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Abstract: A Deep Convolutional Neural Network (CNN) is an important part of deep learning that has delivered admirable successes 

in various competitions related to Image Processing and Computer Vision. Certain attractive application fields of CNN vary from Image 

and Video Recognition, Image Segmentation and Classification, Medical Image Analysis, Natural Language Processing, and Object 

detection. One of the greatest powerful abilities of deep CNN is the various feature extraction in an automatic way. Recently, 

developments in the research of CNNs and attractive deep CNN architectures have been described due to the inherence of the huge 

quantity of data and refinement in hardware automation. A handful of encouraging concepts such as the use of distinct activation and 

loss functions, regularization, parameters optimization, and architecture modernization, derive progress in deep CNNs. However, the 

remarkable advancement in the representational ability of the deep CNN is accomplished by architectural modernization. Thus, this 

review paper presents a brief survey of the advances that can occur in the architecture of CNNs from the very first architecture to the 

recent one. This paper, therefore, targets the inherent anatomy in the newly disclosed deep CNNs architectures and accordingly 

describes the strengths and gaps of various deep CNNs architectures. 
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1. Introduction 
 

The advanced kind of Neural Network (NN) is the 

Convolutional Neural Network (CNN) [1] which has shown 

a wide future in Computer Vision (CV) associated tasks. 

CNNs are one of the dominant learning algorithms for 

finding image content and have established an ideal 

accomplishment in image segmentation, classification, 

detection, etc. [2]. Besides, in academia, promising results 

have been captured in industries or companies such as 

Google, Microsoft, AT&T, NEC, and Facebook have 

advanced active research groups for presenting progressive 

architectures of CNNs [3]. The appealing feature of CNN is 

its ability to make use of spatial or temporal connections in 

data. CNN is a feed-forward multi-layered hierarchical 

network, where every one-layer carry’s out numerous 

variations [4]. Convolution operations assist in drawing out 

suitable features from locally linked data points. The output 

of the convolution filters is then assigned to the non-linearity 

function (activation function), which supports learning 

extraction as well as implanting non-linearity in the feature 

span. The output of the non-linear activation function comes 

after the sub sampling, which supports encapsulating the 

results and constructs the input constants to geometrical 

curvatures [5]. CNN learns from end to end of the back 

propagation algorithm by controlling the alteration in 

weights in accordance with the object. CNNs with 

automated feature extraction capability diminish the demand 

for a discrete feature extractor [6]. The attractivity of deep 

CNNs is elementary due to its multilayered, hierarchical 

architecture, which provides the power to draw out low, mid, 

and high-level features. 

 

Deep architectures usually have dominance over shallow 

architectures when handling convoluted learning problems. 

It lay out the potentiality of learning complex depictions at 

distinct elevations of extraction because of the heap-up of 

the different linear and non-linear processing units in a 

layer-wise style. The use of CNNs is increased in image 

classification and segmentation tasks [7], because of its deep 

architecture which upgrades the representational ability of 

CNN.  

 

After the ideal presentation of AlexNet in the ImageNet 

dataset in 2012 [7], CNN-based approaches became 

extensive. Later, the notable modernization in CNN has been 

progressive and is mostly related to the improvement of 

processing units and composition of the latest blocks. In 

2013, the knowledge of the layered view of CNN was 

proposed which enhances the extraction of features. Then, 

moved in the direction of the extraction of features at low 

spatial resolutions in deep architecture named VGG [8]. 

Google deep learning proposed an inception block by 

constituting the concept of a break, alter and combine, which 

approves the divergence inside a layer [9]. The approach of 

skip connection was proposed by ResNet [10] for training 

deep CNNs. After that, this approach was used in Inception-

ResNet then Wide-ResNet [11], and in ResNeXt [12]. 

Several architectural designs such as Pyramidal Net [13], 

Wide ResNet, ResNeXt, Xception [14], etc. are initiating the 

cardinality or incrementing the width. Hence, the basis of 

research moved from parameter optimization and connection 

remolding, in the direction of the enhanced architectural 

layout of the network. The aforementioned movement 

appeared in a lot of advanced architectural designs such as 

spatial and feature-map-wise utilization, Channel Boosting, 

attention-based information processing, etc. 

