Solid Lipid Nanoparticles: A Promising Drug Delivery System

Jugendra Singh¹, Shruti Khare²

Advance Institute of Biotech & P.M. Sciences, Naramau, Kanpur, Uttar Pradesh

Abstract: SLNs have been at the forefront of nanoscale and have a wide range of therapeutic uses in both research and medicine delivery. Lipid nanoparticles hold the potential for novel therapies due to their distinct size-dependent characteristics. The creation of a brand-new drug delivery prototype is made possible by the capacity to put medications into nano carriers. A potential target-specific medication delivery mechanism. As a result, many scientists think that solid lipid nanoparticles have a lot of potential for obtaining precise and regulated medication administration. Numerous subjects are covered in this review. treatment of solid lipid nanoparticles: objectives, production steps, advantages, drawbacks, and prospective applications remedescanner electron microscopy and photon correlation spectroscopy are two analytical methods used to describe SLNs. additional methods, such as transmission electron and analysis. Lipids have distinct size-dependent characteristics that make them Weemphasise the advantages of differential scanning calorimetry. The in vivo destiny of the carriers and several aspects of the SLN delivery method are also covered.

Keywords: Homogenization, TEM, PCS, and biodistribution targeting are all terms used to describe colloidal drug carriers

1. Introduction

Since its invention in 1990,(SLNs) have been exploited as an alternative to conventional colloidal carriers such emulsions, liposomes, and polymeric micro- and nanoparticles. As a novel colloid drug carrier for intravenous applications and an alternate particulate carrier system, nanoparticle consisting of solid lipids are becoming more and more popular. A physiological lipid dispersed in water or an aqueous detergent solution makes up SLNs, sub-micron colloidal carriers with sizes ranging from 0.5 to 1 µm. Due to their distinct characteristics, including their tiny size, large surface area, high drug loading, and phase interaction at the interface, SLN are interesting because they have the potential to enhance pharmacological performance.

To over The phrases homogenization, TEM, PCS, and biodistribution targeting all refer to explain colloidal drug delivery systems. Due to the drawbacks of the liquid state of the oil droplets, the liquid was replaced by a solid lipid, which subsequently turned into solid lipid nanoparticles. Numerous factors contribute to the increased interest in lipid-based systems.

1) Lipids increase oral bioavailability while decreasing plasma profile variability.
2) Improved lipoid excipient characterisation.
3) Increased able to manage important problems such as technical assistance and manufacturing magnitude.

Microparticles are one of the only feasible colloidal carrier systems, acting similarly to an oil-in-water emulsion for parenteral feeding as an alternative to polymers. The solid lipid has been substituted for the liquid in the emulsion, as seen in Figure 1. They offer a variety of advantages, given the system's physical stability, low toxicity, superior biocompatibility, and the potential of solid lipid nanoparticles to more efficiently transport lipophilic drugs.

Figure 1: Shows the of The Graphical of SLNs
SLNs have been around since the early 1990s and are proven to be effective colloidal carriers based on lipids. This is one of the greatest successes of increasing the oral bioavailability of drugs that are insoluble in water. SLNs are composed of physiologically tolerated lipid components that are solid at room temperature and have a submicron size range of 50–1000 nm.

Figure 2 depicts a schematic representation of different particulate drug carriers, such as emulsions and liposomes, as well as their advantages over SLNs. Polymeric nanoparticles, fat emulsions, and liposomes are all combined in SLNs.

Benefits of SLNs
- Controlling and directing the release of drugs
- Outstanding biocompatibility.
- Boost pharmaceutical stability.
- Simple to clean and sterilise.
- Improved command of encapsulated compound.
- Significantly increased drug content.
- A rise in the bioavailability of the bioactive substances trapped.
- More easily produced than biopolymeric nanoparticles; chemical protection of included labile chemicals; and lower production costs.
- No need for a specialized solvent.
- The production process for emulsions follows standard procedures.
- Similar raw ingredients to those used in emulsions are needed.
- Exceptionally high level of long-term stability.

