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Abstract: We consider the problem of estimating the location of a single change point in a sequence of independent lifetimes x1, x2, ...., 

xm, , xm+1, ...xn 𝒏 ≥ 𝟑  were observed from Generalized Compound Rayleigh Distribution with parameter 𝜶, 𝜷, 𝜸 but it was found that 

there was a change in the system at some point of time m and it is reflected in the sequence after xm by change in sequences as well as 

change in the parameter values. The Bayes estimates of 𝜸 and m are derived for asymmetric loss function known as General Entropy 

Loss Function  under natural conjugate prior distribution. We propose Bayesian methods of estimating the change point, together with 

the model parameters, before and after its occurrence. Further, for Bayesian method under their respective identifiability and certain 

additional regularity conditions, we discussed the results by comparing it with real data with the help of ‘R’ Software. 
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1. Introduction 
 

Bayesian inference is an approach to statistics in which all 

forms of uncertainty are expressed in terms of probability. A 

Bayesian approach to a problem starts with the formulation 

of a model that we hope is adequate to describe the situation 

of interest. We then formulated a prior distribution over the 

unknown parameters of the model, which is meant to capture 

our beliefs about the situation before seeing the data. After 

observing some data, we apply Bayes' Rule to obtain a 

posterior distribution for these unknowns, which takes 

account of  both the prior and the data.  

 

This theoretically simple process can be justified as the 

proper approach to uncertain inference by various arguments 

involving consistency with clear principles of rationality. 

Despite this, many people are uncomfortable with the 

Bayesian approach, often because they view the selection of 

a prior as being arbitrary and subjective. It is indeed 

subjective, but for this very reason it is not arbitrary. In 

theory there is just one correct prior, that captures our prior 

beliefs. In contrast, other statistical methods are truly 

arbitrary, in that there are usually many methods that are 

equally good according to non-Bayesian criteria of 

goodness, with no principled way of choosing between 

them. 

 

In decision theory the loss criterion is specified in order to 

obtain best estimator. The simplest form of loss function is 

squared error loss function (SELF) which assigns equal 

magnitudes to both positive and negative errors. However 

this assumption may be inappropriate in most of the 

estimation problems. Some time overestimation leads to 

many serious consequences. In such situation many authors 

found the asymmetric loss functions, more appropriate. 

There are several loss functions which are used to deal such 

type of problem. In this research work we have considered 

some of the asymmetric loss function named general entropy 

loss functions (GELF) suggested by  Calabria and Pulcini 

(1996). Such asymmetric loss functions are also studied by 

Parsian and Kirmani (2002) and Braess and Dette (2004).  

 

1.1 Entropy Loss Function 

 

In many practical situations, it appears to be more realistic to 

express the loss in terms of the ratio 
θ 

θ
  . In this case, 

Calabria and Pulcini (1994) points out that a useful 

asymmetric loss function is the Entropy loss 

L δ ∝  δp −  p loge δ − 1  ,   (1.2.1) 

Where δ =  
θ 

θ
 

and whose minimum occurs at θ = θ when p › 0, a positive 

error  θ > 𝜃  causes more serious consequences than a 

negative error and vice-versa. For small  p  value, the 

function is almost symmetric when both θ  and θ are 

measured in a logarithmic scale and approximately  

L δ ∝
p2

2
 loge θ  − loge θ  

2
 

 

Also, the loss function L δ  has been used in Dey et al 

(1987) and Dey and Lin (1992), in the original form having 

p = 1. Thus L δ  can be written as  

L δ = b δ − loge δ − 1   ;  b > 0,      where δ =  
θ 

θ
   

 

 (1.2.2) 

In a Bayesian setup, the unknown parameter is viewed as 

random variable. The uncertainty about the true value of 

parameter is expressed by a prior distribution. The 

parametric inference is made using the posterior distribution 

which is obtained by incorporating the observed data in to 

the prior distribution using the Bayes theorem, the first 

theorem of inference. Hence we update the prior distribution 

in the light of observed data. Thus the uncertainty about the 

parameter prior to the experiment is represented by the prior 

distribution and the same, after the experiment, is 
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represented by the posterior distribution. The various 

statistical models are considered as;  

 

1.2 Generalized Compound Rayleigh Distribution 

 

The Generalized Compound Rayleigh Distribution is a 

special case of the three- parameter Burr type XII 

distribution. Mostert, Roux, and Bekker (1999) considered a 

gamma mixture of Rayleigh distribution and obtained the 

compound Rayleigh model with unimodal hazard function. 

