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Abstract: Alterations or sudden changes within a sequence of temporal observations always create disturbance to data analysis. The 

problem to detect this alterations or changes in any temporal data may allow researchers to identify the abnormality in every sequence. 

The Bayesian method proposed by Basu and Ebrahimi (1991) have greatly plays important role to find the Bayes Estimators of the 

parameters of any sequence and analysis of change point problems through Bayesian Technique. In this paper Bayes estimators the 

Change point and the parameters of Burr type III distribution are obtained under Precautionary Loss Function using Inverted Gamma 

Prior as natural conjugate prior. We study Bayesian analysis for change point problem with R programming. The result provides 

accurate change point and posterior means estimation. 
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1. Introduction  
 

In this estimation approach, the parameter 𝜃 in the model 

distributions 𝑝𝜃 𝑥 is treated as a random variable with some 

prior distribution 𝜋 𝜃 . The estimator for 𝜃 is defined as a 

value depending on the data and minimizing the expected 

loss function or the maximal loss function, where the loss 

function is denoted as 𝑙  𝜃, 𝜃  𝑋  . The usual loss function 

includes the quadratic loss  𝜃 − 𝜃  𝑋  
2

, the absolute loss 

 𝜃 − 𝜃  𝑋   etc. It often turns out that 𝜃  𝑋  can be 

determined from the posterior distribution of 𝑃 𝜃 𝑋 =
𝑃 𝑋 𝜃  𝑃 𝜃 /𝑃 𝑋 . 

 

In decision theory the loss criterion is specified in order to 

obtain best estimator. The simplest form of loss function is 

squared error loss function (SELF) which assigns equal 

magnitudes to both positive and negative errors. However 

this assumption may be inappropriate in most of the 

estimation problems. Some time overestimation leads to 

many serious consequences. In such situation many authors 

found the asymmetric loss functions, appropriate. There are 

several loss functions which are used to deal such type of 

problem. In this research work we have considered some of 

the asymmetric loss function named precautionary loss 

functions (PLF) suggested by Norstorm (1996). Such 

asymmetric loss functions are also studied by Basu, A.P. and 

Ebrahimi, N. (1991), Goldstein, M. (1998), Perlman, M., 

&Balug, M. (Eds) (1997), Pandya et. al. (1994), Shah, J.B. 

& Patel, M.N. (2007) and  Singh, U. 

 

1.1   Precautionary Loss  

 

Norstrom (1996) introduced an alternative asymmetric 

precautionary loss function and also presented a general 

class of precautionary loss functions with quadratic loss 

function as a special case. These loss function approach 

infinitely near the origin to prevent underestimation and thus 

giving a conservative estimators , especially when , low 

failure rates are being estimated. These estimators are very 

useful and simple asymmetric precautionary loss function is  

L θ, θ =  
 θ −θ 

2

θ 
                              (1.2.1) 

 

In a Bayesian setup, the unknown parameter is viewed as 

random variable. The uncertainty about the true value of 

parameter is expressed by a prior distribution. The 

parametric inference is made using the posterior distribution 

which is obtained by incorporating the observed data in to 

the prior distribution using the Bayes theorem, The first 

theorem of inference. Hence we update the prior distribution 

in the light of observed data. Thus the uncertainty about the 

parameter prior to the experiment is represented by the prior 

distribution and the same, after the experiment, is 

represented by the posterior distribution. The various 

statistical models are considered are as;  

 

1.2 Natural Conjugate Prior (NCP) 

 

The various prior distributions are considered for different 

situations, like non-informative, when no information about 

the parameter is available, Natural Conjugate Prior (NCP), 

when post and prior distribution of parameter belong to 

same distribution family, etc. Hence the appropriate 

distribution chosen is Natural Conjugate Prior. If there is no 

inherent reason to prefer one prior probability distribution 

over another, a conjugate prior is sometimes chosen for 

simplicity. A conjugate prior is defined as a prior 

distribution belonging to some parametric family, for which 

the resulting posterior distribution also belongs to the same 

family. This is an important property. Since the Bayes 

estimator, as well as its statistical properties (variance, 

confidence interval, etc.), can all be derived from the 

posterior distribution. 

