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Abstract: If we consider the “Fifth force” as an external force of the classical newtonian gravitational field introduced in the Theory 
of General Relativity, we will obtain the new modified Einstiens’ field equations. We unify the "Fifth Force" with the "Gravitational 
Force" applying the Theory of General Relativity. The result is that probably the "new modified Einstein's field equations" will not 
present any kind of singularity with the presence of the "Anti-Gravity effect" of the "Fifth Force". Peculiar phenomenologies on stars 
and galaxies nucleus, the expansion or not of the universe can be fairly treated with the new modified Einstein's field equations. It is 
well known that General Theory of Relativity is a geometric theory of gravitation and the curvature of spacetime is related to the energy 
and momentum. This relation is specified by Einstein’s equations. The experimental tests are numerous and, therefore, it is impossible 
to question its validity but this does not prevent us from proposing new ideas. In this work, we want to introduce an "anti-gravitational 
effect", of the Fifth Force, not considering the universal gravitational constant. In this way we obtain modified field equations. The aim 
of the paper is to observe that, if we introduce this fifth force, the principle of the equivalence is violated and, probably, there are never 
singularities in the metric when we solve the field equations. Maybe the Schwarzschild radius for a symmetrical static spherical star 
doesn’t compare: to be proved with “computational mathematics”. Throughout the paper, the symbols refer to the textbook of Weinberg, 
considering even the speed of light as c=1.  
Keywords: Gravitation, General Relativity, Theoretical Astrophysics, Theoretical Physics, Gravity, Fifth Force, Stars, Galaxy, Universe, 
Blackholes, Cosmology, Astrophysics, Astronomy, Physics, Quantum Gravity  
1. Resuming the Principle of Equivalence 
 
The principle of equivalence is the fundamental hypothesis 
for the theory of general relativity. But if we consider the 
fifth force it must be considered the following two points: 
1) A potential breakdown of the principle of equivalence 

has a remarkable geometrical explanation in the 
framework of extended theories of gravity, if one 
assumes an explicit coupling between an arbitrary 
function of the scalar curvature, R, and the Lagrangian 
density of matter, [1]. On the other hand, one must be 
very careful when assuming potential deviations from the 
principle of equivalence, which has today 
unchallengeable empiric evidence, at least on Earth, [2]. 
Thus, one must be able to argue that such deviations 
could, eventually, work at astrophysical and/or 
cosmological scales. An interesting mechanism which 
can permit this approach has been developed, for 
example, in [3 ]. 

2) Otherwise, if we try to include the fifth force in some 
equations of general relativity theory, as an external 
force, and find out how to find the solutions of the metric 
tensors gij, probably there aren’t any *singularity (as we 
shall do in a future paper). 

 
The principle of equivalence means that the inertial mass mi of an object is equal to its gravitational mass mg: mi=mg. Different from formula (1). 
 
Introduction of the fifth force  
What is the fifth force?  
 
If we consider two nucleons of mass m1 and m2, they will 
exert a gravitational potential energy of the following form 
([5]-[8], formula without singularity): 

 
(1) U12  = -G m1 m2 (1+  e-  r1,2 )/ r1,2  
where G is the universal gravitational constant (G=6.673*10-
11 Nm2/kg2), corrected by =0.01:0.001, which is the 
intensity of the fifth force, called ipercharge, that depends 
on the relative amount of neutrons upon number of protons 
per nucleon, in range  -1=100:1000 meters, (if  is a negative quantity, we have 
an anti-gravitational effect on the celestial body). 
 
The property of this phenomenological formula (1) in 
confront of Newton’s gravity law is that it hasn’t any 
*singularity. In fact:  
 
(2) limr1,2 -->0(1+ e- r1,2)/ r1,2 =  ≠ .   (theorem of De 

Hopital for limits). 
 
We know that in General Relativity Theory the Einstein 
Field Equations derived from the Newtons formula, (see [9] 
(7.1.3) and (7.1.12)), have the presence of singularity for 
propagation. If the radius of the star reaches the 
Schwarzschild radius (1=2Gm(R)/R), the metric tensor 
A(r)=grr=1/(1-2Gm(r)/r), (see [9] (11.1.11)) gives the 
presence of black holes. 
 
