104 — 0120"1 — 0220 5 — 03244 + 0420,

/ F(t,2,b)dPy = H(t,2) — bi(t)p1 — ba(t)p2 — bs(t)ps — ba(t)ps — G111
R “4.7)
062142 03143 G41Ga &12(2’1 522&’2 63245 + 0424}

/ // F(t,2,b) — f(t, z,b))dtd=dPg +// (2,b))dzdPg “8)

=L+ D5
From (4.6), (4.7) and (4.12) we have:

/ / / (f(t. 20 (tzb))dtdzdPB]

J(@) —

—| [ [ {102 1)~ (0 0 0)5100.9) (1) )2 o
(bs(t)  bs()ps(t, ) (7’( 2) bt 2))pa(t, 2) (f’n(t) ou(t)a(t z) (321@) 21 (1)) &2 (t, 2)
(O’gl(t) o31(t))gs( (&41(t z)  ou(t,2))qa(t (G12(t)  o12(t)) 4 (¢,

— (5a2(t) — 022 () @' (t, 2) — (G32() — 032 (£)) T (8, 2 )_(042( _042tz)q4tz}dtdz},

=E { A A@ {9(2,b) — g(2,b)} dzdPy

zEUR/R{gi(z,b)(XT— T) + aaAl(zb)(YT Vi) + gA(zb)( ~Y2) + g;s(zb)(qg( )—(;S(T,z))}dzd]P’B]

Yo
according to the concavity of gin X,V7,Ys and q?)
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a4

. 90 .
:]EUR{(XT Xp /8%(2, By -+ (V) | Sz by
+ (?TQ Y7) gyg (2,b)dPg + ((;S(T7 z) (T, z)) 2;5 (2, b)dPB}dz} since X, Y7, Y7 et ¢ thus depend on b
2
=E [ [{0F Yhn@ + (7 Vpa(t+ (K Xn)pa(Tie) +((T2) o(T2)pu(T )}

a9
0y2

Py
hence from(4.5) p1(T, 2) :/ g( L0)dPg, po(T, 2) = (z,B)dPg, p3(T,z) /3 ,0)dP g,
z

oy
and pyu(T,z2) = /g¢(z b)dP p,

—E // — V)P )+ (3= )b (1 2) 4+ d < ¥ — V)i 2) > +d (8 = Y)palt. )

+ (V2 Y2)dpa(t,2) +d < Y2 Y2 ho(t,2) > +d(Xy Xi)ps(t.2) + (X Xo)dps(t,2) +d < Xy  Xi3ps(t,z) >
+d(B(t, 2) — Bt 2))Pa(t, 2) + (Dt 2) — B(t, 2))dpa(t, 2) + d < B(t, 2) — B(t, 2), Pa(t, 2) > }dzdt]

=E

/ / D)t +En(t) ()W) + Gralt)  o10)dWE) (2, 2)

+((Gat)  ba(t))dt + @n(t) o ()AW! + (@aalt)  T2(t)dWF) a(t,2)
+ ((Bat) — ba(®))dt + (G31(8) — 01 (1) AW, + (Ga(t) — 732 (6))AW?) P (1, 2)

(B2 6(t,2) + Balt, ) balt, )t + (Gur(t2)  oun (e, 2))dW

R OH ,
+ (Gaa(t,2) = oaa(t,2))AWF) palts 2) + (V! = V) (=5 (8 )t 4+ a (b 2)AW + 1 (1, 2)dW)
1

. OH ,
+ (Y2 = Y2)(—5—(t, 2)dt + Ga (L, 2)dW} + Gy (t, 2)dWP)

0Ys
A 3H N 1 A 2
+ (Xt Xt)( %(t’z)dt +@3(t, 2)dWi + q5(t, 2)dWy)
. OH o (oH ,
+(4(t, 2) —¢<t7z>)(( - ai;(t 2) = Lpa(t2) + 5 ( fg;;” dt +qu(t, 2)dW} +44<t,z)dwt2)