 

In each case we observe that the statistical analysis based on 

the sufficient statistic will be effective as the one based on 

the entire data set x. 

 

As in frequentist framework, sufficient statistic plays an 

important role in Bayesian inference in constructing a family 

of prior distributions known as Natural Conjugate Prior 

(NCP). The family of prior distributions g θ , θ ϵ Ω, is 
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called a natural conjugate family if the corresponding 

posterior distribution belongs to the same family as g θ . De 

Groot (1970) has outlined a simple and elegant method of 

constructing a conjugate prior for a family of distributions 

f  x θ  which admits a sufficient statistic. 

 

One of the fundamental problems in Bayesian analysis is 

that of the choice of prior distribution g(θ) of θ. The non 

informative and natural conjugate prior distributions are 

which in practice, Box and Tiao (1973) and Jeffrey (1961) 

provide a thorough discussion on non informative priors.  

 

Both De Groot (1970) and Raffia & Schlaifer (1961) provide 

proof that when a sufficient statistics exist a family of 

conjugate prior distributions exists. 

 

The most widely used prior distribution of θ is the inverted 

Gamma distribution with the parameters „a‟ and „b‟ ( > 0 ) 

with p.d.f. given by  

g θ  =   
ba

Γa
θ−(α+1)e−b

θ  ;  θ > 0 ;  (𝑎, 𝑏) > 0,

0                  , otherwise.

        (1.3.1) 

 

The main reason for general acceptability is the 

mathematical tractability resulting from the fact that the 

inverted Gamma distribution is conjugate prior of θ Raffia 

& Schlaifer (1961), Bhattacharya (1967) and others have 

found that the inverted Gamma can also be used for practical 

reliability applications. 

 

In this paper the Bayesian estimation of change point „m‟ 

and  scale parameter „𝛾‟ of three parameter of Generalized 

Compound Rayleigh Distribution (G.C.R.D.) and also the 

change point „m‟ and scale parameter ′𝜃′  of Exponentiated 

Inverted Weibull distribution is done by using Precautionary 

Loss Function (PLF) and Natural conjugate Prior 

distribution as Inverted Gamma prior. The sensitivity 

analysis of Bayesian estimates of change point and the 

parameters of the distributions have been done by using R-

programming.    

 

1.3 Burr Type III Distribution 

 

Burr type III distribution with two parameters was first 

introduced in the literature of Burr (1942) for modelling 

lifetime data or survival data. It is more flexible and includes 

a variety of distributions with varying degrees of skewness 

and kurtosis. Burr type III distribution with two parameters  

𝛽 and  , which is denoted by ( , ). Burr type III , has 

also been applied in areas of statistical modelling such as 

forestry , meteorology, and reliability (Mokhlis (2005)). 

 

The Probability Density Function and the Cumulative 

Distribution Function of Burr III  are given by, respectively, 

𝑓 𝑥;  𝜃, 𝛽 =  𝜃 𝛽 𝑥− 𝛽+1  1 + 𝑥−𝛽 
− 𝜃+1 

;  𝑥 > 0, 𝜃, 𝛽 > 0  

(1.4.1) 

 

And the Cumulative distribution function  

𝐹 𝑥;  𝜃, 𝛽 =  1 + 𝑥−𝛽 
−𝜃

; 𝑥 > 0, 𝜃 > 0, 𝛽 > 0  (1.4.2) 

 

 

 

Reliability function is 

𝑅 𝑡;  𝜃, 𝛽 = 1 −  1 + 𝑡−𝛽 
−𝜃

;  𝑡 > 0, 𝜃 > 0, 𝛽 > 0(1.4.3) 

 

Note that Burr type XII distribution can be derived from 

Burr type III distribution by replacing  X with . The 

usefulness and properties of Burr distribution are discussed 

by Burr and Cislak (1968). Abd-Elfattah and Alharbey 

(2012) considered a Bayesian estimation for Burr type III 

distribution based on double censoring. 