This unimodal hazard function is generalized and a flexible 

parametric model is thus constructed, which embeds the 

compound Rayleigh model, by adding shape parameter. 

Bain and Engelhardt (1991) studied this distribution (also 

known as the Compound Weibull distribution (Dubey 1968) 

from a Poisson perspective. (p.d.f.) 

𝑓 𝑥; 𝛼; 𝛽; 𝛾 = 𝛼𝛾𝛽𝛾𝑥𝛼−1 𝛽 + 𝑥𝛼 − 𝛾+1           𝑥; 𝛼, 𝛽, 𝛾 >
0   (1.3.1)               

With Probability Distribution Function 

F x = 1 −  1 − βxα −γ            x; α, β, γ > 0  (1.3.2)             

 

Reliability function is 

R t =  
β

β+tα
 
γ

  (1.3.3) 

 

Hazard rate function   

H t = αγ
tα−1

β+tα
  (1.3.4)   

 

The Generalized compound Rayleigh model includes 

various well-known pdfs, namely 

(i)  Beta-Prime pdf (Patil, et al., 1984), if  

α = β = 1 

(ii) α = 1 

(iii) Burr XII pdf (Burr, 1942), if β = 1 

 

Compound Rayleigh pdf (Siddiqui &Weiss, 1963), if α = 2 

 

1.3 Bayesian Estimation of Change Point in Generalized 

Compound Rayleigh Distribution under General 

Entropy Loss Function (GELF) 

 

A sequence of independent lifetimes x1, x2, ...., xm, , xm+1, 

...xn 𝑛 ≥ 3  were observed from Generalized Compound 

Rayleigh Distribution with parameter𝛼, 𝛽, 𝛾 but it was found 

that there was a change in the system at some point of time 

m and it is reflected in the sequence afterxm by change in 

sequences as well as change in the parameter values. The 

Bayes estimates of 𝛾 and m are derived for symmetric and 

asymmetric loss functions under natural conjugate prior 

distribution. 

 

1.3.1   Likelihood, Prior, Posterior and Marginal  

Let  𝑥1 , 𝑥2, …… , 𝑥𝑛 ,  be a sequence  of  observed   life times. 

First let observations   𝑥1, 𝑥2 , …… , 𝑥𝑛   have come from 

Generalized Compound Rayleigh Distribution (G.C.R.D.) 

with probability density function as 

f  x α, β, γ = α 𝛽𝛾𝛾 𝑥 𝛼−1  𝛽 + 𝑥𝛼 − (𝛾+1) 𝑥; 𝛼, 𝛽, 𝛾 > 0    

 (1.5.1.1) 

Let „m‟ is change point in the observation which breaks the 

distribution in two sequences as (𝑥1 , 𝑥2 , ……… . . 𝑥𝑚 )   

&  𝑥 𝑚+1 ,𝑥 𝑚+2 , …… . 𝑥𝑛 . 
The probability density functions of the above sequences are 

𝑓1 𝑥 = 𝛼1𝛽1
𝛾1𝛾1𝑥

 α1−1  𝛽1 + 𝑥𝛼1 − 𝛾1+1  (1.5.1.2) 

                                                        Where   𝑥1 , … , 𝑥𝑚 >
0; 𝛼1,𝛽1 , 𝛾1 > 0 

𝑓2 𝑥 = 𝛼2𝛽2
𝛾2𝛾2𝑥

 α2−1  𝛽2 + 𝑥𝛼2 − 𝛾2+1  (1.5.1.3)           

                                                Where 

(𝑥𝑚+1 , … , 𝑥𝑛 ;  𝛼2, 𝛽2 , 𝛾2 > 0 

 

The likelihood functions of probability density function of 

the sequence are  

𝐿1 𝑥 𝛼1, 𝛽1, 𝛾1 =  𝑓 𝑥𝑗  𝛼1, 𝛽1 , 𝛾1 

𝑚

𝑗 =1

 

𝐿1 𝑥 𝛼1, 𝛽1, 𝛾1 =  𝛼1𝛾1 
𝑚𝑈1𝑒

−𝛾1𝑇1𝑚       (1.5.1.4) 