But if we use the corrected gravitational potential [5] 
without *singularity, modifying the Einstein Field 
Equations; probably the new Einstein Field Equations shall 
become without the presence of *singularity; it is amazing. 
 
We know that the gravitational potential (r2) at point r2 , with distribution of matter density (r1), as a spherical star, 
is (see [10] (3.1a)): 
 
(3)  (r2) = -G  d3r1 (r1)/| r2  - r1 |                                    
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and the fifth force potential 5 (r2) at point r2, that depends 
on the amount of neutrons upon the number of protons per nucleon in the star matter (or depends even from 
antimatter properties to be investigated), is (See [10] (3.1b)): 
(4) 5(r2) = -Gd3r1 e-| r2  - r1 | (r1)/ | r2  - r1 |  
The Laplacian equations of both the fields above are 
respectively (see [10] (3.2a) and (3.2b)): 
 
(5) 2=4G                 (Newtonian field equation) 
 
(6) (2 - 2)5=4G   (Fifth force field equation) 
 
Where the Laplacian operator is defined 2= 
(2/x2)+(2/y)+ (2/z2).  These two Poissan’s field 
equations shall be used after to find the new modified 
Einstein’s field equations. 
 
The geodetic equation  inserting the fifth force We follow the same calculations of  Chapter 3.2 Weinberg 
1972, to find the geodesic equation adding the fifth force: 
considering it as an “external force”, acting upon the 
gravitational field. We need to find this type of geodesic 
equation to modify the Einstein field equation, acting with 
metric tensor, goo .  
Considering the fifth force f5 acting on a particle of mass m, 
immersed in the gravitational field, detected by a free falling 
coordinate system , where its equation of motion is a 
straight line in space-time (see [9] (3.2.1), (3.2.2) and [11] 
chapter 8, n°58): 
 
 
(7a) f5() /m     =  g() [f5() /m]  =  d2 / d2      
                                                                   
with d2= - dd 
 
With   the Minkowski tensor: = +1 for ==1,2 or 3 
else = -1 for ==0  else = 0 for ≠. Where the 
metric tensor g()  function of   is (see [9] (2.5.6)): 
 
(7b) g()= , g()= and satisfies  g()g()=  
with  the Kroenecker tensor:=+1 for =, and = -1 
for ≠. 
So using any other coordinate system x  , the free falling 
coordinates are functions of the x, and  from (7a) we have 
the geodetic equations as (see [9] (3.2.3),(5.1.11) and 
(5.1.12); and [11] chapter 8, n°68-69; [12] (10.24)):  
 
(8)  [ f5() /m]  x /    =    
 
= (d2 / d2 ) (x/) = 
   
= (d2 x/ d2)  +     (dx/ d) (dx/ d) 
 
with x  which are the four coordinates of the particle 
moving along its trajectory, and the first member appears 
with variable ; and where  the proper time d2= - 
g(x)dxdx and    is the Christoffel symbol  with the 

metric tensor g(x)  function of x (see [9] (3.2.4) ,(3.2.6), 
(3.3.7)):  
 
(9a)    = (x/) (2  / x x)  =  
 
= ( g/2){  (g/x) + (g/x) - (g/x)  }  
where (see [9] (3.2.7) or (4.2.6)): 
 
(9b) g(x)  = (/x ) (/x )               
The fifth force f5 is the gradient of it’s potential 5 , valid for 
a conservative field and depending on the coordinate x , 
(see [9] (4.7.1), (4.2.4) and [11] chapter 5- n°10, chapter 8-
n°58): 
 
(10) f5() /m= -(5/)    
“valid for a conservative field of f5”. 
 