Adaptability of the application
- Commercial sterilization procedures are possible.
- Simple to scale and sterilizer.
- Greater control over the kinetics of encapsulated compound release.
- Enhanced bioavailability of bioactives compounds entangled.

SLNs
- Polymeric transition dynamics that are unexpected.

The Purposes of Solid Lipid Nanoparticles 6–9.
- The ability to control drug release.
- Increased drug stability.
- Heavy drug payload.
- The carrier is not biotoxic.
- Avoiding solvents that are organic.
- Use drugs that are lipophilic and hydrophilic.

2. Method of Fabrication of Solid Lipid Nanoparticles

1) Homogenization under more pressure.
 - Heated environment homogenising.
 - Freezing and homogenising.

2) More - speed homogenising and ultrasonification.
 - Ultrasonification of the probe.
 - Ultrasonification of the bath.

3) The solvent evaporating.
4) Method of solvent emulsification-diffusion.
5) The subcritical water technique.
6) Microemulsion - based approach.
7) Using the squirt dryer technique.
8) The two- emulsifiers technique.
9) The type of precipitation.
10) Ultrasonography's dispersion in films.

A. Homogenization under high pressure (HPH)
For the manufacture of SLNs, it is a dependable and powerful technology. High-pressure homogenizers (100–200 bar) push a liquid through a small opening (in the range of a few microns). In a very short span, the fluid speeds up from a really quite low velocity towards a high speed (around 1000 kilometres/hour). Microbubble forces and hydrodynamic pressure strain cause the subatomic particles to be disturbed bottom to the sub-micron level. Although studies have looked at lipid contents up to 40%, the typical lipid percentage used is 5–10%.
Two popular HPH methods—heat environment, homogenising and freezing homogenising - both work by combining the medication with a significant amount of lipid melt.

1. Heated environment homogenization

Heated environment homogenization, which is also referred to as emulsion Uniformity occurs at temperatures above the lipid's melting point. Its drug-loaded fatty acid melt is vigorously mixed with the water-soluble emulsifier phase to shape a which was before, (at its same temperature). Relevant parameters of such which was before is performed at temperature increases above the lipid's melting. Smaller particle dimensions arise from the inner phase's viscosity decreasing at higher temperatures. On the other hand, excessive heat expedite its deterioration such as both its medication o the transporter. Increases in equilibration force or cycle count frequently lead in relation towards an expansion in portion size because of the particles' tremendous kinetic energy.

Figure 3: Heat environment homogenization is used to create solid lipid nanoparticles

Advantages
- Low initial outlay of funds.
- At the laboratory scale, proved.

Disadvantages
- Energy-consuming process.
- Biomolecule degradation on a laboratory scale.
- Distributions with a polydisperse distribution.

B. High-speed homogenization and ultrasonication

Additionally, SLNs are made utilising high-speed homogenization or ultrasonication techniques. AAt lower particle sizes, a mixture of maintains a strong and greater homogeneity is necessary sizes.calability has not been tested.

Advantages
- Shear stress has diminished.

Disadvantage
- Metal pollution may be present.
- Physical instability, such as the development of particles while being stored.

C. The solvent evaporating

Solvent evaporation is another method for producing SLNs. After being in a water, dissolved -insolubleorganic cleaner, the lipophilic material isin a water phase mixed (e.g., cyclohexane). Lipid precipitates in aqueous media as the solvent evaporates, generating nanoparticles with a mean size of 27 nanometers The solution was emulsified in a water phase using highly pressurized homogeneity. By boiling the solvents at low pressure (55–65 millibars), the chemical solvent was evaporated from the emulsify.

Volume 11 Issue 7, July 2022
www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 4: Freezing homogenization procedure for the creation of solid lipid nanoparticles
Advantages.
- Scaled
- Advanced technologies.
- Continual procedure.
- Commercial demonstration.

Disadvantages
- This is a very energy-intensive process.
- Distributions that are polydisperse.
- Biomolecule deterioration.

D. Method of emulsifying of solutions
Particle can range in size from 30 to 100 nanometer on averages. created using its method. The absence of The main benefit of the process is heat during preparation.

