Boric Acid Catalyzed Solvent-Less Synthesis of Hydrazonesof 3-formylchromones with Aromatic Carboxylic Acid Hydrazide

Deepali Mahajan

Associate Professor, Department of Chemistry, G.G.M Science College, Jammu, India

Abstract: In our effort to develop hybrid molecules, we conceived the synthesis of hydrazones from 3-formylchromone and carboxylic acid hydrazides in presence of boric acid as a green catalyst.

Keywords: 3-formylchromone, carboxylic acid hydrazides, hydrazones, boric acid

1. Introduction

Hybrid molecules¹ are defined as chemical entities with two (or more than two) structural domains having different biological functions. The dual activity indicates that a hybrid molecule acts as two distinct pharmacophores. Both entities of the hybrid molecule are not necessarily acting on the same biological target.²3-Formylchromone also reacts with carboxylic acid hydrazides producing respective acyl hydrazones.³Hydrazonesare known to possess antidepressant properties⁴ and possess kinase inhibitor properties, in particular for SGK. These also act as M1/M3 selective muscarinic agonists.⁵ These also possess antimicrobial activity⁶ and anticonvulsant activity, ⁷antifungal properties, ⁸proinflammatory activity.⁹3-Formylchromone¹⁰ derivatives have been extensively used as versatile building blocks for the synthesis of variety of heterocyclic systems.¹¹ In our effort to develop hybrid molecules, we conceived the synthesis of hydrazones from 3-formylchromone¹² and carboxylic acid hydrazides in presence of pulverized boric acid $(0.154 \text{ g})^{13}$ as a green catalyst in extension to our work.14

2. Results and discussion

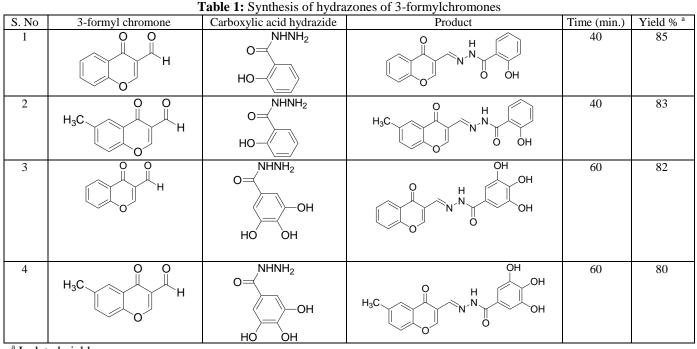
3-Formylchromones¹⁵ can be synthesized by Vilsmeier reaction. The desired compounds carrying various

substituents were prepared by the similar method in one step.

When a mixture of 3-formylchromone (1 mmol), 2hydroxybenzoic acid hydrazide (1 mmol) and pulverized boric acid (0.154 g)was heated, under solvent free conditions in a round bottom flask at 80°C for about 40 - 60 minutes, the formation of a newer compound was noticed on TLC and was isolated in 80 - 85% yield by recrystallization from ethanol. This compound was found to be 3-(2 hydroxybenzoylhydrazonomethyl)-4-oxo-4H-chromene as revealed by the comparison of its spectral and physical data with the authentic sample.¹⁶¹H NMR spectrum (in DMSO) of compounds showed a singlet signal of the C=N-NH group at δ 11.6, two singlets at δ 8.8 and 8.7 corresponding to two C-H and at δ 8.0 – 7.3 corresponding to eight aromatic protons showing multiplet. ¹³C NMR spectrum showed peaks at 8 187, 165, 158, 157, 156, 153, 135, 133, 130, 128, 126, 125, 124, 122, 120, 118 and 106. The IR spectrum showed peaks at 3400 cm⁻¹, 3100cm⁻¹ (N-H, O-H), 1645cm⁻¹ ⁽CN) and 1620 cm⁻¹⁽C=O).