+ (611 (t) — 011(£))q1 (8, 2)dt + (612(t) — 012(1)) 4y (¢, 2)dt + (21 (t) — 021 (F))Ga(t, 2)dt
+ (G2a(t) — 00a(t))d (t, 2)dt + (831 (1) — 031 (£))ds(t, 2)dt + (G32(t) — o32(t))ds (£, 2)dt
HOut2) on(t2)ialt2) + Gaalt2)  oaslt, )1, 2) 2]

o~ o~

VR /OT{ = 01(8)) B (1) + (Ba() = 0a(8) ) Bt 2) + (b (8) — b (1)) ot =)l

(b0 n0) a2+ LEA) ot 2)pale)+ (7 VI Te2) + (7 V) Gz

o

%X G+ G o) G L*ma,zwgz(afgg;@) @10

(

(Gu(t)  on(®)@(t,2) + (G12(t)  o12(8) G (t,2) + (621(8) 021 (t))da(t, 2)
(Ban(t) 022 (1))dalt,2) + (G51(t)  031(£)dalt, 2) + (6a2(t)  0a2(1))ds(t, 2)
+(Ga1(t2) — oar(t,2))a(t, 2) + (Ga2(t 2) — 0aa(t, 2)) (¢, z)}dtdz}

From (4.9) and (4.10) we have:

J(@) J(u) =L +1>

/ JREI (i (t) — i ()r(t2) — (ba(t) — ba(t)) pa(t, 2)

+
+

- -
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(bs(t)  bs(1))ps(t,2) (84@ z)  by(t,z )p4 (611(t) o1 (1))t 2

— (621 (t) — 021 (t))da(t, 2) — (631 (t) — 051())ds(t, 2) — (&41@ z) — ot Z))Q4(t z)
— (812(t) — o12(8)) a4 (¢, ) (Ga2(t) — 022(t) g ’2 (0'32( ) — 032(t))q’ 3(t Z)

— (642(t,2) — 02 (t,2)) @ 4(t, 2) + (b1 (t) — b (t) )P + (ba(t) — ba(8))Pa(t,

(

(Bs(t) Ba(0)ps(t,2) + (Bat)  ba(t))palt,z) + (( 2) 6(t2)) palt, z)
oH 0H oH
(t, z)f(Y ~Y7)

o )~ (= X (09

(=Yg
1) - (6(t.2) — 6(t. 2)) L*a(t, 2)

8H( L Z)
¢/
(6

~ (3(t2) — 6(t,2) 2

) +(611(t)  on(t)qr(t, 2) + (612(t)  o12(t)qr(t, 2)

22(t)  022(t))qh(t, 2) + (Ga1(t)  031(t))gs(t, 2)
a1 (t,2) — 0a1 (£, 2))qa(t, 2) + (5az(t, 2) — oaa(t, 2))d4(t, ) }dtdz}

+ (G21(t)  o21(t))q

a6 "
F(3) ()
At

+ (G32(t) — 032(1)) g5 (1,

d
z) +(
2) +(

OH

V/ ,Z) (Yl(t) Yl())ayl(t 2) (Y@(t) YQ())ﬁH

9 (t, 2)

(X() Xt)§f<t,z> (36,2) 0(6.9) G (t.2)+ (30.2) 00,25 (‘f’ﬁ;))

X(t
(tz &(t, ))]54(t 2 (d(tz) o, z))L*m(t,z)}dtdz}

= l/o / (t,z) — H(t,2) (Yi() Yl())aH(t,Z)—(Yz(t)—Yt)aH

oy 7

oy
Of oH . 0 <aﬁ(t, z))

= (X0 = X)) = (6(t:2) = 0(6,2) 5 (6:2) + (9(t2) = 0(t.2) 352 | =55

e (&(t, 2) — ot z)) Pat,2) — (Bt 2) — b (t, 2)) L*Pu(t, 2) }dtdz}
ol

83/2

8]7 N /
5t DGtz ¢t 2) }dtdz}

) A
| [{aes mes Soeam vy Shea@ w)
0 R Y1

h X @.11)
oH A oH .
%(tv 2(Xe  Xp) %(t» 2)(o(t,2) ¢t 2))

According to (4.11) and the concavity of h we have :

) >E / / H(t,z, X,Y" Y2¢¢',a,p,Q)_§7H(t,z)(ﬁl_ﬁ)
1

OH

OH A
55 1:2) (B(t.2) — 8(t, 2)) (4.12)

O () - P (- x) -

oH ,
By 7 (t:2)(¢'(t,2) — ¢(t,2))}dtdz}
>0
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From (3.8), section 3 we have:

dS; = Z5tdt + g, 8,dY;1, So=s
dT’t = O'Qdf/?, To
de”_‘ = [rtXx o _ ug(ry — %O’%) — u?(rt — Rg)] dt + utaldf/tl, Xg’ﬁ =7
2
_ [ 20% 29
9(t,2) = [ 52 (0.5~ k(5 = 5202 + bott )| a
1 P ~ P ) _
T i) — 202 — pros 22t 2) | AT+ [a(b — o) — o3pa 22 (t, 2) | avz P02 =)
2 0z 0z
= Ly¢(t, 2)dt + M; ¢(t, z)dY}" + M3 o(t, z)dY}

We note that only the process X, o depends on the control .