Where 

𝑈1 =  
𝑥𝑗

 𝛼1−1 

𝛽1 + 𝑥𝑗
𝛼1

𝑚

𝑗 =1

 

𝑇1𝑚 =  log  1 +
𝑥𝑗

𝛼1

𝛽1

 

𝑚

𝑗 =1

 

𝐿2 𝑥 𝛼2, 𝛽2 , 𝛾2 =  𝑓 𝑥𝑗  𝛼2, 𝛽2,𝛾2 

𝑛

𝑗= 𝑚+1 

 

𝐿2 𝑥 𝛼2 , 𝛽2, 𝛾2 =  𝛼2𝛾2 
 𝑛−𝑚 𝑈2𝑒

−𝛾2  (𝑇1𝑛−𝑇1𝑚   ) (1.5.1.5)     

where 

𝑈2 =  
𝑥𝑗

 𝛼2−1 

 𝛽2 + 𝑥𝑗
𝛼2 

𝑛

𝑗=𝑚+1

 

and        𝑇1𝑛 − 𝑇1𝑚 =  log  1 +
𝑥𝑗
𝛼2

𝛽2
 𝑛

𝑗 = 𝑚+1  

 

The joint likelihood function is given by 

𝐿 𝛾1,𝛾2 x  ∝

 (𝛼1𝛾1)𝑚𝑈1 𝑒
−𝛾1𝑇1𝑚  (𝛼2𝛾2)𝑛−𝑚𝑈2 𝑒

−𝛾2  (𝑇1𝑛−𝑇1𝑚   ) (1.5.1.6)  

 

Suppose the marginal prior distribution of 𝛾1 and 𝛾2 are   

natural conjugate prior    

𝜋1 𝛾1 , x =
𝑏1
𝑎1

Γ𝑎1
𝛾1

 𝑎1−1 
𝑒−𝛾1𝑏1 ; 𝑎1 , 𝑏1 > 0, 𝛾1 > 0   (1.5.1.7) 

𝜋2 𝛾2, x =
𝑏2
𝑎2

Γ𝑎2
𝛾2

 𝑎2−1 
𝑒−𝛾2𝑏2 ;   𝑎2, 𝑏2 > 0, 𝛾2 > 0  (1.5.1.8) 

 

The joint prior distribution of  𝛾1, 𝛾2 and change point „m‟ is      

π 𝛾1, 𝛾2, 𝑚 ∝  
𝑏1
𝑎1

Γ𝑎1

𝑏2
𝑎2

Γ𝑎2
𝛾1

 𝑎1−1 
𝑒−𝛾1𝑏1𝛾2

 𝑎2−1 
𝑒−𝛾2𝑏2   (1.5.1.9) 

                 where  𝛾1 , 𝛾2 > 0&𝑚 = 1, 2, ……… . .  𝑛 − 1  

 

The joint posterior density of𝛾1, 𝛾2and m say 𝜌 𝛾1, 𝛾2, 𝑚/𝑥  

is obtained by using equations (1.5.1.6) & (1.5.1.9)  

𝜌 𝛾1 , 𝛾2, 𝑚|𝑥 =
L 𝛾1 ,𝛾2 𝑥  π 𝛾1 ,𝛾2 ,𝑚 

  L 𝛾1,𝛾2 𝑥  π 𝛾1 ,𝛾2 ,𝑚 𝑑𝛾1𝑑𝛾2𝛾1,𝛾2𝑚

   

(1.5.1.10) 

 