3. General Procedure

3.1 Synthesis of 3-formylchromone

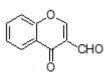

The Vilsmeir reagent was prepared by the drop wise addition of freshly distilled phosphorous oxychloride to dry DMF (dimethylformamide) with stirring and cooling in ice. The reagent was allowed to stand at room temperature and was then added to a stirred solution of the substituted *o*hydroxyacetophenone in dry DMF. The reaction mixture was kept at room temperature for 13 hour. The mixture was then poured into ice cold water. The solution was made basic by the addition of Na_2CO_3 solution and exhaustively extracted with ethyl acetate; combined extracts were washed successively with dil. HCl, H₂O and saturated brine, and finally dried over Na_2SO_4 . The different compounds were obtained in varied yields. The compound was isolated in 75% yield and was found to be 3-formylchromone as revealed by the comparison of its spectral and physical data with that of the authentic sample.¹⁷ The ¹H NMR of some

Volume 11 Issue 7, July 2022 <u>www.ijsr.net</u> Licensed Under Creative Commons Attribution CC BY compounds was not measured due to their extremely low solubility inorganic solvents (DMSO, DMF, etc.).

3.2 Synthesis of hydrazones of 3-formylchromone and aromatic carboxylic acid hydrazide

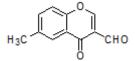
A mixture of 3-formylchromone (1 mmol), carboxylic acid hydrazide (1 mmol) and pulverized boric acid (0.154

g)was heated, without any solvent in a round bottom flask at 80 °C for about 40-60 minutes, the formation of a newer compound was noticed as revealed by TLC. The reaction mixture was diluted with ethyl acetate (30 mL) and filtered. The filterate was washed with brine (2×15 mL), dried over anhydrous Na₂SO₄, ethyl acetate was distilled off under reduced pressure and the residue was recrystallized from ethanol mixture in 80 - 85% yield.

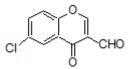

^a Isolated yields.

4. Experimental

All experiments were performed in an oven dried glass apparatus. Melting points were measured in open capillaries on Buchi melting point apparatus and are uncorrected. Elemental analysis was performed on Leco CHNS-932. IR spectra on KBr were recorded on Perkin-Elmer FTIR spectrophotometer. NMR (¹H broadband decoupled and ¹³CNMR) spectra were recorded on Brucker Ac-200 (400 MHz and 100 MHz respectively) spectrometer. ¹H NMR and ¹³C NMR of the compounds 3b, 3c, 3e, 3f were not measured due to low solubility in organic solvents. ESI-MS spectra were recorded on Micro-Mass VG- 7070 H mass spectrometer. The imines was recrystallization of carried from DMSO/ethanol mixture. The column chromatography was performed over silica gel (60-120 mesh) with graded solvent systems of ethyl acetate -n-hexane. The solvents were dried before use as per the established procedures.


4.1 Physical and spectral data

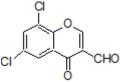
4-Oxo-4H-chromene-3-carbaldehyde


White solid, M.pt. 151 - 153 °C.¹**H** NMR (CDCl₃, 400 MHz) δ : 10.1 (1H, s), 7.8 (1H, s), 8.0 - 7.6 (4H, m). **IR** (KBr)v_{max}/cm⁻¹: 3315, 2890, 1685, 1650.*Anal Calcd.* for C₁₀H₆O₃:C, 68.97, H, 3.47. Found: C, 69.33, H, 3.82.

6-Methyl-4-oxo-4H-chromene-3-carbaldehyde

White solid, M.pt. 174 - 175 °C.¹**H** NMR (CDCl₃, 400 MHz) δ : 9.8 (1H, s), 7.8 (1H, s), 8.0 - 7.7 (3H, m), 2.1 (3H, s). **IR** (KBr)v_{max}/cm⁻¹: 3310, 2890, 1695, 1655.*Anal Calcd.* for C₁₁H₈O₃:C, 70.21, H, 4.29. Found: C, 70.52, H, 4.62.

6-Chloro-4-oxo-4*H*-chromene-3-carbaldehyde


White solid, M.pt. 166 - 168°C.¹**H** NMR (CDCl₃, 400 MHz) δ : 10.2 (1H, s), 8.0 (1H, s), 8.1 – 7.7 (3H, s). **IR** (KBr)v_{max}/cm⁻¹: 3315, 2892, 1695, 1660.*Anal Calcd.* for C₁₀H₅ClO₃:C, 57.58, H, 2.42. Found: C, 57.92, H, 2.76.