But the coordinate transformation implies (see [9] (4.2.4)): 
 
(11)   5/  =   (5/x  ) (x / )           
 
So the first member, in variable  , of (8) becomes with (7a), 
(10) and (11) with the new variable x: 
 
(12)  [f5()/m] (x / ) =  
      = g() [f5() /m)] (x/) = 
      = - g() (5/  )  (x /)= 
      = - g()[ (5/x )(x/ ) ](x/) = 
      =    -    g(x)  (5/x )                                                
 
because: 
  
g() (x /  ) (x /)    = g(x) as contravariant tensor 
(see (7a) and [9] (4.2.7)).    
 
The  geodetic equation (8), with the fifth force, all in 
coordinates x, becomes, using (12): 
 
(13)  - g(x)(5 /x )=(d2 x /d2) +   (dx /d)(dx /d)  
(see [9] (5.1.11)). 
 
We will use it to find the metric tensor of time, goo, in 
Newtonian limit to modify the Einstein field equation with 
the fifth force.  
 
And knowing that U=  dx/ d is the four-vector velocity of 
a falling object; multiplying U, in both sides of (13) we 
have: 
 
-    g(x) (5 / x ) U  = (dU / d) U  +   U U U ,    
U, satisfying the condition: 
 
(13b)        1= - g(x) UU, 
 
useful to find the potential function of the fifth force, 5, (knowing g(x)),  instead of using the phenomenological 
Yukawa-Newtonian expression (4).  
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The Newtonian limit with the fifth forceto findthe metric 
tensor of time goo 
We want to find the dependency of the metric tensor goo  upon the potential of the gravitational field  and the 
potential of the fifth force 5.This shall be useful to obtain 
the Einstein’s field equations with the fifth force, following 
the same calculations of  Chapter 3.4 Weinberg 1972, but 
violating  the principle of equivalence. 
 
In the Newtonian limit considering a particle moving slowly 
in a weak stationary gravitational field in presence of the 
fifth force, neglecting dx/d respect to dt/d and using (13), 
we have the equation of motion: 
 
(14) (d2 x / d2)  + oo   (dt/ d)2  = -(5/x) g(x)  
                   
(15) d2t/ d2 = 0 which implies dt/d = constant1 = a. 
 
In the “nearly” Cartesian coordinate system, we adopt the 
metric tensor in a weak field as (see [9] (3.4.1)): 
 
(16) g=  + h, | h|<<1 
 
where = +1 for ==1,2 or 3 else = -1 for ==0  
else = 0 for ≠. 
Since the field is stationary and putting the first order of  h, we have (see [13] (6.15) and [14] (17.18)): 
(17) oo = (-1/2) g(goo /x) = (-1/2) (hoo/x) 
Substituting this in equation (14) gives (see [9] 
(10.1.7a),(3.3.6)): 
 
(18) d2 x/d2  +  (-1/2)    (hoo/x) (dt/ d)2   = - 
-  (5/x) (-h)  
   
but   gg~( + h)(-h) =    implies gg= =1 
or better (1+ h)(1- h)=1 which gives h= h/(1+ h) so 
h~ h<<1  for condition (16). And (18) becomes the 
equation of motion:                           
 
(19) (d2 x / d2)    =  (1/2) (dt/ d)2 hoo  -  5 
 
so dividing this equation by  (dt/ d)2  we have (see [9] 
(3.4.2)): 
 
(20) (d2 x / dt2)     =  (1/2)hoo  -  (d/ dt)2 5 
                         
The corresponding newtonian result is (see [9] (3.4.3)): 
 
(21) (d2 x / dt2)     = -   -  5 
 
where  is the Newtonian potential, (3), (5). And comparing 
(20) and (21) we find: 
 
(22) (1/2)hoo  -  (d/ dt)2 5    =    -   -  5  
for these equalities and with (15), 
 
(23) hoo  = -2 k 5    - 2  + constant2,        
 
where k = 1- (d/ dt)2  = 1 – (1/a) 2. 
 

Constant2=0 because the coordinate system becomes 
Minkowskian at infinity: so hoo=0 for r , as even =0  
and  5 =0 from (3) and (4).    
 