𝜌 𝛾1 , 𝛾2, 𝑚|𝑥 =
𝛾1

 𝑚+𝑎1−1 𝑒−𝛾1 𝑇1𝑚 +𝑏1 𝛾2
 𝑛−𝑚+𝑎2−1 𝑒−𝛾2 𝑇1𝑛−𝑇1𝑚 +𝑏2 

  𝛾1
 𝑚+𝑎1−1 𝑒−𝛾1 𝑇1𝑚 +𝑏1  𝑑𝛾1  𝛾2

 𝑛−𝑚+𝑎2−1 𝑒−𝛾2 𝑇1𝑛−𝑇1𝑚 +𝑏2  𝑑𝛾2
∞

0

∞

0𝑚
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Assuming  

𝛾1 𝑇1𝑚 + 𝑏1 = 𝑥                 &𝛾2 𝑇1𝑛 − 𝑇1𝑚 + 𝑏2 = 𝑦 

𝛾1 =
𝑥

 𝑇1𝑚 + 𝑏1 
&𝛾2 =

𝑦

 𝑇1𝑛 − 𝑇1𝑚 + 𝑏2 
 

𝑑𝛾1 =  
𝑑𝑥

 𝑇1𝑚 + 𝑏1 
&d𝛾2 =

𝑑𝑦

 𝑇1𝑛 − 𝑇1𝑚 + 𝑏2 
 

𝜌 𝛾1 , 𝛾2, 𝑚/𝑥 =
𝛾1

 𝑚 +𝑎1−1 𝑒−𝛾1 𝑇1𝑚 +𝑏1 𝛾2
 𝑛−𝑚 +𝑎2−1 𝑒−𝛾2 𝑇1𝑛−𝑇1𝑚 +𝑏2 

𝜉 𝑎1 ,𝑎2 ,𝑏1 ,𝑏2 ,𝑚 ,𝑛 
 (1.5.1.11)               

where 

𝜉 𝑎1 , 𝑎2, 𝑏1 , 𝑏2, 𝑚, 𝑛 =  
Γ (m+a1)

 𝑇1𝑚 +𝑏1  𝑚 +𝑎1 

 𝑛−1 
𝑚=1

Γ (𝑛−𝑚+𝑎2)

 𝑇1𝑛−𝑇1𝑚 +𝑏2  𝑛−𝑚 +𝑎2  (1.5.1.12) 

 

The Marginal posterior distribution of change point „m‟ using the equations (1.5.1.6), (1.5.1.7) & (1.5.1.8) 

𝜌 𝑚|𝑥 =  
L 𝛾1 ,𝛾2 𝑥   π γ1  π γ2 

 L 𝛾1 ,𝛾2 𝑥   π γ1  π γ2 𝑚
  (1.5.1.13)  

𝜌 𝑚|𝑥 =
 𝛾1

 𝑚+𝑎1−1 𝑒−𝛾1 𝑇1𝑚 +𝑏1  𝑑𝛾1  𝛾2
 𝑛−𝑚+𝑎2−1 𝑒−𝛾2 𝑇1𝑛−𝑇1𝑚 +𝑏2  𝑑𝛾2

∞

0

∞

0

  𝛾1
 𝑚+𝑎1−1 𝑒−𝛾1 𝑇1𝑚 +𝑏1  𝑑𝛾1  𝛾2

 𝑛−𝑚+𝑎2−1 𝑒−𝛾2 𝑇1𝑛−𝑇1𝑚 +𝑏2  𝑑𝛾2
∞

0

∞

0𝑚

 

 

Assuming 

𝛾1 𝑇1𝑚 + 𝑏1 = 𝑦                 &𝛾2 𝑇1𝑛 − 𝑇1𝑚 + 𝑏2 = 𝑧 

𝛾1 =
𝑦

 𝑇1𝑚 + 𝑏1 
&𝛾2 =  

𝑧

 𝑇1𝑛 − 𝑇1𝑚 + 𝑏2 
 

𝑑𝛾1 =  
𝑑𝑦

 𝑇1𝑚 + 𝑏1 
&                         𝑑𝛾2 =  

𝑑𝑧

 𝑇1𝑛 − 𝑇1𝑚 + 𝑏2 
 

then                   

𝜌 𝑚|𝑥 =  

Γ (m +a 1)

 𝑇1𝑚 +𝑏1  𝑚 +𝑎1 
Γ (𝑛−𝑚 +𝑎2)

 𝑇1𝑛−𝑇1𝑚 +𝑏2  𝑛−𝑚 +𝑎2 

𝜉 𝑎1 ,𝑎2 ,𝑏1 ,𝑏2 ,𝑚 ,𝑛 
 (1.5.1.14) 

The marginal posterior distribution of 𝛾1using equation (1.5.1.6) & (1.5.1.7) is given by  

𝜌 𝛾1|𝑥  =  
L 𝛾1,𝛾2 x   π γ1 

 L 𝛾1,𝛾2 x  π γ1 dγ1
∞

0

   (1.5.1.15) 

