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Abstract: In this research paper, we procreate a framework to get ordinary differential equations (ODEs) involving fractional order 

derivatives using the techniques of Legendre wavelets. By the properties of Legendre wavelets we analyze the application of second order 

linear differential equations to the solution of algebraic equations. It demonstrates by the illustration and proves the validity and 

applicability of the technique. 
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1. Introduction 
 

In ordinary differential equations involving a fractional 

derivatives are used to various systems of calculus which an 

important engineering application such as viscoelastic 

damping [1–3]. Other application of fractional derivatives in 

control theory [4] and application of other various field are 

found in [5, 6]. 

 

In these years, mathematicians and physicists have intent the 

considerable effort to find numerical and analytical methods 

for solving fractional differential equations. In numerical 

and analytical methods have included the finite difference 

method [7–9], Adomian decomposition method [10–14], 

variation AL iteration method [15–18], homotopy 

perturbation method [19–22], generalized differential 

transform method [23–26], homotopy analysis method [27, 

28], and other methods [1, 29]. 

 

On this research paper we extend the application of the 

Legendre wavelet approximations to solve linear and 

nonlinear differential equations of fractional order. 

 

There are many different types of definitions of fractional 

calculus. For example, the Riemann–Liouvilleintegral 

operator [5] of order n is defined by 

 

(𝐽𝑛𝑓) 𝑥 =  

1

Γ(𝑛)
 

𝑓(𝑡)

(𝑥−𝑡)1−𝑛 𝑑𝑡 ,𝑛 ≥ 0, 𝑡 > 0
𝑥

0

𝑓 𝑥                    ,    𝑛 = 0

        (1) 

 
And its fractional Derivative of order 𝛼(𝛼 ≥ 0) is used 

(𝐷1
𝑛𝑓) 𝑥 =  

𝑑

𝑑𝑥
 
𝑚
 𝐽𝑚−𝑛𝑓  𝑥 , 𝑛 ≥ 0,𝑚 − 1 < 𝛼 < 𝑚                             

(2) 
Where n is an integer. For Riemann–Liouville definition, 
one has 

𝐽𝑛𝑥𝑚 =
Γ(𝑚+1)

Γ(𝑚+1+𝑛)
𝑥𝑚+𝑛                                      (3) 

 

(𝐷𝑛𝑓) 𝑥 =  

1

Γ(𝑚−𝑛)
 

𝑓 𝑚  (𝑡)

(𝑥−𝑡)𝑛−𝑚+1 𝑑𝑡    (𝑛 ≥ 0,𝑚 − 1 < 𝑛 < 𝑚)
𝑥

0

𝜕𝑚 𝑓(𝑥)

𝜕𝑥𝑚
                                                                      𝑛 = 𝑚

                                (4) 

 
Where m is an integer. 

(𝐽𝑛𝐷𝑛𝑓) = 𝑓 𝑥 −  
𝑓(𝑘)0+

𝑘 !
𝑥𝑘𝑚−1

𝑘=0     ,      (𝑥 ≥ 0,𝑚 − 1 <

𝑛 < 𝑚) (5) 

Where 𝑚  is an integers. 

 

Legendre Wavelet theory is a vast area in mathematical 

research work. In Section 2, Describe the properties of 

wavelets and Legendre wavelets.. In Section 3 ,solve the  

considering numerical examples in our research  work. 

 

 

 

 

 

2. The following properties of Legendre 

Wavelet are: 
 

Wavelets constitute a family of functions  which constructed 

from the dilation and translation of a single function is called 

the mother wavelet. The dilation parameter is 𝑎 and the 

translation parameter 𝑏it vary continuously, following 

family of continuous wavelets as [18] 

𝜓𝑎 ,𝑏 𝑡 =   𝑎 
−1

2 𝜓  
𝑡−𝑏

𝑎
                𝑎, 𝑏 ∈ 𝑅 , 𝑎 ≠ 0.   (6) 

 

The restricted  parameters of  𝑎 and 𝑏  with  discrete values 

as  𝑎 = 𝑎0
𝑘   , 𝑏 = 𝑛𝑏0𝑎0

𝑘  , 𝑎0 > 1, 𝑏0 > 0   and 𝑛 and 𝑘 are 

positive integers, The following family of discrete wavelets 

are as 
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𝜓𝑘 ,𝑛 𝑡 =   𝑎 
𝑘

2𝜓  𝑎0
𝑘𝑡 − 𝑛𝑏0                                     (7) 

 

Where 𝜓𝑘 ,𝑛 𝑡  have a wavelet basis for 𝐿2(𝑅). When 

𝑎0 = 2 and  𝑏0 = 1, and also𝜓𝑘 ,𝑛 𝑡  forms an orthonormal 

basis [33]. 

Legendre wavelet 𝜓 𝑛 ,𝑚  𝑡 = 𝜓(𝑘,𝑛 ,𝑚, 𝑡) have four 

arguments 𝑛 = 2𝑛 − 1,𝑛 = 1,2,3…… . , 2𝑘−1 , 𝑘assume any 

positive integer, and m is the order for Legendre 

polynomials and t is the normalize time. 