 

In recent years, a lot of fascinated surveys or review papers 

are assisted on deep CNNs, which consider different 

algorithms and applications of CNN [15][16] [17]. They 

mostly focused on the concepts such as the use of distinct 

activation and loss functions, parameters optimization, 

regularization, etc. But, in this review paper, we consider 
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inherent anatomy available in the current and outstanding 

CNN architectures described from 2012-2022. We discuss 

the numerous CNN architectures with strengths and gaps 

and also mention the categories like width, depth, spatial 

exploitation, multi-path, attention, etc. This paper will 

inspire the researchers or the readers to promote the abstract 

observation of the design concepts of CNN and thus advance 

speed up the architectural modernization in CNNs. 

 

The remaining of the paper is organized as: section 2 

discusses the architectural revolutions of CNN and also 

mentions the strengths and gaps of each CNN model in table 

2. Finally, section 3 concluded with future work.  

 

2. Architectural Revolutions in CNN 
 

Different redesigns in CNN architecture have been made 

from 1989 to recent times. It is observed that the recasting of 

processing units and the composing of new blocks are 

responsible for the improvement in the performance of 

CNN.  

 

A. LeNet 

LeNet [18] is the first and the most popular CNN 

architecture which came in the year 1998 as shown in Figure 

1. LeNet was originally developed to categorize handwritten 

digits from 0–9 of the MNIST Dataset. It is made up of 

seven layers, each with its own set of trainable parameters. It 

accepts a 32 × 32-pixel picture, which is rather huge in 

comparison to the images in the data sets used to train the 

network. RELU is the activation function that has been used. 

The traditional fully connected multi-layered neural network 

has the main drawback that it examines each pixel as distinct 

input and employs a transformation to it, which causes a 

significant computational load, specifically at the time of 

Gardner and Dorling 1998 [19]. LeNetutilized the 

fundamental basis of the image that the neighboring pixels 

are interrelated to each other and the theme of the feature is 

scattered across the whole image. LeNet was the first CNN 

architecture, which diminished the number of parameters 

and learned features from raw pixels automatically. 

 

 
Figure 1: LeNet Architecture [18] 

 

B. AlexNet 

LeNet [18] though, initiate the history of deep CNNs, but it 

was restricted to hand digit identification tasks and didn’t 

accomplish well to all categories of images. AlexNet [20] is 

designed as the first deep CNN architecture, which 

displayed revolutionary outcomes for image classification 

and identification tasks. AlexNet was presented by 

Krizhevesky et al., which improved the learning capability 

of CNN by constructing it deeper and by applying numerous 

parameter optimization approaches. The network is similar 

to the LeNet Architecture, but it includes a lot more filters 

than the original LeNet, allowing it to categorize a lot more 

objects. It deals with over fitting by using "dropout" rather 

than regularisation. The basic architectural design of 

AlexNet is shown in Figure 2. In accumulation to this, ReLU 

was used as a non-immersing activation function to recover 

the converging rate by improving the problem of vanishing 

gradient [21] to some level.  

 

 
Figure 2: AlexNet architecture with 5 convolutions, 3 max-

pooling, and three fully connected layers [19] 

 

C. ZfNet 

Earlierin 2013, the learning technique of CNN was built 

primarily on the hit-and-trial method. Due to this, the 

improvement in the performance of deep CNNs on complex 

images was limited. In 2013 Zeiler and Fergus presented an 

attractive multilayer Deconvolutional Neural Network 

(DeconvNet) that made out famous as ZfNet [22]. ZfNet was 

constructed to statistically determine network performance. 

The purpose of network activity determination was to follow 

the performance of CNN by examining neuron activation. Its 

architecture is shown in Figure 3. 

 

 
Figure 3: ZfNet Architecture with 5 convolutional layers 

with filter size 7×7, max-pooling, dropout, and 3 fully-

connected layers [22]. 

 

D. VGG 

Simonyan et al. [23] presented an uncomplicated and 

efficient design concept for CNN architectures called VGG. 

It was based on a study on how to make such networks 

denser. There are different versions for VGG networks 

according to the layer number, such as VGG-13, VGG-16, 

and VGG-19. VGG was designed with 19 layers deep to 

recreate the association between depth and network 

illustration ability as compared to AlexNet and ZfNet. 