Volume 11 Issue 7, July 2022 www.ijsr.net Licensed Under Creative Commons Attribution CC BY

Paper ID: MR22702142444

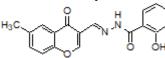
DOI: 10.21275/MR22702142444

6, 8-Dichloro-4-oxo-4*H*-chromene-3-carbaldehyde

White solid, M.pt. 171 - 173 °C.¹H NMR (CDCl₃, 400 MHz) δ : 10.3 (1H, s), 8.1 (1H, s) 8.0 - 7.7 (2H, s). **IR** (KBr)v_{max}/cm⁻¹: 3310, 2895, 1695, 1655.*Anal Calcd.* for C₁₀H₄Cl₂O₃:C, 49.42, H, 2.10. Found: C, 57.78, H, 2.53.

3- (2-Hydroxybenzoylhydrazonomethyl)-4-oxo-4*H*-chromene

Obs. M.pt. 221 – 223 °C; Lit.M.pt.³³222 - 224 °C.


¹**H NMR** (DMSO-d₆, 400MHz) δ: 11.6 (1H, brs), 8.4 (1H, s), 8.2 (1H, s), 8.0 - 7.3 (8H, m).

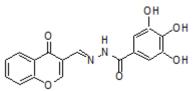
¹³**C NMR** (DMSO-d₆, 100MHz) δ: 187, 165, 158, 157, 156, 153, 135, 133, 130, 128, 126, 125, 124, 122, 120, 118, 106. **ESI-MS** m/z = 331 (M+Na)⁺.

IR (KBr) v_{max} /cm⁻¹:3400, 3100, 2980, 1645, 1620. Anal Calcd.forC₁₇H₁₂N₂O₄: C, 66.23, H, 3.92, N, 9.09.Found: C, 66.57, H, 4.28, N, 9.32.

3- (2-Hydroxybenzoylhydrazonomethyl)-6-methyl-4-oxo-4*H*-chromene

Obs. M.pt. 218 – 220 °C; Lit.M.pt.³³220 - 222 °C.

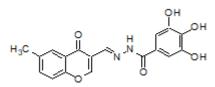
¹**H NMR** (DMSO-d₆, 400MHz) δ: 11.6 (1H, brs), 8.3 (1H, s), 8.1 (1H, s), 8.0 –7.3 (7H, m), 2.1 (3H, s).


¹³**C NMR** (DMSO-d₆, 100MHz) δ: 185, 164, 157, 156, 154, 152, 136, 134, 132, 127, 126, 125, 124, 122, 120, 116, 106, 22.

IR (KBr) v_{max} /cm⁻¹:3500, 3240, 1645, 1630.

Anal Calcd.forC $_{18}H_{14}N_2O_4$: C, 67.07, H, 4.38, N, 8.69. Found: C, 67.41, H, 4.72, N, 9.12.

3- (3, 4, 5-Trihydroxybenzoylhydrazonomethyl)-4-oxo-4*H*-chromene


Obs. M.pt. 252 – 254 °C; Lit.M.pt.³³ 255 - 257 °C.

¹**H NMR** (DMSO-d₆, 400MHz) δ: 11.5 (1H, brs), 9.1 (3H, brs), 8.4 (1H, s), 8.2 (1H, s), 8.0 - 7.4 (4H, m), 7.1 (2H, s). **IR** (KBr) v_{max} /cm⁻¹: 3280, 2985, 1645, 1620. *Anal Calcd*.for C₁₇H₁₂N₂O₆: C, 60.00, H, 3.55, N, 8.23. Found: C, 60.38, H, 3.89, N, 8.57.

3- (3, 4, 5-Trihydroxybenzoylhydrazonomethyl)-6-methyl-4-oxo-4*H*-chromene

Obs. M.pt. 214 – 216 °C; Lit.M.pt.³³215 - 217 °C.

¹**H NMR** (DMSO-d₆, 400MHz) δ: 11.6 (1H, brs), 9.1 (3H, brs), 8.6 (1H, s), 8.4 (1H, s), 8.1 – 7.5 (3H, m), 7.1 (2H, s), 2.1 (3H, s).