Vir(z) = sup E[U (X5" +II(St, B))]

u€Ugqq

sup U/¢ (T, 2)U (X5 4+ T1(Sp, B(=) + b)) d]Pde} 5.1)

u€EUqq
== U / ST, 2)U (X7 + T1(Sr, B(=) +1) dPde]
R JR
The objective function to be maximized is given by:
-F U / [ (X7 +T1(Sr, B(2) +b))] (T, z)dpédz]
R JR

Applying the theorem 1 with Hamiltonian:

H(t,Z,S,T,x,¢,¢/,u,p,q,q/) = %pl + |:’I’ZL' - u(r - %O—f) - uo (T - RO):| b3
9¢
+ _k(ﬁ - z)&(ta Z) + k¢(t? Z) Py + 015q1 +01uUq3
1 0 0
b utrez) = 30t = p10a 32 ok oudy + [alb =) — 0P 1.5)]

The adjoint equations are given by:

{ dp:(t,z) = [; +01q1(t z)} dt  qi(t,2)dY} ) (t, z)dY? (52)
n(T,z) =0T, ) & 35 (X7 +11(Sr, B(2) +)) dP
{ dps(t, z { rT—u—u )pg(t, z)+ 8r L(r,2)qu(t, 2) — aq)(t, z)} dt — qo(t, 2)dY}} — ¢y (t, 2)dY (53)
p2(T, Z) = o(T.2) [ 5= (X7" +1(Sr, B(2) + b)) dP,
{—dps(uz) = rps(t, 2)dt — gs(t, 2)dY;" — da(t, Z)d%Q (5.4)
p3(T,2) = ¢(T,2) [ 35 (X3 + (St B(2) + b))dPy
{ doa(t:2) = [BEBED]dt (e T G2 55
pa(T.2) = fp F(X7" +1(Sy, B(2) + b))dPp

Let /2 such that (3.8), (5.3) and (5.5) each have a unique strong solution, @ = (4, 4°) be an optimal control with the optlmal pro—
cesses corresponding X, 8,7, ¢,¢ and the corresponding adjoining equations with solutions: P, D2, P3, P, G1, G2, 43, 4a, Gy > G5y G4, 44 -
U and IT are concave. H is a linear function of u. Thus the first order optimality condition below:

First order optimality condition:
OH

du
We will now use these conditions with the adjoint equation (5.4) to determine the optimal control 4.
Recall that this linear equation is:

dp3(t,z) = 7ﬂpfﬁ(tv Z)dt q3 (t Z)dfftl Qé(t Z)inQ
p3(T7Z) :(b(Tv Z) R 6X(X )u+H(STa ( ) +b))dPB

1
(t,2) =0 (ry — 50%)133(15, z) = o143(t, 2) (5.6)

(5.7)
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Let us find a solution of (5.7) ) in the form:

Bs(t,2) = p(t.re, $(t, 2)) X¢" +(t, S, e, ) (5.8)
where 1) is a C? function in each of its variables with the differential form:
dip(t, Sy, e, ¢p) = Opdt + BHY;" + BFY. (5.9)
I (2222, ¢ Op 1%
dplt,ri,6,2) = | 7 + (03 Gt KO AT+ kol 2)) o+ AT,
1 o 2 L) 2\ o2
+5 ( (11,2 J% P13 (t, z)) + (a(b T)  O3pa—— R (t, z)) 8TZ
(5.10)
1 0 o ~
+ o (alb— 1)~ aapa 32 >) ] i+ (i) - 5ot = o5 (02) ) S
0
+ {agaﬁ + (a(b — 1) — 03p2 ] dY;
We have:
~ T, .0 ~ 1 2 8¢ ap
dps(t, 2) =dp(t,re, (1, 2)) X" + p(t,re, (8, 2))AX T+ ovhe ( plre,2) - 50t pros-(L,2) 96
+ O,dt + BLdY;! + B2dY}?
. 5 O 0¢ dp 1 ,0%
dpgtz—H (382 (t,z) k(B )8 (tz)—|—k:¢>(tz)) 8¢+202827“
1 1 0 2 b 2\ 52
+ 5 <<,u(1"t,z) 50’% P103 a¢(t Z)) + (a(b ’I‘t) Jgpga(ﬁ(t’z)) > GTZ
8(;5 62[) T,0 ~ 1 2
+ oy (a(b —7y) — O3 aZ(t,z)) 9100 +rp(t,ry, o(t, 2)) | X% — p(t, 1, d(t, 2)) iy (1 — 501) S
N 1 0
—u}p(t,re, ¢ (t, 2))(re — RY) + o1y (M(Tt,z) - 5 — p103 8¢( )) 96 + Qt]
1 0 0 4 .
s pna) ot mon 32| X pltrote, Dino+ | ar
dp 99 o — 2
+ HUQ@T + (a(b 7¢) 0302(32(7572)) 8¢} Xy +ﬁt:| dy;?.
On the other hand, according to (5.7) and (5.8) , we have:
st 2) = 1o |p(t,me, &t 2) X" + (¢, i, ey 00) | dt + Y, + @Y (5.12)
By identiffication of (5.11) and (5.12) we have:
0 (0% 9 o 1,0
21 + <03 822(15,2) k(B )3 (t,2) + ko(t, 2) 96 + 57258,
1 1 d ? d 2\ &
"'5 ((u(rt,z) 5‘7% pP103 8¢(t Z)) + (a(b ) 0302;:(1?72)) )(922
0 0? - . 1
+ 09 (a(b —r) — agpza—f(t, z)) 8rap¢ + rep(t, e, P(8, z))] X o p(t, e, @(t, 2)) s (ry — 50%)
. 1 0 0
—ugp(t,re, ¢(t, 2))(re — RY) + o1l (M(%Z) - 5‘7% p103 8¢( )) £ + 6.
= —rtp(t,rt, O(t, 2) X" — r(t, Sy, 1y, 0(1, 2)) (5.13a)
1 0 0Pz N N
[l 2) = 30 = proa 5200 2)| SEXET - plt 00,0+ 5L = . (5.130)
8 6 8 z,0 A
o232 + (a0 =) — aapa 32(02)) 58] X7+ 7 = gy,
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(5.13a)
[%’; L3t 2) 2 + 30382 + ) (M7 (2, 2)* + (M (t, 2)) ) 32 + 02 M3t Z)B—T@%+2np(t,m,¢(t,z)):| podl
N +r)(t, Se, e, de) + ©r udp(t, T, Bt 2)) (T RY)
Uy = s . (5.14)
p(tre, @(t,2)) (re %of)  o1Mio,2) 55

We have by (5.13b) and the first order optimality condition (5.6):

= 30 plt e, Bt 2) — LM (1, 2) 21XE" + (v — 302) (L, St b1) — 151
Gy = (5.15)

0'1P<t, Tt, ¢(t7 Z))

The equations satisfied by p(t, 7+, ¢ (¢, z)) and (¢, S¢, 7, ¢¢) are obtained by identifying (5.14) and (5.15) as a first degree
polynomial in X;**. Thus, we have:

2

L*z‘b(t,z)gg 02%!§ + 3 (( 1o(t,2))° + (M5 o(t, 2)) ) 22:3 + oo M3 (¢, Z)8r8¢ + 2 p(t, 1, (L, 2))
p(tre, (1, 2)) ( — 30 %)—UlM(th)(w
(re  oD)plt,re, d(t,2)) o1 Mio(t,2) 55

B T ) -16n
O + 14t Sy e, Ge) — ugp(t,re, Gt 2)) (e — RBY) (re = 303) (8, Si 70, 1) — 018 (5.16b)
p(t,T‘t,d)(t,Z)) (rt éal) o1 M7 ¢( )% Ulp(t7”’¢(t>z)) .
(5.16a)
¥
0 3] 1 5,02 1 . . Pp 9%p
a;)+LZ¢( )az +7 2 p+2 ((M1¢(t72))2+<M2¢(t72))2) 32¢ +02M2¢( )6 6¢+271tp(t Tt,¢(t,2))
(e 307) M o(t,2) 5% 1, . dp
= ( ) R 00) [(Tt - 501)P(t77"t7¢(ta z)) — o1 M; ¢(f72)%
(5.17)
(5.17) is a parabolic PDE.With quadratic utility function U (z) = — (x — ag)? and terminal condition:
p(T,rr,¢(T,2)) = 2¢(T,2). (5.18)