E. The subcritical water technique
Utilizing particles from gas-saturated liquids is a different method of creating SLNs (PGSS).

Advantages
Steer clear of solvents if at all possible

F. Microemulsion-based approach
Its technique makes use of Distillation of microspheres . Two-phase system comprises of an insides and an external phase. micro-emulsions, such as o/w microemulsions. In order to create them, an emulsifying agent, a lower melting point fatty acid (such as ethanoic acid), such co-emulsifiers (such as polysorbate 20) (such as propanol), as well as water are stirred together at a temperature between 65 and 70 degrees Celsius. In ice water (2-3°C), the warm nanoemulsion is diffused, while being stirred. To move solid products (tablets, pellets) through the granulation approach, the SLNs diffusion can be employed asa fluids for gelation, however, if the quantity of water in the mixture is too high due to low particle concentration, Water must be extracted. High-temperature gradients promote lipid synthesis, aggregation or crystallisation quickly. The lipid contents that can be retrieved are much less as a result of the dilution procedure. Suspension in lieu of The resulting particles are apowdered sugar mild atmospheric pressure and temperature conditions The ideal solvent for this method is carbon dioxide solution.

The price is less expensive than formulations based on HPH. versus HPH-based formulations versus HPH-based formulations.

STEP 1

STEP 2

Figure 5: An illustration of the diffusion method for emulsification.

Figure 6: Using a microemulsion

Benefits
- Low mechanical energy input
- the system is theoretically stable.

Disadvantages
- Extremely susceptible to change.
- Formulation work that is time consuming.
- Nanoparticle concentrations are low.

G. Using the spray dryer method
It is a method that can be used instead of lyophilization. This suggests that using a lipid containing agrreater than 70°C melting point is appropriate. With SLNs, the best results were obtained concentrations of one percent in a trehalose in water solution or 20% in an ethanol-water mixture.

H. The two-emulsion technique
In order to save medicine part intoin this case, its medicine is encased with a stabilizing agent in the outside water phase of a w/o/w dual emulsification all through stabiliser.
I. The type of precipitation
After being chemical dispersed (like chloroform), its glycerides in a water phase are homogenised. Fatty acid would then water vapour. forming nanoparticles when the organic phase has been depleted disappeared.

J. Ultrasonography’s dispersion in films
A lipid film was produced after the organic solutions were decompressed, rotated, and evaporated with the addition of the lipid and the medication in the appropriate organic solutions. The emulsions-containing aqueous solution was then added. Finally, utilising ultrasound with the From inquiry to diffuser, the SLNs with narrow and homogeneous particle diameter is produced. produced.

3. Conclusion
Contrary to widespread assumption, SLNsneedn’t "merge the benefits of other flocculation dosage forms" while avoidintheir shortcomings." its finished product couldn’t just and labelled solid-coreyorder to further assist. The physiological components in the composition, the quick and efficient production method, which includes the capacity to produce large amounts, the ability to create airlines with enhanced entrainment efficiency, as well as the evasion of extreme. Polar compounds are all unmistakable benefits of SLN. Drug encapsulation capabilities are lesser, as well as availability of the complexity of the lipid’s physical state (transformation between different modifications), as well as the potential for super-cooled melts, are all drawbacks that affect stability during storage or administration (gelation, particle size increase, drug expulsion). a dissolved test of or when water is removed, the equilibria between different particulate organisms and the physiological state of the fatty acid are restored, may be significantly changed. The accurate characterization of complicated surfactant/lipid dispersions requires the employment of numerous In addition to evaluating size of the particles, analysis techniques are used. Kinematics must be taken into consideration. Drug nanosuspensions will be able to coexist in the sample thanks to Spectroscopic, Elevated serum, and cyclotron radiation exposure. Unfortunately, these considerations are frequently overlooked, and the term "narcotic integration" in literature is often misunderstood. In conclusion, as compared to other colloidal carriers, SLNs are highly complex devices with the both clear advantages and disadvantages. Investigations conducted Both in vitro or in vivo testing are still required to fully comprehend its structure and dynamics of SLNs.

References