𝜌 𝛾1|𝑥 =
 𝛾1

 𝑚+𝑎1−1 𝑒−𝛾1 𝑇1𝑚 +𝑏1  𝛾2
 𝑛−𝑚+𝑎2−1 𝑒−𝛾2 𝑇1𝑛−𝑇1𝑚 +𝑏2  𝑑𝛾2

∞

0𝑚

  𝛾1
 𝑚+𝑎1−1 𝑒−𝛾1 𝑇1𝑚 +𝑏1 ∞

0𝑚  𝑑𝛾1  𝛾2
 𝑛−𝑚+𝑎2−1 𝑒−𝛾2 𝑇1𝑛−𝑇1𝑚 +𝑏2  𝑑𝛾2

∞

0

 

 

Assuming       𝛾2 𝑇1𝑛 − 𝑇1𝑚 + 𝑏2 = 𝑦, &𝛾2 =
𝑦

 𝑇1𝑛−𝑡1𝑚 +𝑏2 
 

then 

𝜌 𝛾1|𝑥 =
 𝑒−𝛾1 𝑇1𝑚 +𝑏1 𝛾1

 𝑚 +𝑎1−1 Γ (𝑛−𝑚 +𝑎2)

 𝑇1𝑛−𝑇1𝑚 +𝑏2  𝑛−𝑚 +𝑎2 m

𝜉 𝛼1 ,𝛼2 ,𝛽1 ,𝛽2 ,𝑚 ,𝑛 
  (1.5.1.16) 

 

The marginal posterior distribution of   𝛾2, using the equation (1.5.1.6) & (1.5.1.8) is given by 

𝜌 𝛾2|𝑥 =  
L 𝛾1,𝛾2 x   π γ2 

 L 𝛾1,𝛾2 x   π γ2  dγ2
∞

0

    (1.5.1.17)     

𝜌 𝛾2|𝑥 =
  𝑒−𝛾1 𝑇1𝑚 +𝑏1 𝛾1

 𝑚+𝑎1−1  𝛾2
 𝑛−𝑚+𝑎2−1 𝑒−𝛾2 𝑇1𝑛−𝑇1𝑚 +𝑏2  𝑑𝛾1

∞

0𝑚

  𝛾1
 𝑚+𝑎1−1 𝑒−𝛾1 𝑇1𝑚 +𝑏1 ∞

0𝑚  𝑑𝛾1  𝛾2
 𝑛−𝑚+𝑎2−1 𝑒−𝛾2 𝑇1𝑛−𝑇1𝑚 +𝑏2  𝑑𝛾2

∞

0

 

 Assuming       𝛾1 𝑇1𝑚 + 𝑏1 = 𝑦 ,   𝛾1 =  
𝑦

 𝑇1𝑚 +𝑏1 
 

𝜌 𝛾2 ∕ 𝑥 =  
  

Γ (m +a 1)

 𝑇1𝑚 +𝑏1  𝑚 +𝑎1  𝛾2
 𝑛−𝑚 +𝑎2−1 𝑒−𝛾2 𝑇1𝑛−𝑇1𝑚 +𝑏2 

𝑚

𝜉 𝑎1 ,𝑎2 ,𝑏1 ,𝑏2 ,𝑚 ,𝑛 
 (1.5.1.18) 

 

1.3.2Bayes Estimators under General Entropy Loss 

Function (GELF) 
Occasionally, the use of symmetric loss function, namely 

SELF, was found to inappropriate, since for example, 

overestimations of the reliability function usually much 

more serious than an underestimation. Here was consider 

asymmetric loss function namely GELF proposed by 

Calabria and Pulcini (1994), is given by  

L5 θ, d =  (
d

θ
)α2 − α2 ln  

d

θ
 − 1  ;   (α2 ≠ 0)    (1.5.2.1) 

Where as for the Change or Shift point m, the loss function 

is defined as  

L5 m, m BE  =  (
m BE

m
)α2 − α2 ln  (

m BE

m
) − 1  ;   (α2 ≠ 0) 

 (1.5.2.2) 

 

Where, α2 ≠ 0, m = 1, 2, …. (n-1), and m G = 1, 2, … . . (n −
1). Here, m BE  is the smallest integer greater than the 

analytical solution. The sign of the shape parameter α2 > 0, 

if overestimation is more serious than underestimation, and 

vice versa, and the magnitude of 𝛼2 reflects the degree of 

asymmtery. The Bayes estimator of 𝜃 under the GELF is 

given by  
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𝜃 𝐵𝐸 =  𝐸𝜌 𝜃
−𝑘2  

1∕𝑘2 1.5.2.3  

 