If for example we take g—g = 0, by Feynman-Kac representation formula, we have p solution of backward stochastic differential
equation:

(re 51‘7%)2 2 332
t 1 _2\2 T 1 _2\2
p(t,r) =exp (/ <(r52201) — 2rs> ds> E |—2¢(T), z) exp (—/ [(W) — 27“5] ds) re = 7“1 (5.20)
0 01 0 01
Equation of v
(5.16b)
)

re 102 M p(t,z) 22
Tt¢(t75t7rt’¢(t7z)) + 0 = |:( af2 v alpztjt,d’)(tgji))} [(’rt 751 %)w(t St’Tf’(b(t’Z)) o O—lﬁtl]

+uf p(t,re, (L, 2))(re — RY)

(r— 3037 (re— oD Mio(t,2) 32
o3 arp(t,re, P, 2))
+ulp(t, e, §(t,2)) (re — RY)

t 1/’(@ St7 T, ¢(t7 Z))

* o)
o, 4 |(re=dod)  Mid(t2) ’;] -

01 P(t»ﬁﬁ(t’z))

(5.21)
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Let’s calculate ©; and 3

¢

2
dip(t, Sp,e, (1, 2)) = (t i, e, Gt 2))dt + [”12& oy

08

=5t Se, e, d(t, 2))
¢

dﬁ}

,0%¢

+0a 00 S ot NaTE + | 3T 02) = k5 = 52 (02) + ko, )]

+ [utre2) = 5o? - poa 3200, 2)] a7+ [ats - ) - agp2§f<t,z>] 72| 32, Sur o1t 2)
2 2
SOLSE T (6 S0t ) + 503 0L (1,81 (1, )t
1 1 d ? d RZ
+ 5 (M(Tt72) - 50% - p103£(t,z)) + ( (b - ’I“t) — 032 a¢(t z)) ] (92:/; (t St,Tt7¢(t,Z))dt
1 o) 0?
+ 015; [M(Tt,z) - 50% 0103825(1572)] OS;} (t St,rt,éf’(t Z)) t
2
+ o2 [a(b L) — 032 gf(t z)} £g¢(t,rt,rt,¢(t,z))dt
»25 (5.22)
0 = FtSuro(t ) + 00 (5,6, 2)
¢ o¢ oy
+|a%s) ws z@(t,z) 800,21 22051, 004,2)
L1 0? 5 07
2St282ié (t,St,Tt7¢(t,Z)) + [eb) 82¢(t St,Tt,qj)(t,Z))
2 2
vy |(sres) et pwg‘? 09) + (a6 ) o) ] o (6.5, 0(0,2)
1 2
+015¢ [N(Ttuz) §U% P1032¢(t72)} 88515 (t, Se,re, 0(t, 2))
82
+o9 {a(brt) Jgngf(t,z)] o g;)(t Siy T @(t, 2))
1
B = SOl St 2)) [u(n,Z) 207 pos o, >} G S 0.2)
Let ¢"(t,2) = 22 (t,2), ¢ (t,2) = 22(t, 2).
After calculations, we obtain with utility function U(z) = (z  0)?, 9 solution of the PDE:
o 0152 0% o3 9% Loon e . 0%y
8 (t S7 7¢) 2 825(t 57 7¢) ;ﬁ(tvsﬂa’(b)Jr 5 [(M1¢(t7z))2 +(M2¢(tv )) ] 82(25 (t S T ¢)
o2 o? oM ¢(t )l 0
+ alSquzS(t,z)aSg;) (t,S,r, ¢) + 02M§¢(t’z)6r;:b(t’ S,r,9)+ S |r W} 82 (t, 5,7, ¢)
. (5.23)
\ \ (r—1%0%)  Mio(t=)3E 1] oy
Lz¢(t, 2) + Mi¢(t, 2) [ o ot ol Z)) 8¢>(t S.r,¢)
152 Mig(t,2)(r Lo2)%
with terminal condition
W(T, S,r, /¢ (T.2) ((Sr, B(x) +b) o) dP, (5.24)
Let M ;gb(t, z) = %. Considering the elliptic operator associated with the state processes given by:
* 1 * 1\2 * 2 2 * * (T— %U%) *
Ly =5 |0 + (M30)°] 8B, + | Lo + Mo R I (5.25)
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(5.23) becomes:

0252 02 * * * *
Vet —o—tss + Vet < LGw >+ < Mg, 01SDys > + < My, 02Dty > + < S(r = o1Mj9), vs >

152\2 152
+<r— <T‘UU1> —+ (700120-1) M:QSJ/J > —|—ugp(t,7‘t,¢(t,z))(7}7 R‘?) =0

1
(5.26)
With Dy the partial derivative with respect to ¢.

By Feynman-Kac representation formula, under regularity assumptions we have 1/ solution of BSDEs:

ysro /¢ (T, 2) (I(St, B(2) +b) — ag) dP;

Tu — 152 2 Tu — 152 Tu — 152
+/ Tu— (2 1) + (2 1) Mjg) | V3570 4 (22 - - M;jqﬁ) Z, (5.27)
t 01 01 0'1
T B T B
—ulp(t,re, p(t, 2))(re — RY)]du — / Zlay! - / Z2dY? 0<t<T.
t t

where S = Sy, r =1, 6 = @(t, 2).
w(t7 S? r) ) = }/'tt,S77‘7¢

1

t 2\ 2 1.2 t 1 2 2
u - 9 u -9 1 u - 95
w(t,S,T,gb):exp{/ <ru— (r 2”1> ¥ (r 2”1>M;¢)> du—f/ (r 21 —M;¢> du
0 o1 o1 2 Jo o7

(5.28)

T/ _ 1.2 ~ T
_/0 (“0'221 —M;¢> dYtl} _/t (ugp(u, Tu, O(u, 2)) (ry —Rﬁ))

u 1,2\ 2 1.2 w ) 2
s 5 s 5 1 s 9
exp / re — 7501 (% M’ 9) ds—f/ s 3% 2201—M*¢) ds
0 o1 o1 P 2 Jo o? P

w 1.9
o[ (T ) av Y auis, = 5n = rote ) = o]
0 71

Optimal control in the presence of the option is given by:

2

12 t 12 1 2 t 1.2 2
2 () u 1 w5
il = exp / ru<r 201) +<T 201)M*¢>) duff/ <T 271 M;,"r,b) du
O'lp<t77"t,(b(t,2)) 0 (o] g1 2 0 o1

1.2

. 1 . _
[ (e} (o fom s - )
0 1
T 1,2\ 2 1.2 1 (T 1.2 2
o () (o 1 ()

T 12 3 T
(P - o) dYﬁ} - [ ot b )~ RD)

u Ts — %U% ? Ts — %U% * 1 “ T's — %O% * ’
e"p{/o ( () () e g [ (P - ane)
u _ 1.2 .
-/ (TU;‘“ - M;¢> dY;} dulS, = 8,0 = 1, B(t, ) = 4 ~
o 1, 0 (W
_ m [Ulst&g(tystarh P(t,2)) + { (re,2) = 501 _pla?’a (® )} 6 St?rt,Cﬁ(t’Z))]

¢
. [(re — 30%) plt, 11, 6(t, 2) — o1 My b(t, 2) 5]
J%p(t,’l’t,¢(t72))

X2 Vit e [0,T) (5.20)
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In the absence of the option, II(St, B(z) + B) = 0 and the function ¢ does not depend on S; therefore, the optimal control
is given by: ) )

1.2 t 1.2 1.2 t 1.2
0 T — 507 / <Tu—201) <ru—201> . 1/ <Tu—201 . )
=t 271 w2 (2T A | du— - 27 e ) d
Mo T ot 0(t, 7)) Xp{ 0 ( o1 o O =5 | T p?) du
t _ 1.2 R B
+A<“Jfﬁ_MMD@Q} {( /¢Tz &g()+m—%wM)
T Ty — a% 2 T 75 % 1 (T [(r, - Lo? 2
exp{ /0 (ru ( a1 ) +( a1 ) P ) 2/0 ( ot p¢> o
T fp 142 N - T
_/O (221_Mp¢> dy;l} _/t (ugp(u,ru,q/)(u,z))(ru—Rg))
2

u 1 2\ 2 1.2 u 1.2
s 5 s 9 1 s 5
exp / re— (270 (290 apr dsff/ D29 g ds
0 o1 o1 P 2 Jo o1 P

u _ 152
o [ (T ge)avi Y aus = sir =g, =]