 

1.4 Bayesian Estimation of Change Point in Burr Type 

III Distribution under Precautionary Loss Function 

(PLF) 

     

A sequence of independent life times 

𝑥1 ,𝑥2, … 𝑥𝑚 , 𝑥 𝑚+1 , … 𝑥𝑛 𝑛 ≥ 3  were observed  from  Burr 

Type III Distribution with parameter 𝜃, 𝛽.  But it was found 

that there was a change in the system at some point of time 

„m‟ and it is reflected in the sequence after „𝑥𝑚 ‟ which 

results change in a sequence as well as parameter value 𝜃. 

The Bayes estimate of 𝜃 and „m‟ are derived for symmetric 

and asymmetric loss function under inverted Gamma prior 

as natural conjugate prior. 

 

1.4.1 Likelihood, Prior, Posterior and Marginal  

Let 𝑥1,𝑥2, …… , 𝑥𝑛 ,  𝑛 ≥ 3  be a sequence of observed  

discrete life times. First let observations 𝑥1,𝑥2, … . . , 𝑥𝑛  have 

come from Burr Type III Distribution with probability 

density function as     

𝑓 𝑥, 𝜃, 𝛽 = 𝜃𝛽𝑥− 𝛽+1  1 + 𝑥−𝛽 
−(𝜃+1)

 𝑥, 𝜃, 𝛽

> 0  1.5.1.1  
 

Let „m‟ is change point in the observation which breaks the 

distribution in two sequences as  

 𝑥1, 𝑥2 , ……… . . 𝑥𝑚  &𝑥 𝑚+1 ,𝑥 𝑚+2 , …… . 𝑥𝑛  

 

The probability density functions of the above sequences are 

𝑓1 𝑥 = 𝜃1𝛽1𝑥
− 𝛽1+1  1 + 𝑥−𝛽1 

− 𝜃1+1 
;  1.5.1.2  

Where   𝑥1 , … , 𝑥𝑚 > 0; 𝜃1,𝛽1 , > 0 

𝑓2 𝑥 = 𝜃2𝛽2𝑥
− 𝛽2+1  1 + 𝑥−𝛽2 

− 𝜃2+1 
    ;  1.5.1.3  

Where  𝑥 𝑚+1 , 𝑥 𝑚+2 , … , 𝑥𝑛 ;  𝜃2, 𝛽2 > 0 

 

The likelihood functions of probability density function of 

the sequence are  

𝐿1 𝑥 𝜃1, 𝛽1 =  𝑓 𝑥𝑗  𝜃1, 𝛽1 

𝑚

𝑗 =1

 

𝐿1 𝑥 𝜃1 , 𝛽1 = 𝜃1
𝑚𝛽1

𝑚  
𝑥𝑗

− 𝛽1+1 

 1 + 𝑥𝑗
−𝛽1 

𝑚

𝑗 =1

𝑒−𝜃1  log 1 + 𝑥𝑗
−𝛽1 

𝑚

𝑗 =1

 

𝐿1 𝑥 𝜃1, 𝛽1,  =  𝜃1𝛽1 
𝑚𝑈1𝑒

−𝜃1𝑇3𝑚  1.5.1.4  
Where  

𝑈1 =  
𝑥𝑗

− 𝛽1+1 

 1 + 𝑥𝑗
−𝛽1 

𝑚

𝑗 =1

 

𝑇3𝑚 =  log 1 + 𝑥𝑗
−𝛽1 

𝑚

𝑗 =1
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𝐿2 𝑥 𝜃2, 𝛽2 =  𝑓 𝑥𝑗  𝜃2, 𝛽2 

𝑛

𝑗 = 𝑚+1 

 