The Bayes estimate 𝑚 𝐵𝐸  of m under GELF using marginal 

posterior distribution equation (1.5.1.14), we get as 

𝑚 𝐵𝐸 =   𝑚−𝑘2  𝜌 𝑚|𝑥 

𝑚

 

−1∕𝑘2

 

𝑚 𝐵𝐸

=  
 𝑚−𝑘2

Γ (m+a1)

 𝑇1𝑚 +𝑏1  𝑚 +𝑎1 

Γ (𝑛−𝑚+𝑎2)

 𝑇1𝑛−𝑇1𝑚 +𝑏2  𝑛−𝑚 +𝑎2 𝑚

𝜉 𝑎1, 𝑎2 , 𝑏1 , 𝑏2, 𝑚, 𝑛 
 

−1∕𝑘2

 1.5.2.5  

 

The Bayes Estimate 𝛾 1𝐵𝐸 of 𝛾1 under GELF using marginal 

posterior distribution equation (1.5.1.16), we get  

𝛾 1𝐵𝐸 =  𝐸𝜌 𝛾1
−𝑘2  

−1∕𝑘2 1.5.2.6 𝛾 1𝐵𝐸 

=   𝛾1
−𝑘2  𝜌 𝛾1|𝑥 

𝑚

 

−1∕𝑘2

 

𝛾 1𝐵𝐸 

=  
 𝛾1

−𝑘2𝑒−𝛾1 𝑇1𝑚 +𝑏1 𝛾1
 𝑚+𝑎1−1 Γ (𝑛−𝑚+𝑎2)

 𝑇1𝑛−𝑇1𝑚 +𝑏2  𝑛−𝑚 +𝑎2 𝑚

𝜉 𝑎1 , 𝑎2, 𝑏1 , 𝑏2 , 𝑚, 𝑛 
 

−1∕𝑘2

 

 

𝛾 1𝐵𝐸 =  
 

Γ (𝑛−𝑚+𝑎2)

 𝑇1𝑛−𝑇1𝑚 +𝑏2 𝑛−𝑚 +𝑎2
 𝑒−𝛾1 𝑇1𝑚 +𝑏1 𝛾1

𝑚+𝑎1−𝑘2−1   𝑑𝛾1
∞

0𝑚

𝜉 𝑎1 , 𝑎2, 𝑏1 , 𝑏2 , 𝑚, 𝑛 
 

−1∕𝑘2

 

 Assuming  𝛾1 𝑇1𝑚 + 𝛽1 = 𝑦     &𝛾1 =  
𝑦

𝑇1𝑚 +𝛽1
 

𝛾 1𝐵𝐸 =  
 

Γ 𝑛−𝑚+𝑎2 

 𝑇1𝑛−𝑇1𝑚 +𝑏2  𝑛−𝑚 +𝑎2  𝑒−𝑦 𝑦  𝑚 +𝑎1−𝑘2−1 

 𝑇1𝑚 +𝑏1  𝑚 +𝑎1−𝑘2−1 

𝑑𝑦

 𝑇1𝑚 +𝑏1 

∞

0𝑚

𝜉 𝑎1 , 𝑎2, 𝑏1 , 𝑏2 , 𝑚, 𝑛 
 

−1∕𝑘2

 

𝛾 1𝐵𝐸 =   
 

Γ 𝑛−𝑚+𝑎2 

 𝑇1𝑛−𝑇1𝑚 +𝑏2  𝑛−𝑚 +𝑎2 

Γ (m+𝑎1−k2)

 𝑇1𝑚 +𝑏1  𝑚 +𝑎1−𝑘2 𝑚

𝜉 𝑎1 , 𝑎2 , 𝑏1, 𝑏2 , 𝑚, 𝑛 
 

−1∕𝑘2

 

𝛾 1𝐵𝐸 =  
𝜉  (𝑎1 − 𝑘2), 𝑎2 , 𝑏1,𝑏2 , 𝑚, 𝑛 

𝜉 𝑎1, 𝑎2 , 𝑏1 , 𝑏2, 𝑚, 𝑛 
 

−1∕𝑘2

 1.5.2.7  

  The Bayes Estimate 𝛾 2𝐵𝐸 of 𝛾2 under GELF using marginal posterior distribution equation (1.5.1.18), we get  