01
p(re, z) — %0’% — p103 gf(uz) 0o [(Tt - 501) p(t,re, ¢(t, z) — o1 My ¢(t72)§*§} e
) l ot at) | o ST plt, 0,918, 2) o
vt €[0,T]
(5.30)
this time with 1) solution of the PDE:
oY 5 0% 1 . 9% 9%
ao(t 57 7¢) 0-2287:(t,5,7“,¢)+§[(M1¢(t,2)) (M2¢tz)) } 82¢0(tsr¢)+0-2M2¢( )a a;(tST(b)
* * (T B %O—%) Ml ¢(t Z) 8¢ 811}0
LZ¢(tvz) +M1¢(t7z) [ o1 (t T, ¢(t Z)) ¢ (t S7 7¢)
—102)?  Mio(t,2)(r— $0?) 58
= (T 0_2%0-1) - - alp(t,r, (;) A - 7;| 1/)0(75, Sa T, ¢) + utop(ta Tta(b(tﬂz))(rt - Rto)
(5.31)
with terminal condition
Yo(T,rr, 1) = 2009(T, 2). (5.32)
In other words
U% E* M* D r—= 50—% ? r—= %J% M*
1/10,5 + 71/]0TT+ < 51/}0 >+ < 2 ¢7 02 ¢’(/}0r >+ <r ( o > + ( o1 ) p¢7’(/}0 > (533)

+ug p(t, e, ¢t 2))(re — BY) =0

o
Oub

H is a linear function from u® with coefficient (R?  r;) ]33 (t, z) thus a harmonic function of u°, so according to the maximum
theorem reaches the maximum on the bounds. Assume u. € [0, UZ"*®] the set of all possible values of u where U[*** € R.
The equation satisfied by p3(t, z) is a linear BSDE. A representation of the solution in explicit form is given:

t
p3(t,z) = 2exp (/ 7‘st> E
0

Thus an optimal investment strategy in non-risky assets is given by:

= (RY —7/)ps(t, 2)

(T, z) exp (/OT rsds> /R (X;f’l2 +I0(St,B(2) +b ozo)) dP, |§t1 (5.34)

o if(RO r)E (T, 2)exp ([, reds) fo (X&" + (ST, B(z) + b  ag))dP, | >0 539
Uy = N .
' iU"“” if(RY —r)E |&(T, 2) exp fOT reds) [p (X7 + (S, B(z) +b—ag) ) dPy, Fi| <0

An optimal strategy for investing in risk-free assets is to invest as much as possible when the return R of this asset is greater than

the stochastic interest rate r; which is the yield of "semi-risky" assets and mathematical expectation
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E [¢(T, 2) exp (fOT rsds) Je (X;»ﬁ FTI(Sp, B(2) +b a0)> dP, gt}
is negative.

Theorem 2. (Optimal control)

An optimal control u (resp U0 ) to the terminal utility maximization problem under partial information (2.7), (2.8)(resp (2.9)) is
given by (5.29), (5.23) and (5.35) (resp by (5.30), (5.31) and (5.39)).

6 Conclusion

In this article, for the hedging of a European option with a portfolio made up of three financial assets, we have given an optimal
investment strategy in each of these assets. We have assumed that: the interest rate is a stochastic variable with the dynamic of
Vasicek model, the payoff of the option does not depend only on the horizon price of the risky asset but also an unobservable
variable. Given the dynamics of the portfolio, we have given the optimal strategies for investing in risky and non-risky assets.
The passage of partial information to full information is done using the filtering theory with the Girsanov theorem and the Zakai
equations. We used a stochastic maximum principle established with the backward stochastic differential equations. This was
to determine optimal control which was an optimal portfolio management strategy. We mainly used the adjunct equations of the
stochastic maximum principle with the Hamiltonian, the first order optimality condition. In the future, we intend to generalize
these results of higher dimensions with a portfolio made up of several risky, non-risky assets, semi-risky as well as with other
dynamics of interest rates and digital simulations.
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