So the metric tensor of time goo becomes with (16), ( see [9] 
(3.4.5)): 
 
(24) goo  = - (1 + 2 + 2 k 5  )                     
It’s added a term as 2 k 5    which represents the presence 
of the fifth force. We shall see in the next chapter the 
necessary use of formula (24) to obtain the new Einstein’s 
field equations. 
 
Einstein’s  field equations modified with the fifth force Now following Chapter 7.1 Weinberg 1972 and it’s 
discussions, violating  the principle of equivalence and 
introducing the fifth force in an opportune way in the same 
equations; we have summing the members of the two 
Laplacian equations (5) and (6) as: 
 
(25) 2 ( + k5)=4G + k [ 4G + 25] ,       
in system with equation (6), whose variable functions are  
and 5.  
And using equation (24) and the approximation for non-
relativistic matter Too ≈ , for a weak static gravitational 
field, we obtain from (25), (see [9] (7.1.3)(7.1.4)): 
 
(26) 2 goo = -8G Too (1 + k)  - 2 k [ 25]    We see that the last term of equation (26) is only a scalar 
function, 2 k [ 25],   without two indexes 00, as the terms 
goo and Too, so it cannot transform as a tensor of rank 2, with 
two indexes, to be written in a covariant form. This tells us 
to go beyond the calculus to substitute this scalar function in 
some way. 
 
So we will apply again the Laplacian operator, 2, in both 
members of equation (26), having: 
 
(27) 2 k 2 25  = (1 + k)  2 [(-8G) Too ] – 2 [2 goo],  
In which are considered constant the terms k, ,   (see 
formula (1)); instead the term, (-8G), is to be considered 
not as the famous universal gravitational constant, but as a 
scalar function of the coordinates,  x, influenced by the 
presence of the “fifth force” (see (1), and in a further chapter 
here we will mention about it). 
 
But from (6), substituting the density of mass with the 
energy-momentum tensor, Too ≈ , becomes: 
 
(28) 2 5  = 25  - (4G) Too Substituting (28) to equation (26): 
 
(29) 2 goo = (-8G)(1 + k) Too - 2 k [25  - (4G) Too]   and finally substituting (27) to (29), we have: 
 
(30) 2goo = (-8G)(1+k)Too– {[(1+k)/2]2[(-8G)Too] – 
-2 [2goo]/2 + (-8G)k Too]} 

Paper ID: SR22711101434 DOI: 10.21275/SR22711101434 908 



International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2022): 7.942 

Volume 11 Issue 7, July 2022 
www.ijsr.net 

Licensed Under Creative Commons Attribution CC BY 

which instead of a weak stationary gravitational field, we 
consider the general case of relativity, to have the new 
Einstein’s field equations modified by the presence of the 
fifth force, with 2 goo  associated to the “Einstein’s 
tensor”Gij= Rij - (1/2) gijR, (see [9] chapter 7.1, (7.1.8), 
(7.1.13)).  
 
So transforming the term 2goo ≈G00 ≈ Gij= Rij - (1/2) gijR,  
the term goo ≈  gij, the Too ≈  Tij, and the classical Laplacian 
operator 2, (used for a space of 3 dimensions), to a 
d’Alembertian operator 2 (necessary for a space of 4 
dimensions, instead of 3), in 2  ≈  2 , (see Weinberg 
method passing from the Newtonian limit to general 
relativistic gravitation field [9] using (7.2.4)&(7.2.5)), and 
even considering the  transformation of term 
 
2 [2goo]/2 ≈ 2 [Rij-(1/2)gijR]/2;so the equation (30) 
from its Newtonian limit becomes in the general case: 
 
(31) Rij-(1/2)gijR=(-8G)(1+k)Tij - 
– {[(1+k)/2]2 [(-8G)Tij] –2 [Rij-(1/2)gijR]/2 +  
+(-8G)k Tij]} 
 
Where the d’Alembertian operator 2 is defined as, (see 
[15] (53.07); see [11] chapter 8, page 174; and [9] (4.4.1)): 
 
(31a) 2f=(1/√|g|){[(√|g|)(gbc)(f/xc)]/xb}= 
=[(gbc)(2f/xbxc)] – gbcabc(f/xa), 
 
where  g ≡ - Determinant(gij).  
Note:in a justified opinion and discussion from external 
researchers and in a future paper, instead of the 
d’Alembertian operator of Fock V. 1959 (53.07) used for 
curvature space, it could be used Weinbergs d’Alembertian, 
applied especially in special relativtity flat space, which is 
defined as, (see [9] (2.5.12)): 
 
(31b) 2 = ηjk(/xk)(/xj) = 2 - 2/2t. 
 