𝛾 2𝐵𝐸 =  𝐸𝜌 𝛾2
−𝑘2  

−1∕𝑘2 1.5.2.8 𝛾 2𝐵𝐸 =   𝛾2
−𝑘2  𝜌 𝛾2|𝑥 

𝑚

 

−1∕𝑘2

 

𝛾 2𝐵𝐸 =  
 𝛾2

−𝑘2
𝑚  

Γ (m+a1)

 𝑇1𝑚 +𝑏1  𝑚 +𝑎1  𝛾2
 𝑛−𝑚+𝑎2−1 𝑒−𝛾2 𝑇1𝑛−𝑇1𝑚 +𝑏2 

𝜉 𝑎1 , 𝑎2, 𝑏1 , 𝑏2, 𝑚, 𝑛 
 

−1∕𝑘2

 

𝛾 2𝐵𝐸 =  
 𝑚  

Γ (m+a1)

 𝑇1𝑚 +𝑏1  𝑚 +𝑎1   𝛾2
 𝑛−𝑚+𝑎2−𝑘2−1 𝑒−𝛾2 𝑇1𝑛−𝑇1𝑚 +𝑏2  𝑑𝛾2

∞

0

𝜉 𝑎1 , 𝑎2, 𝑏1 , 𝑏2, 𝑚, 𝑛 
 

−1∕𝑘2

 

 

Assuming 𝛾2 𝑇1𝑛 − 𝑇1𝑚 + 𝑏2 = 𝑦 &𝛾2 =
𝑦

𝑇1𝑛−𝑇1𝑚 +𝑏2
 

𝛾 2𝐵𝐸 =  
 𝑚  

Γ (m+a1)

 𝑇1𝑚 +𝑏1  𝑚 +𝑎1   𝑒−𝑦  𝑦  𝑛−𝑚 +𝑎2−𝑘2−1 

 𝑇1𝑛−𝑇1𝑚 +𝑏2  𝑛−𝑚 +𝑎2−𝑘2−1 

𝑑𝑦

 𝑇1𝑛−𝑇1𝑚 +𝑏2 

∞

0

𝜉 𝑎1 , 𝑎2, 𝑏1 , 𝑏2, 𝑚, 𝑛 
 

−1∕𝑘2

 

𝛾 2𝐵𝐸 =  
 𝑚  

Γ (m+a1)

 𝑇1𝑚 +𝑏1  𝑚 +𝑎1  
Γ 𝑛−𝑚+𝑎2−𝑘2 

 𝑇1𝑛−𝑇1𝑚 +𝑏2  𝑛−𝑚 +𝑎2−𝑘2 

𝜉 𝑎1 , 𝑎2, 𝑏1 , 𝑏2, 𝑚, 𝑛 
 

−1∕𝑘2

 

𝛾 2𝐵𝐸 =  
𝜉 𝑎1, (𝑎2 − 𝑘2), 𝑏1,𝑏2, 𝑚, 𝑛 

𝜉 𝑎1, 𝑎2 , 𝑏1 , 𝑏2, 𝑚, 𝑛 
 

−1∕𝑘2

 1.5.2.9  

 

Numerical Comparison for Generalized Compound 

Rayleigh Sequences 

We have generated 20 random observations from 

Generalized Compound Rayleigh distribution with 

parameter 𝛼 = 2, 𝛽 = 0.5 and 𝛾 = 2. The observed data 

mean is 0.9639 and variance is 2.3071. Let  the change in 

sequence is at 11
th

  observation, so the means of both 

sequences (x1, x2, …, xm) and (x (m+1), x (m+2), …, xn)  are 𝛾1= 

1.2682, 𝛾2= 0.5920. If the target value of  𝛾1  is unknown, its 

estimating (𝛾 1) is given by the mean of first m sample 

observation given m = 11,  𝛾 = 1.268. 