ZfNet, which was a frontline network of the 2013- ILSVRC 

competition, suggested that small-size filters can recover the 

performance of CNNs. Placed on these remarks; VGG 

changed the 11x11 and 5x5 filters with a heap of 3x3 filters. 

The usage of small-size filters allows an additional 

advantage of low computing complexity. These discoveries 

set a new drift in research to work with smaller-size filters in 

CNN. The main drawback related to VGG was the use of 

138 million parameters, which make it computationally 

expensive and tough to organize on low-resource systems. 
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Figure 4: VGG Architecture with layers 11, 13, 16, and 

19[23] 

 

E. GoogleNet 

GoogleNet [24] was the champion of the 2014-ILSVRC 

challenge and is also called Inception-V1. The model has 

comprised of a basic unit referred to as an "Inception cell" in 

which we perform a series of convolutions at different scales 

and subsequently aggregate the results. It combines multi-

scale convolutional changes using split, transform and merge 

ideas. The architecture of the inception block is shown in 

Figure 5. The network used a CNN inspired by LeNet but 

implemented a novel element which is dubbed an inception 

module. To conquer the problem of unnecessary information 

by using sparse connections and reduce the cost by 

neglecting feature maps that were not appropriate. 

Furthermore, the density of the connections was decreased 

by using global average pooling at the last layer, in place of 

using a fully connected layer. 

 
Figure 5: Elementary architecture of the inception block 

viewing the split, transform, and merge idea [24] 

 

F. Highway Network 

Is based on the knowledge that the learning capability can be 

enhanced by rising the network depth. But, the rise in depth 

of a network recovers performance generally for complex 

problems. But it is also concerned with problems of slow 

training of the network and convergence speed. In deep 

networks, because of the large number of layers, the error of 

back propagation may consequence in small gradient values 

at lower layers [25]. To resolve this problem, in 2015 

Srivastava et al. [26] presented a deep CNN, named 

Highway Networks. These Networks make use of depth for 

learning augmented feature representation and presenting a 

new cross-layer interconnected mechanism for the fruitful 

training of the deep networks. Thus, Highway Networks are 

classified as depth as well as multi-path-based CNN 

architectures. In Highway Networks, the gating mechanism 

allows for computation paths along which information can 

flow across many layers without attenuation. They denote 

those paths as information highways as shown in Figure 6.  

 
Figure 6: Highway Circuit [26] 

 

G. ResNet 

For the extension of deep networks, He et al [27] introduced 

a novel architecture called Residual Neural Network 

(ResNet). ResNet introduces the idea of residual learning in 

CNNs and arises with an effective framework for the 

training of deep networks. ResNet presented 152-layers deep 

CNN, which was the winner of the 2015-ILSVRC 

competition. Figure 7 shows the architecture of the residual 

block of ResNet, which displays that there is a direct link 

that skips several model levels. By using the idea of ―skip 

connection‖ and abundant of batch-normalization for 

training 100s of layers successfully without the problems 

caused by vanishing/exploding gradient. ResNet showed less 

computational complexity and was 20 and 8 times deeper 

than AlexNet [20] and VGG [23] respectively. In the famous 

image recognition benchmark dataset named COCO [28], 

ResNet gained 28% improvement.  

 

 
Figure 7: The basic structural unit of ResNet [27]. 

 

H. Wide Residual Networks (WRNs) 

It is concerned that the feature reuse problem is the main 

drawback of residual networks which makes these networks 

very slow to train. To tackle this limitation, Zagoruyko and 

Komodakis proposed a novel architecture named Wide 

Residual Network (WRNs) [29], with decreased depth and 

increased width of residual networks. Wide Residual 

Networks introduce an additional factor k (which controls 

the width of the network), which increased the width. It also 

showed that as compared to the depth of the residual 

network, the widening of the layers might provide a more 

effective way of performance improvement. Zagoruyko and 

Komodak is demonstrated that even a simple 16-layer-deep 

wide residual network outperforms in accuracy and 

efficiency all previous deep residual networks, including 

thousand-layer deep networks, achieving new state-of-the-

art results on CIFAR, SVHN, COCO, and significant 

improvements on ImageNet. 