There is an ambiguity in using the d’Alembertian (31a) or 
(31b) on various relativistic papers that we consulted, 
especially in the Weinberg’s book, instead of Fock V. book 
(1959) “The theory of space, time and gravitation”, (53.07). 
In my point of view and opinion it’s better to use operator 
(31a) for curvature space, transforming the classic 
Laplacian, 2, (see (5) and (6)) to a d’Alembertian 
operator: 2≈2. 
 
In a “complete and general” form the field equations, 
considering (-8G) a scalar function, looks as: 
 
(32) Rij-(1/2)gijR - 2[Rij-(1/2)gijR]/2 = (-8G)Tij –  
- {[(1+k)/2]2 [(-8G)Tij]} 
 
For the considerations of point (B) of [9] chapter 7.1, where 
Gij must have the dimensions of a second derivative, (see 
formulas (5) and (6)); the  term, 2[2goo]/2 ≈ 2 [Rij-
(1/2)gijR]/2, is of fourth derivative of the metric 

components, gij, and will become negligible for gravitational 
fields of sufficiently large space-time scale:  
 
Rij-(1/2)gijR>>2 [Rij-(1/2)gijR]/2. So for this 
approximation, and considering (-8G) = (-8G/c4  for 
velocity of light, c=1), not a constant, but a scalar function, 
(32) becomes finallythe new Einstein’s field equations 
modified by the presence of the fifth force: 
 
(33)  Rij-(1/2)gijR= (-8G)Tij – {[(1+k)/2]2 [(-8G)Tij]} 
where Tij is the energy-momentum tensor (see [9] chapter 
5.3), and Rij is the “Ricci tensor”, (see [9] 
(6.2.4),(6.1.5),(8.1.12)):  
 
(34) R =   /x-/x +    -    For the presence of the “fifth force” in the gravitational 
field, (1), the universal gravitational constant, (-8G), shall 
be assumed as a scalar function of the space-time 
coordinates, x, and no more considered a constant.See the 
next chapters (and the next paper “Anti-Gravitational Law” 
in General Relativity – Part 2/4).  
Using another rindependent equation the density of force 
G  
If we take the following independent equation of general 
relativity theory (see [9] (5.3.2), (2.8.6)): 
 
(35)   T; = G  
 
Where G   is the “density of force”, f5, acting externally on 
the system, it can be found as expression of a function of the 
fifth force potential: G   = f(5). For an isolated system, 
G=0. But in our case the gravitational field doesn’t seem an 
isolated system, because the “Fifth force” was treated as an 
external force upon the field. About this statement, the 
energy-momentum tensor is not considered conserved, so, 
T; ≠ 0. 
 
The covariant derivative of the energy-momentum tensor is 
(see [9] 1972 (4.7.9)): 
 
(36) T; = (T/x) + T+  T 
 
The covariant differentiation of the first member of (33) 
must be zero, (see [9] (6.8.4) or (7.1.6)), it means that the 
following condition must be satisfied: 
 
(37) 0 = Gij; i= (Rij - (1/2) gijR) ; i  
Where Gijis the “Einstein tensor”.This last step must be 
found to arrive to a compact calculus of the 16 metric 
tensors, gij,  and of the gravitational constant or scalar, (-
8G). As we shall show now. 
 