 

 

In interval [0,1] by 

𝜓𝑛𝑚  𝑡 =  
 (𝑚 + 1)/2 2𝑘+1/2𝐿𝑚 (2𝑘+1𝑡 −  2𝑛 + 1 

𝑛

2𝑘
≤ 𝑡 ≤

𝑛+1

2𝑘

0                                                                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
          (8) 

 

 

Where 𝑚 = 0,1……… .𝑀 𝑎𝑛𝑑 𝑛 = 0,1,…… 2𝑘−1 . These are 

the  coefficient of orthonormality . Hence 𝐿𝑚 (𝑡) are the 

Legendre polynomials of order 𝑚.  Function 𝑓(𝑡) defined 

over [0,1] by the terms of Legendre wavelets as 

𝑓 𝑡 =   𝑐𝑛𝑚𝜑𝑛𝑚  𝑡  ,
∞
𝑚=0

∞
𝑛=0            (9) 

 

Where 𝑐𝑛𝑚 =  𝑓 𝑡 ,𝜑𝑛𝑚  𝑡  ,  it denotes the inner product. 

If the infinite series (9) istruncated ,then it can be written as 

𝑓 𝑡 =   𝑐𝑛𝑚𝜓𝑛𝑚  𝑡 = 𝐶𝑇𝜓 𝑡 ,𝑀−1
𝑚=0

2𝑘−1

𝑛=0             (10) 

 

Where 𝐶 and 𝜑(𝑡) are 2𝑘(𝑀 + 1) matrices given by  

𝐶 =  𝑐0,0 , 𝑐0,1,…….,𝑐0,𝑀,………,𝑐2,𝑀 ,………,𝑐 2𝑘−1 ,0,𝑐 2𝑘−1 ,1,……..,𝑐 2𝑘−1 ,𝑀 
𝑇

 ,             (11) 

 

𝜓(𝑡) =  𝜑0,0,𝜑0,1,…….,𝜑0,𝑀 ,………,𝜑 2𝑘−1 ,0,𝜑 2𝑘−1 ,1,……..,𝜑 2𝑘−1 ,𝑀 
𝑇

              (12) 

 

3. Application in Linear differential equation 

on Legendre wavelet 
 

Consider the linear second order differential equation  

𝑦′′ 𝑥 +  𝑓1 𝑥 𝑦
′ 𝑥 +  𝑓2 𝑥 𝑦 𝑥 = 𝑔(𝑥)    (3.1) 

𝑑2𝑦

𝑑𝑥2 − 2𝑥
𝑑𝑦

𝑑𝑥
− 𝑥𝑦 = 1                                     (3.2) 

 

With the initial condition  

𝑦 0 = 0 

𝑦′ 0 = 𝐵0 

 

Or boundary conditions 

𝑦 0 = 0 

𝑦 ′ 1 = 0 

 

To solve problem (3.1),we approximate 

𝑦 𝑥 , 𝑓1 𝑥 ,𝑓2 𝑥 𝑎𝑛𝑑 𝑔(𝑥) by the Legendre wavelet as  

𝑦 𝑥 = 𝐶𝑇𝜓 𝑥 = 𝑥                     (3.3) 

𝑓1 𝑥 =  𝐹1
𝑇𝜓 𝑥 = 2𝑥                     (3.4) 

𝑓2 𝑥 =  𝐹2
𝑇𝜓 𝑥 = 0                      (3.5) 

𝑔 𝑥 = 𝐺𝑇𝜓(𝑥) = 1                     (3.6) 

 

By using operational matrix of  nth derivative 
𝑑𝑛𝜓(𝑥)

𝑑𝑥 𝑛
=

𝐷𝑛𝜑 𝑥   where 𝐷𝑛  is nth power of matrix 𝐷 then  

𝑦′ 𝑥 = 𝐶𝑇𝐷𝜓𝑇 𝑥 = 1                   (3.7) 

𝑦′′ 𝑥 = 𝐶𝑇𝐷2𝜓𝑇 𝑥 = 0                 (3.8) 

 

Employing  Eqs. (3.7) and (3.8) , the residual 𝑅 𝑥  for (3.1) 

𝑅 𝑥 = 𝐶𝑇𝐷2𝜓 𝑥 
+ 𝐹1

𝑇𝜓 𝑥 𝐶𝑇𝐷𝜓𝑇 𝑥 + 𝐹2
𝑇𝜓 𝑥 𝐶𝑇𝜓𝑇 𝑥 

= 𝐺𝑇𝜓(𝑥) 
 

In equation (3.2) transform in Legendre wavelet  

𝑅 𝑥 = 𝐶𝑇𝐷2𝜓 𝑥 
+ 𝐹1

𝑇𝜓 𝑥 𝐶𝑇𝐷𝜓𝑇 𝑥 + 𝐹2
𝑇𝜓 𝑥 𝐶𝑇𝜓𝑇 𝑥 

= 𝐺𝑇𝜓(𝑥) 

𝑅 𝑥 = 2𝑥. 1 = 1 

𝑅 𝑥 = 𝑥 =
1

2
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