IR (KBr) v_{max} /cm⁻¹: 3300, 2985, 1660, 1622. Anal Calcd. for C₁₈H₁₄N₂O₆: C, 61.02, H, 3.98, N, 7.91. Found: C, 61.34, H, 4.32, N, 8.24.

References

- [1] B. Meunier, Acc. Chem. res., 2008, 41, 1, 69.
- [2] P. Ettmayer, G. L. Amidon, B. Clement, B. Testa, J. Med. Chem., 2004, 47, 2393.
- [3] H. M. El- Shaaer, P. Foltinova, M. Lacova, J. Chovancova, H. Stankovicova, *Il Farmaco*, **1998**, *53*, 224.
- [4] T. A. Smirnova, M. Y. Gavrilov, F. Y. Nazmetdinov, V. E. Kolla, M. E. Konshin, *Pharmaceut. Chem. J.*, 2006, 33, 370.
- [5] E. S. C. Wu, A. Kover, J. T. Loch, L. P. Rosenberg, S. F. Semus, P. R. Verhoest, J. C. Gordon, A. C. Machulskis, S. A. McCreedy, J. Zongrone, J. C. Blosser, *Biooig. Med. Chem. Lett.*, **1996**, *6*, 21, 2525.
- [6] G. I. Dmitrienko, S. Siemann, D. P. Evanoff, L. Marrone, A. J. Clarke, T. Viswanatha, *Antimicrob. Agents Chemother.*, 2008, 46, 8, 2450.
- [7] S. K. Sridhar, S. N. Pandeya, J. P. Stables, A. Ramesh, *Eur. J. Pharmaceut. Sci.*, **2002**, 16, 3, 129.
- [8] P. Vicini, F. Zani, P. Cozzini, I. Doytchinova, *Eur. J. Med. Chem.*, **2002**, 37, 7, 553.
- [9] D. Darrin R, C. K. Fan, A. Bayan, M. Edmund J, P. Valentin A, A. Yousef, J. Med. Chem., 2007, 50, 8, 1993.
- [10] J. D. Hepworth, A. R. Katritzky, C. W. Rees, Comprehensive Heterocyclic Chemistry, Vol. 3, Eds. Perganon Press, Oxford, 1984, 737.
- [11] (a) W. D. Jones, W. L. Albrecht, J. Org. Chem., 1976, 41, 706. (b) W. Lowe, Synthesis, 1976, 274. (c) W. Lowe, Ann. Chem., 1977, 1050. (d) G. Haas, J. L. Stanton, A. V. Sprecher, P. Wenk, J. Heterocycl. Chem., 1981, 18, 607. (e) C. Pene, M. Hubert-Habart, J. Heterocycl. Chem., 1980, 17, 329. (f) I. Sigg, G. Haas, T. Winkler, Helv. Chim. Acta, 1982, 65, 275. (g) G. Rihs, I. Sigg, G. Haas, T. Winkler, Helv. Chim. Act, 1985, 68, 1933.
- [12] A. Nohara, T. Umetani, Y. Sanno, *Tetrahedron*, **1974**, *30*, 3353.
- [13] a) Mahajan, D; Austalian journal of chemistry, 2008, 61, 159. b) Mahajan, D; Journal of chemistry and chemical sciences, 2017, 7, 771. c) D. Mahajan, 2019, 6, 636.
- [14] Mahajan, D.: International journal of research and analytical reviews,
- [15] S. Klutchko, M. P. Cohen, J. Shavel, M. V. Strandtmann, J. Heterocycl. Chem., 1974, 11, 183.

Volume 11 Issue 7, July 2022

<u>www.ijsr.net</u>

Licensed Under Creative Commons Attribution CC BY

- [16] A. Pinar, P. Yurdakul, I. Yildiz, O. Temiz Arpaci, N. Lacan, E.Aki Sener, I. Yalcin, *Biochem. Biophys. Res. Commun.*, 2004, 317, 670.
- [17] H. M. El- Shaaer, P. Foltinova, M. Lacova, J. Chovancova, H. Stankovicova, *Il Farmaco*, **1998**, *53*, 224.

DOI: 10.21275/MR22702142444