Consequences considering G as a scalar 
So we consider, now, the gravitational constant, (- 8G/c4,  
with velocity of light, c=1),   as a scalar, because  we know 
that with the presence of the fifth force, as an external force 
on the gravitational field, may modify the gravitational 
“constant” G, see the factor G (1+  e-  r1,2 ) varying in the 
phenomenological formula (1);then assuming: 
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(38) Ĝ=Ĝ(x) = (- 8G)  = scalar function of x. 
 
we take contravariant equation (33), in convariant 
differentiation, with condition (37), so: 
 
  (39) 0 = (Rij - (1/2) gijR) ; i=  
 
=(-8G) Tij; i+ (-8G) ; iTij– {[(1+k)/2]2 [(-8G)Tij]}; i 
 Here (39) is a differential equation where it shall be found 
by “computational mathematics” the scalar function (-8G), 
in a “general” form, (instead who wants to prosecute in the 
“particular” case, with the energy-momentum conservation, 
putting Tij; i=0, about other meaningful reasons, can do it); 
knowing that the covariant derivative of a scalar is an 
ordinary gradient: 
 
(39a) (-8G) ; i =  (-8G)/xi, 
 
instead of four equations with index j=0,1,2,3 in equation 
(39), we multiply both members of it by the term, four-
vector velocity, Uj, becoming one equation of scalar (-
8G),as follows: 
 
(40)  0 = (-8G)Tij; iUj +((-8G)/xi)TijUj–  
-[(1+k)/2]{2 [(-8G)Tij]}; iUj  
Or using in this equation (40), the d’Alembertian operator 
(31a), where necessary, and applying the covariant 
derivative after (39a) and (36), becomes in an extended, 
spreading formalism, useful for who wants to find the scalar 
function Ĝ= (-8G) with “computational mathematics” or 
“numerical relativity”, (see full calculations below in 
appendix (a));which becomes the following: 
 
(40a)  0 = Ĝ Uj (Tij /x i )+ Ĝ Uj iinTnj + 
     + Ĝ Uj jinTin  +  Uj Tij ( Ĝ/x i ) - 
     - Ḱ Uj Tij  {(/x i)[ gko (2 Ĝ /x k  x o ) ] }+                                          
     + Ḱ Uj Tij {(/x i )[ gko mko  ( Ĝ/x m) ] } - 
     - Ḱ Uj Ĝ  {(/x i) [ gko   (2 Tij /x k  x o )]} - 
     - Ḱ Uj Ĝ iin [ gko   (2 Tnj /x k  x o  ) ] - 
     - Ḱ Uj Ĝ jin [ gko   (2 Tio/(x k  x o))] -  
     - Ḱ Uj Ĝ  {(/x i)[ gko mko  ( Tij / x m)]} -  
     - Ḱ Uj Ĝ iin [ gko mko ( Tnj/x m) ] - 
     - Ḱ Uj Ĝ jin [ gko mko (  Tin /x m)] 
 

Where Ĝ =Ĝ(x) = (- 8G),(to be found explicitly),  and Ḱ = 
(1+k)/2. 
 
So the general system of the new Einstein’s field 
equations, modified for the presence of the “fifth force” in 
the gravitational field, where, by “computational calculus”, 
we can find the 16 values of the metric tensors,  gij, and the 
value of the new “gravitational scalar variable”, (-8G), is 
the following: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SYSTEM (41)(considering G a gravitational scalar 
variable,and not a universal constant):  

  System (41) permits to find in totally 11 variables by 
“computational mathematics”: the 10 variables,  gij, (instead 
of 16 variables, because gijis symmetric), joining the 
gravitational variable as a scalar function, (-8G). Where , 

 and k are three constants: =0.01:0.001, is the intensity of 
the fifth force, called ipercharge, in range -1 =100:1000 
meters; and k = 1- (d/ dt)2  = constant, see (23). 
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It would be more elegant to put the field equations (41), in 
one new compact Einstein’s field equation, in a more 
simplified way, for a future paper (“Anti-Gravitational Law” 
in General Relativity – Part 2/4), or leaving it to a good 
researcher as a skilful calculus. 
 2. Conclusion 
 
In this paper we have obtained a modified Einstein’s field 
equations by introducing the fifth force. We invite to look 
for numerical solutions in the case of a static field with 
spherical symmetry. It would be interesting to understand if 
there are *singularities or not. Probably the fifth force may 
have properties as the anti-gravity effect (considering the 
ipercharge<0), and, in our opinion, the “Anti-Gravitational 
Law” is intrinsically present in General Relativity.  
 