 

I. DenseNet 

DenseNet [30] was proposed to resolve the problem of 

vanishing gradient same as solved by Highway Networks 

and ResNet. Recent work had shown that convolutional 

networks can be substantially deeper, more accurate, and 

more efficient to train if they contain shorter connections 

between layers close to the input and those close to the 

output. Huang et al [30] embraced that observation and 

introduced the Dense Convolutional Network (DenseNet), 
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which connects each layer to every other layer in a feed-

forward manner. The traditional convolutional networks 

with L layers had L connections—one between each layer 

and its subsequent layer. DenseNet had L(L+1) 2 direct 

connections. DenseNet alleviated the vanishing-gradient 

problem, strengthened feature propagation, encouraged 

feature reuse, and substantially reduce the number of 

parameters. The proposed architecture was evaluated on four 

highly competitive object recognition benchmark tasks 

(CIFAR-10, CIFAR-100, SVHN, and ImageNet). 

 
Figure 8: A 5-layer dense block with a growth rate of k = 4. 

Each layer takes all preceding feature maps as input [30] 

 

J.Pyramidal Net 

In previous Deep CNNs such as AlexNet, ResNet, and 

VGG, the heap of many convolutional layers can increase 

the depth of feature maps. The convolutional layer or block 

comes after a sub-sampling layer that decreases the spatial 

dimension. Therefore, Han et al [31] claimed that the 

learning ability of deep CNNs is restricted due to an extreme 

increase in the feature-map depth (no. of channels) and at 

the same instant, the loss of spatial information takes place. 

Han et al proposed the pyramidal Net to increase the 

learning ability of ResNet [27]. In this research, instead of 

sharply increasing the feature map dimension at units that 

perform down sampling, Han et al gradually increase the 

feature map dimension at all units to involve as many 

locations as possible. This proposed design had proven to be 

an effective means of improving generalization ability. 

Furthermore, they proposed a novel residual unit capable of 

further improving the classification accuracy with new 

network architecture. It was called a pyramidal Net because 

of its regular increase in the depth of features mapped in a 

top-down manner. The major difference between 

PyramidalNets and other network architectures is that the 

dimension of channels gradually increases, instead of 

maintaining the dimension until a residual unit with down 

sampling appears. A schematic illustration is shown in 

Figure 9.  

 
Figure 9: Schematic illustration of (a) basic residual units 

[27], (b) bottleneck residual units [27], (c) wide residual 

units [29], (d) pyramidal residual units, [31] and (e) 

pyramidal bottleneck residual units [31]. 

 

 

 

K. Xception 

Xception [32] in the deep convolutional architecture can be 

considered as an extreme Inception, which applies the depth 

wise convolution design. To manage the computational 

complexity, Xception builds the original inception block 

larger and substitutes a single dimension (3x3) which comes 

after a 1x1 convolution in place of the multiple spatial 

dimensions (1x1, 5x5, 3x3). Xception constructs the network 

more efficient in computation, by separating spatial and 

feature-map (channel) relationships. The Architecture of the 

Xception block is shown in Figure 10.  

 
Figure 10: Xception block’s architecture [32] 

 

L. ResNeXt 

To solve the limitation of ResNet regarding reducing the 

error rate, ResNeXt [33], which is also called the 

Aggregated Residual Transform Network, was introduced. 

Xie et al. used the idea of the split, transform, and merge in a 

powerful but easy way by initiating a new term; cardinality 

[24]. Cardinality is an added dimension, which states the 

size of the set of transformations [34] [35]. The main goal of 

ResNeXt is to handle large inputs and improve the accuracy 

of the network by increasing cardinality without the need of 

constructing the deeper layers of the network. ResNeXt 

exploited the deep similar topology of VGG and basic 

GoogleNet architecture by setting the spatial resolution to 

3x3 filters within the split, transform, and merge block. 

Whereas, it used residual learning to improve the 

convergence of deep and wide networks [23] [24]. The 

building block for ResNeXt is shown in Figure 11.  

 
Figure 11: Left: A block of ResNet [19]. Right: A block of 

ResNeXt with cardinality = 32, with roughly the same 

complexity. [33] 

 

M. Squeeze-and-Excitation Networks 

Several recent approaches have shown the benefit of 

enhancing spatial encoding to boost the representational 

power of a network. Hu et al. [36] proposed a novel 

architectural unit, termed the ―Squeeze-and-Excitation‖ (SE) 

block, that dynamically readjusts channel-wise feature 

replies by definitely modeling interrelationships between 

channels. This new block was known as SE-block (shown in 

Figure 12), which abolishes less significant feature-maps, 

but gives more weightage to the class specifying feature 
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maps. By heaping these blocks together, build SENet 

architectures that generalize enormously well across 

challenging datasets.  