= 𝜃2
 𝑛−𝑚 

𝛽2
 𝑛−𝑚 

 
𝑥𝑗

− 𝛽2+1 

 1 + 𝑥𝑗
−𝛽2 

𝑒−𝜃2  log 1

𝑚

𝑗 =1

𝑛 

𝑗 = 𝑚+1 

+ 𝑥𝑗
−𝛽2  

𝐿2 𝑥 𝜃2 , 𝛽2 =  𝜃2𝛽2 
 𝑛−𝑚 𝑈2𝑒

−𝜃2(𝑇3𝑛−𝑇3𝑚   ) 1.5.1.5  

Where                                                                                                        

𝑈2 =  
𝑥𝑗

− 𝛽2+1 

 1 + 𝑥𝑗
−𝛽2 

𝑛

𝑗 =𝑚+1

 

 and           𝑇3𝑛 − 𝑇3𝑚 =  log 1 + 𝑥𝑗
−𝛽2 𝑛

𝑗 = 𝑚+1  

 

The joint likelihood function is given by 

𝐿 𝜃1 ,𝜃2 x  

∝ (𝜃1𝛽1)𝑚𝑈1 𝑒
−𝜃1𝑇3𝑚 (𝜃2𝛽2)𝑛−𝑚𝑈2 𝑒

−𝜃2(𝑇3𝑛−𝑇3𝑚   ) 1.5.1.6  
Suppose the marginal prior distribution of 𝜃1 and 𝜃2are 

natural conjugate prior  

𝜋1 𝜃1, x =
𝑏1

𝑎1

Γ𝑎1

𝜃1
 𝑎1−1 

𝑒−𝑏1𝜃1 ; 𝑎1 , 𝑏1 > 0, 𝜃1 > 0 1.5.1.7  

𝜋2 𝜃2 , x =
𝑏2

𝑎2

Γ𝑎2

𝜃2
 𝑎2−1 

𝑒−𝑏2𝜃2 ;  𝑎2, 𝑏2 > 0, 𝜃2 > 0 1.5.1.8  

 

The joint prior distribution of𝜃1 ,𝜃2 and change point „m‟ is      

𝜋 𝜃1 , 𝜃2, 𝑚 

∝
𝑏1

𝑎1

Γ𝑎1

𝑏2
𝑎2

Γ𝑎2

𝜃1
 𝑎1−1 

𝑒−𝑏1𝜃1𝜃2
 𝑎2−1 

𝑒−𝑏2𝜃2 1.5.1.9  

  Where  𝜃1 , 𝜃2 > 0  &  𝑚 = 1,2, ……  𝑛 − 1  
 

The joint posterior density of 𝜃1 , 𝜃2 and m say 𝜌 𝜃1 , 𝜃2, 𝑚/𝑥  is obtained by using equations  1.5.1.6 & 1.5.1.9  

𝜌 𝜃1 , 𝜃2, 𝑚|𝑥 =
L 𝜃1  , 𝜃2 𝑥  π 𝜃1  , 𝜃2, 𝑚 

  L 𝜃1 ,𝜃2 𝑥  π 𝜃1 , 𝜃2, 𝑚 𝑑𝜃1𝑑𝜃2𝜃1𝜃2
𝑚

 1.5.1.10  

𝜌 𝜃1, 𝜃2, 𝑚|𝑥 =
𝜃1

 𝑚+𝑎1−1 𝑒−𝜃1 𝑇3𝑚 +𝑏1 𝜃2
 𝑛−𝑚 +𝑎2−1 

𝑒−𝜃2 𝑇3𝑛−𝑇3𝑚 +𝑏2 

  𝑒−𝜃1 𝑇3𝑚 +𝑏1 
∞

0𝑚 𝜃1
 𝑚+𝑎1−1  𝑑𝜃1  𝜃2

 𝑛−𝑚+𝑎2−1 𝑒−𝜃2 𝑇3𝑛−𝑇3𝑚 +𝑏2  𝑑𝜃2
∞

0

 

 