 

2. Sensitivity Analysis of Bayes Estimates 
 

In this section we have studied the sensitivity of the Bayes 

estimates with respect to changes in the parameters of prior 

distribution 𝑎1 , 𝑏1 , 𝑎2 and 𝑏2. The means and variances of 

the prior distribution are used as prior information in 
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computing these parameters. Then with these parameter 

values we have computed the Bayes estimates of m, 𝛾1 and 

𝛾2 under general entropy loss function (GELF) considering 

different set of values of  𝑎1 , 𝑏1 and  𝑎2, 𝑏2 .We have also 

considered the different sample sizes n=10 (10)30. The 

Bayes estimates of the change point „m‟ and the parameters 

𝛾1 and 𝛾2 are given in table- (4.1) under GELF. Their 

respective mean squared errors (M.S.E‟s) are calculated by 

repeating this process 1000 times and presented in same 

table in small parenthesis under the estimated values of 

parameters. All these values appear to be robust with respect 

to correct choice of prior parameter values and appropriate 

sample size.  From the below table we conclude that – 

 

The Bayes estimates of the parameters 𝜸𝟏 and 𝜸𝟐 of GCRD 

obtained with GELF are seems to be efficient as the  

numerical values of their mse’s are very small  for 𝜸 𝟏𝑩𝑬  

and   𝜸 𝟐𝑩𝑬  in  comparison  with  𝒎 𝑩𝑬.The Bayes estimates 

of  the parameters are  robust with correct choice of prior 

parameters and sample size. This consistency is similar to 

the conclusions drawn by Calabria and Pulcini (1996). The 

Bayes estimates of the parameters are robust with a1 = 

(1.5-2.5), a2= (1.70-2.50), b1= (1.75-2.75) and b2= (1.80-

2.60) and all sample size.  

 

Table 1.1: Bayes Estimates of m, 𝛾1&𝛾2for  GCRD 

sequences and their respective M.S.E.'s Under  GELF 

 (𝐚𝟏, 𝐛𝟏)  (𝐚𝟐, 𝐛𝟐) n 𝐦 𝐁𝐄 𝛄 𝟏𝐁𝐄 𝛄 𝟐𝐁𝐄 

 

(1.25, 1.50) 
 (1.50, 1.60) 10 

2.2375 

 (0.2409) 

0.1839 

 (3.5046) 

0.4150 

 (2.2776) 

  20 
3.2684 

 (1.1614) 

0.1113 

 (3.7381) 

0.2796 

 (3.1288) 

  30 
4.4147 

 (0.0353) 

0.0644 

 (3.7310) 

0.3043 

 (3.0313) 

 

(1.50, 1.75) 
 (1.70, 1.80) 10 

2.4056 

 (0.4941) 

0.1139 

 (2.8918) 

0.2982 

 (2.4116) 

  20 
3.1798 

 (1.6132) 

0.0933 

 (3.7161) 

0.2690 

 (2.9710) 

  30 
4.7601 

 (7.9354) 

0.0806 

 (3.7176) 

0.1949 

 (2.8390) 

 (1.75, 2.0)  (1.90, 2.0) 10 
2.7368 

 (0.2062) 

0.1504 

 (3.5153) 

0.2799 

 (2.800) 

  20 
3.9204 

 (3.1352) 

0.1049 

 (3.5509) 

0.2485 

 (3.0285) 

  30 
8.3818 

 (24.2671) 

0.1477 

 (3.6236) 

0.2336 

 (3.2257) 

 (2.0, 2.25)  (2.10, 2.20) 10 
2.3326 

 (0.1569) 

0.1274 

 (3.3872) 

0.2366 

 (2.6159) 

  20 
3.1266 

 (2.1347) 

0.0834 

 (3.6105) 

0.2399 

 (2.7302) 

  30 
4.1201 

 (4.3081) 

0.0728 

 (3.8154) 

0.1905 

 (3.0615) 

 

(2.25, 2.50) 
 (2.30, 2.40) 10 

2.9935 

 (0.3429) 

0.1277 

 (3.4797) 

0.5369 

 (2.7068) 

  20 
3.8048 

 (2.2571) 

0.0871 

 (3.7271) 

0.1959 

 (3.0668) 

  30 
4.4457 

 (4.0216) 

.0723 

 (3.7722) 

.1959 

 (3.1464) 

 

(2.50, 2.75) 
 (2.50, 2.60) 

10 

 

2.4144 

 (0.6308) 

0.1692 

 (3.4158) 

0.3704 

 (2.9467) 

  20 
3.7902 

 (8.5221) 

0.1007 

 (3.5954) 

0.2604 

 (3.2319) 

  30 
4.3244 

 (7.2033) 

0.0575 

 (3.7195) 

0.2322 

 (3.1164) 
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