 
Figure 12: A Squeeze-and-Excitation block [36] 

 

N. Competitive-Squeeze-and-Excitation Network 

One of the major drawbacks of ResNet [27], is to use a 

residual unit to supplement the identity mapping and enable 

very deep convolutional architecture to operate well. 

However, residual architecture had to be proved diverse and 

redundant. To overcome the drawback of residual 

architecture Hu et al. [37] proposed a competitive squeeze 

and excitation based on the SE-block [36], known as the 

Competitive SE (CMPE-SE) Network. Re-scaled the value 

for each channel in the CMPE-SE structure will be 

determined by the mapping of the residual and identity, 

which enabled expansion and of the meaning of channel 

relationship modelling in residual blocks. Furthermore, Hu 

et al. designed a novel inner-imaging Competitive SE block 

to shrink the consumption and re-image the global features 

of intermediate network structure. Compared to the typical 

SE building block, the composition of the CMPE-SE block 

is illustrated in Figure 13. 

 
Figure 13: Competitive Squeeze-Excitation Architecture for 

Residual block [37] 

 

O. Channel Boosted CNN using Transfer Learning (TL) 

In 2018, Khan et al. [38] presented a new CNN architecture 

called Channel Boosted CNN (CB-CNN) built on the 

concept of boosting the number of channels for refining the 

representational ability of the network. Figure 14 shows the 

Block diagram of CB-CNN. Channel boosting is 

accomplished by synthetically creating additional channels 

(known as auxiliary channels) to get across auxiliary deep 

generative models and then utilizing them across the deep 

discriminative models. For refining the representation of the 

data, Khan et al. make use of the power of Transfer Learning 

(TL) and deep generative learners [39], and [40]. These 

learners enhance the representational capacity of deep CNN-

based discriminators. 

 
Figure 14: The basic building block of Channel Boosted 

deep CNN (CB-CNN) [38] 

 

P. Residual Attention Neural Network (RAN) 

Motivated by attention mechanisms and recent advances in 

the deep neural network, Wang et al. [41] presented a 

Residual Attention Network (RAN) to improve the 

network’s feature representation. The Residual Attention 

Network is a convolutional network that adopts a mixed 

attention mechanism in a ―very deep‖ structure by stacking 

multiple Attention Modules which generate attention-aware 

features. The attention-aware features from different 

modules change adaptively as layers go deeper. The 

attention module is divided into stalk and mask divisions 

that implement a bottom-up, top-down learning approach. 

The gathering of two different learning approaches into the 

attention module allows fast feed-forward operation and top-

down attention feedback in one feed-forward process. The 

bottom-up feed-forward design produces low-resolution 

feature maps along with strong semantic facts. Whereas, top-

down design produces compressed features to make a 

conclusion of each pixel.  

 

 
Figure 15: Architecture of Residual Attention Network [41] 

 

Q. High-Resolution Network (HRNet) 

Sun et al. [42] proposed a novel architecture, namely High-

Resolution Network (HRNet) which can maintain high-

resolution representations throughout the whole process. The 

first stage starts from a high-resolution subnetwork and 

constantly adds high-to-low resolution subnetworks one by 

one to form more stages and connect the multi-resolution 

subnetwork in parallel.  

 

Table 1: Performance comparison of the recent architectures of different categories 
Architecture Name & Year Main Beneficiation Category parameters Error Rate Depth 

LeNet [18], 1998 First popular CNN Architecture SpatialExploitation 0.060 M MNIST: 0.95 5 

AlexNet [20] 2012 - Deeper and wider than LeNet 

- Uses RELU, Dropout & overlap pooling 

Spatial Exploitation 60 M ImageNet: 16.4 8 

ZfNet [22], 2014 -visualization of intermediate layers Spatial Exploitation 60 M ImageNet: 11.7 8 