Assuming    𝜃1 𝑇3𝑚 + 𝑏1 = 𝑥   &𝜃2 𝑇3𝑛 − 𝑇3𝑚 + 𝑏2 = 𝑦 

𝜃1 =
𝑥

 𝑇3𝑚 + 𝑏1 
&𝜃2 =

𝑦

𝑇3𝑛 − 𝑇3𝑚 + 𝑏2

 

𝑑𝜃1 =
𝑑𝑥

 𝑇3𝑚 + 𝑏1 
& d𝜃2 =

𝑑𝑦

𝑇3𝑛 − 𝑇3𝑚 + 𝑏2

 

𝜌 𝜃1, 𝜃2, 𝑚|𝑥 =
𝜃1

 𝑚+𝑎1−1 𝑒−𝜃1 𝑇3𝑚 +𝑏1 𝜃2
 𝑛−𝑚 +𝑎2−1 

𝑒−𝜃2 𝑇3𝑛−𝑇3𝑚 +𝑏2 

  𝑒−𝑥∞

0𝑚
𝑥  𝑚 +𝑎1−1 

 𝑇3𝑚 +𝑏1 
 𝑚 +𝑎1−1 

𝑑𝑥

 𝑇3𝑚 +𝑏1 
 e−y∞

0

y 𝑛−𝑚 +𝑎2−1 

 𝑇3𝑛−𝑇3𝑚 +𝑏2  𝑛−𝑚 +𝑎2−1 

𝑑𝑦

 𝑇3𝑛−𝑇3𝑚 +𝑏2 

𝜌 𝜃1 , 𝜃2, 𝑚|𝑥 

=
𝑒−𝜃1 𝑇3𝑚 +𝑏1 𝜃1

 𝑚 +𝑎1−1 
𝑒−𝜃2 𝑇3𝑛−𝑇3𝑚 +𝑏2 𝜃2

 𝑛−𝑚 +𝑎2−1 

 
Γ 𝑚+𝑎1 

 𝑇3𝑚 +𝑏1 
 𝑚 +𝑎1 𝑚 

Γ 𝑛−𝑚+𝑎2 

 𝑇3𝑛−𝑇3𝑚 +𝑏2  𝑛−𝑚 +𝑎2 

 

𝜌 𝜃1 , 𝜃2, 𝑚|𝑥 =
𝑒−𝜃1 𝑇3𝑚 +𝑏1 𝜃1

 𝑚 +𝑎1−1 
𝑒−𝜃2 𝑇3𝑛−𝑇3𝑚 +𝑏2 𝜃2

 𝑛−𝑚 +𝑎2−1 

𝜉 𝑎1,𝑎2,𝑏1,𝑏2,𝑚, 𝑛 
 1.5.1.11  

Where  𝜉 𝑎1,𝑎2,𝑏1,𝑏2,𝑚, 𝑛 =    
Γ 𝑚+𝑎1 

 𝑇3𝑚 +𝑏1 
𝑚 +𝑎1

Γ 𝑛−𝑚+𝑎2 

 𝑇3𝑛−𝑇3𝑚 +𝑏2  𝑛−𝑚 +𝑎2  
𝑛−1
𝑚=1  

 

The Marginal posterior distribution of change point „m‟ using the equations  1.5.1.6 ,  1.5.1.7 & 1.5.1.8  

𝜌 𝑚|𝑥 =  
L 𝜃1 , 𝜃2 𝑥   π θ1  π θ2 

 L 𝜃1 , 𝜃2 𝑥   π θ1  π θ2 𝑚

 1.5.1.12  

On solving which gives       

𝜌 𝑚|𝑥 =
𝜃1

 𝑚+𝑎1−1 𝑒−𝜃1 𝑇3𝑚 +𝑏1 𝜃2
 𝑛−𝑚 +𝑎2−1 

𝑒−𝜃2 𝑇3𝑛−𝑇3𝑚 +𝑏2 

 𝜃1
 𝑚+𝑎1−1 𝑒−𝜃1 𝑇3𝑚 +𝑏1 𝜃2

 𝑛−𝑚 +𝑎2−1 
𝑒−𝜃2 𝑇3𝑛−𝑇3𝑚 +𝑏2 

𝑚

 