The  system (41), must be resolved with “computational 
mathematics”, to verify if there are present or not 
*singularities in the metric tensors gij.  
It is well known that in the standard Schwarzschild space-
time there is a *singularity in the metric and it would be 
interesting if our approach leads to a *singularity-free metric 
or not. Indeed, this would have consequences about the 
existence of black holes. 
 
We think that it’s possible to arrive, in another way, to a 
complete compact Einstein’s field equations, introducing the 
“fifth force” in General Relativity, by using another 
approach: the theorems, properties and methods of the 
“Continuum Mechanics Theory”; and applying the 
“Principle of Minimum Action”, trying to find the opportune 
Langragian. 
 
Notes for who can use “computational mathematics” or 
even “numerical relativity”: 
Good researchers, who has the software of “computational 
mathematics”, (I haven’t), can analyse if the metric tensors, 
gij, have *singularities or not, in the following system of 
equations (9a), (13b), (34) and (41); considering a 
spherically symmetric static star of radius R and mass M, in 
the spherical polar coordinates of  x, (see Weinberg S. 
1972 chapter  8.2 or better 11.1).  
Just to see if black holes exist or not. 
 
*singularity of metric tensors gij, means if its values go to 
infinite varying radius r to ro:  lim(rro)gij(r)= , where  
ro=2Gm(R)=”Schwarzschild radius”, or for another 
singularity where, ro=0, at the center of the star.  
 
Appendix (a): 
To find the scalar function, Ĝ = Ĝ(x) = (- 8G) 
“implicitly”, we start from equation (40), using the Leibniz 
property of covariant derivative (see [9] (4.6.14)), which 
becomes: 
 
(40b) 0 = Ĝ Tij; i+ Ĝ; iTij  – Ḱ [2 Ĝ] ; iTij - Ḱ Ĝ 2 [Tij]; i , 
where Ḱ = (1+k)/2. 
 Applying first the II d’Alembertian operator, (31a), on 
equation (40b), we obtain: 

 
(40c)  0 = Ĝ Tij ; i + Ĝ; i Tij  –  Ḱ Tij [gko   (2 Ĝ/x k  x o ) – 
  
           - gko mko (  Ĝ /x m ) ] ; i - Ḱ Ĝ 2 [Tij]; i  -  
 
           - Ḱ Ĝ [gko   (2 Tij/x k  x o )  - gko mko ( Tij/x m) ] ; i  
 
Now, we do the covariant derivative, substituting (36) and 
(39a): 
 
(40d)      0 = Ĝ [(Tij /xi) + iin Tnj + jin Tin] + (Ĝ /xi) Tij  -  
                    
                     - Ḱ Tij { {(/x i )[gko   (2 Ĝ/x k  x o ) ]} –  
 
                     - {(/x i )   [gko mko  ( Ĝ/x m) ] } } – 
                                  

- Ḱ Ĝ { [ {(/x i ) (gko   (2 Tij /x k  x o  ))} + 
 
+ iin (gko   (2 Tnj/x k  x o ))] + 
 
+ jin (gko   (2 Tin/x k  x o))] -                                    

                     -   [{(/x i )   (gko mko  ( Tij / x m ) )} + 
 
                     + iin (gko mko  ( Tnj  /x m)) +  
 
                     + jin (gko mko  ( Tin  /x m))] }    
Multiplying each term of (40d) by the four-vector velocity 
U=  dx/ d, we obtain (40a) as expected in an implicit 
aspect; useful to obtain the scalar function  
Ĝ = Ĝ(x) = (- 8G), together with the field equation (33), 
by using “computational mathematics” or “numerical 
relativity”. In the future if some researcher can use resolve 
the differential equation, (40a), (of third degree), to obtain 
explicitly, Ĝ = Ĝ(x) = (- 8G), is welcome. 
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