VGG [23], 2014 -Homogeneous topology 

-Uses small size kernels 

Spatial Exploitation 138 M ImageNet: 7.3 19 

GoogleNet [24], 2015 -Introduced block concept 

-Split transform and merge concept 

Spatial Exploitation 4 M ImageNet: 6.7 22 

Highway Networks [26], 

2015 

-Introduced the concept of multi-path Depth & Multi-path 23 M CIFAR-10: 7.76 19 

ResNet [27], 2016 -Residual learning 

-Identity mapping-based skip connections 

Depth & Multi-path 25.6 M 

1.7 M 

ImageNet: 3.6 

CIFAR-10: 6.43 

152 

110 
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Wide-Residual Networks 

[29] 2016 

-Width is increased and depth is decreased Width 36.5 M CIFAR-10: 3.89 

CIFAR-100: 18.85 

28 

Xception [32], 2017 -Depth-wise convolution followed by point-

wise convolution 

Width 22.8 M ImageNet: 0.055 126 

Residual Attention Network 

[41], 2017 

-Introduced an attention mechanism Attention 8.6 M CIFAR-10: 3.90 

CIFAR-100: 20.4 

ImageNet: 4.8 

452 

ResNeXT [33], 2017 -Cardinality 

-Homogenous topology 

-Grouped convolution 

Width 68.1 M CIFAR-10: 3.58 

CIFAR-100:17.3 

ImageNet: 4.4 

29 

 

101 

Squeeze & Excitation 

Network [36], 2017 

-Model interdependencies between feature-

maps 

Feature-map 

Exploitation 

27.5 M ImageNet: 2.3 152 

DenseNet [30], 2017 -Cross-layer information flow Multi-path 25.6 M 

25.6M 

15.3 M 

15.3 M 

CIFAR-10+: 3.46 

CIFAR-100+:17.18 

CIFAR-10: 5.19 

CIFAR-100: 19.64 

190 

190 

250 

250 

PyramidalNet [31], 2017 -Increases gradually per unit Width 116.4 M 

27.0 M 

27.0 M 

ImageNet: 4.7 

CIFAR-10: 3.48 

CIFAR-100: 17.01 

200 

164 

164 

Channel Boosted CNN [38], 

2018 

-Boosting of original channels with 

additional information-rich generated 

artificial channels 

Channel boosting - - - 

Competitive Squeeze and 

Excitation Network (CMPE-

SE-WRN-28) [37[, 2018 

- Residual and identity mappings both are 

used for rescaling the feature-map 

Feature-map 

Exploitation 

36.92 M 

36.90 M 

CIFAR-10: 3.58 

CIFAR-100: 18.47 

152 

152 

High-Resolution Network 

(HRNet) [42], 2019 

-High-resolution representation Width - - - 

 

Table 2: Major strengths and drawbacks associated with the implementation of CNN architectures 
Architecture Name Strengths Drawbacks 

LeNet [18], 1998 -Exploited spatial correlation to reduce the computation and number of 

parameters. 

-Automatic learning of feature hierarchies 

- Poor scaling to diverse classes of images 

-Large size filters 

-Low-level feature extraction 

AlexNet [20] 2012 -Low, mid, and high-level feature extraction using large and small size filters 

-Give an idea of deep and wide CNN architecture 

-Introduced regularization in CNN 

-To deal with complex architectures, started parallel use of GPUs. 

-Inactive neurons in the 1st and 2nd layer. 

-Aliasing artifacts in the learned feature 

maps due to large filter size. 
 

ZfNet [22], 2014 -Introduced the idea of parameter tuning byvisualizing the output of the 

intermediate layers 

-Reduced both the filter size and stride in the first two layers of AlexNet 

- Extra information processing is required 

for visualization 

VGG [23], 2014 -Proposed an idea of an effective receptive field 

-Gave the idea of simple and homogenous topology 

- Use of computationally expensive fully 

connected layers 

GoogleNet [24], 

2015 

-Introduced the idea of using Multiscale Filters within the layers 

-Gave a new idea for a split-transform-merge strategy 

-Reduce the number of parameters by using the bottleneck layer, global 

average pooling at the last layer, and Sparse Connections 

-Use of auxiliary classifiers to improve the convergence rate 

-Tedious parameter customization due to 

heterogeneous topology 

-may lose the useful information due to 

bottleneck representational 

Highway Networks 

[26], 2015 

- Introduced training mechanism for deep network 

-Used auxiliary connections in addition to direct connections 

-Mitigates the limitations of deep networks by introducing cross-layer 

connectivity 

- Parametric gating mechanism, difficult to 

implement 

- Gates are data dependent and thus become 

parameter expensive 

ResNet [27], 2016 -Use of identity-based skip connections to enable cross-layer connectivity 

-Information flow gates are data-independent and parameter-free 

-Can easily pass the signal in both directions, forward and backward 

-Many layers may contribute very little or 

no information 

-Relearning redundant feature maps may 

happen 

Wide-Residual 

Networks [29] 2016 

-Shows the effectiveness of parallel use of transformations by increasing the 

width of ResNet and decreasing its depth 

- Enables feature reuse 

-Have shown that dropouts between the convolutional layer are more 

effective 

-Over fitting may occur 

- More parameters than thin deep networks 

Xception [32], 2017 -Introduce the concept that learning across 2D followed by 1 D is easier than 

learning filters in 3 D space 

- Depth-wise separable convolution is introduced 

- Use of cardinality to learn good abstraction 

-High computational cost 

Residual Attention 

Network [41], 2017 

-Generates attention aware feature-maps 

-Easy to scale up due to residual learning 

-Provides different representations of the focused patches 

-Add soft weights on features using bottom-up top-down feed-forward 

attention 

-Complex model 
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ResNeXT [33], 

2017 

-Introduced cardinality to avail diverse transformations at each layer 

-Easy parameter customization due to homogenous topology 

-Uses grouped convolution 

-High computational cost 

Squeeze & 

Excitation Network 

[36], 2017 

-It is a block-based concept 

-Introduced a generic block that can be added easily to any CNN model due 

to its simplicity 

-Squeezes less important features and vice versa 

-In ResNet, only considers the residual 

information for determining the weight of 

each channel 

DenseNet [30], 

2017 

-Introduced depth or cross-layer dimension 

-Ensures maximum data flow between the layers in the network 

- Avoid relearning redundant feature-maps 

-Low and high-level features are accessible to decision layers 

-Large increase in parameters due to an 

increase in the number of feature maps at 

each layer 

PyramidalNet [31], 

2017 

-Introduces the idea of increasing the width gradually per unit 

-Avoid rapid information loss 

-Covers all possible locations instead of maintaining the same dimension till 

the last unit 

-High spatial and time complexity 

-May become quite complex if layers are 

substantially 

Channel Boosted 

CNN [38], 2018 

-It boosts the number of input channels for improving the representational 

capacity of the network 

-Inductive Transfer Learning is used in a novel way to build a boosted input 

representation for CNN 

-Increase in computational load may happen 

due to the generation of auxiliary channels 

Competitive 

Squeeze and 

Excitation Network 

(CMPE-SE-WRN-

28) [37[, 2018 

-Uses feature-map-wise statistics from both residual and identity mapping-

based features 

-Makes a competition between residual identity feature maps 

-Doesn’t support the concept of attention 

High-Resolution 

Network (HRNet) 

[42], 2019 

-able to maintain high resolution 

-repeated multi-scale fusion to boost high-resolution representation 

- 

 

3. Conclusion and Future Scope 
 

This paper reviews the evolution of the architectures of the 

CNN, especially working out the outline of the processing 

units, and therefore put forward the structure for the recent 

architecture of the CNN. We cover the history of CNN from 

its starting to till date and also mention the standards which 

are used for improving the ability latest CNN. Table 1 views 

the performance criteria of each CNN model, and showed 

that how the error rate is decreased by using the optimization 

techniques. The hyper parameters such as activation 

function, size of filters, loss functions, optimizers, number of 

neurons per layer, etc. of deep CNNs are one of the future 

tasks for researchers in developing genetic algorithms. The 

approach of pipeline parallelism which overwhelms the 

hardware restrictions can be utilized to increase the training 

of CNN, without tunning hyper parameters, which is the 

future research area. The attention mechanism is not only 

apprehended the facts from images but also keeps its 

background connection with other parts of the image. In the 

future, in the belated phases of learning, the analysis may be 

achieved out in an angle that assures the spatial significance 

of objects along with their perceptive features. 
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