𝜌 𝑚|𝑥 =
 𝑒−𝜃1 𝑇3𝑚 +𝑏1 𝜃1

 𝑚+𝑎1−1  𝑑𝜃1  𝑒−𝜃2 𝑇3𝑛−𝑇3𝑚 +𝑏2 𝜃2
 𝑛−𝑚 +𝑎2−1 

 𝑑𝜃2
∞

0

∞

0

  𝑒−𝜃1 𝑇3𝑚 +𝑏1 𝜃1
 𝑚+𝑎1−1  𝑑𝜃1  𝑒−𝜃2 𝑇3𝑛−𝑇3𝑚 +𝑏2 𝜃2

 𝑛−𝑚+𝑎2−1  𝑑𝜃2
∞

0

∞

0𝑚

 

Assuming    𝜃1 𝑇3𝑚 + 𝑏1 = 𝑦       &𝜃2 𝑇3𝑛 − 𝑇3𝑚 + 𝑏2 = 𝑧 

𝜃1 =
𝑦

 𝑇3𝑚 + 𝑏1 
&𝜃2 =

𝑧

𝑇3𝑛 − 𝑇3𝑚 + 𝑏2

 

𝑑𝜃1 =
𝑑𝑦

 𝑇3𝑚 + 𝑏1 
&𝑑𝜃2 =

𝑧

𝑇3𝑛 − 𝑇3𝑚 + 𝑏2

 

𝜌 𝑚|𝑥 =
 𝑒−𝑦 𝑦  𝑚 +𝑎1−1 

 𝑇3𝑚 +𝑏1 
 𝑚 +𝑎1−1 

𝑑𝑦

 𝑇3𝑚 +𝑏1 
 e−z∞

0

z 𝑛−𝑚 +𝑎2−1 

 𝑇3𝑛−𝑇3𝑚 +𝑏2  𝑛−𝑚 +𝑎2−1 

𝑑𝑧

 𝑇3𝑛−𝑇3𝑚 +𝑏2 

∞

0

  𝑒−𝑦∞

0𝑚
𝑦  𝑚 +𝑎1−1 

 𝑇3𝑚 +𝑏1 
 𝑚 +𝑎1−1 

𝑑𝑦

 𝑇3𝑚 +𝑏1 
 e−z∞

0

z 𝑛−𝑚 +𝑎2−1 

 𝑇3𝑛−𝑇3𝑚 +𝑏2  𝑛−𝑚 +𝑎2−1 

𝑑𝑧

 𝑇3𝑛−𝑇3𝑚 +𝑏2 

 

𝜌 𝑚|𝑥 =  

Γ 𝑚+𝑎1 

 𝑇3𝑚 +𝑏1 
 𝑚 +𝑎1 

Γ 𝑛−𝑚+𝑎2 

 𝑇3𝑛−𝑇3𝑚 +𝑏2  𝑛−𝑚 +𝑎2 

𝜉 𝑎1,𝑎2,𝑏1,𝑏2,𝑚, 𝑛 
 1.5.1.13  
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The marginal posterior distribution of   𝜃1, using equations  1.5.1.6  and  1.5.1.7  

𝜌 𝜃1|𝑥  =  
L 𝜃1 ,𝜃2 x   π θ1 

 L 𝜃1 ,𝜃2 x   π θ1 dθ1
∞

0

 

On solving which gives  

𝜌 𝜃1|𝑥 =
   𝜃1𝛽1 

𝑚𝑈1𝑒
−𝜃1𝑇3𝑚  𝜃2𝛽2 

𝑛−𝑚𝑈2𝑒
−𝜃2( 𝑇3𝑛−𝑇3𝑚 ) 𝑏1

𝑎1

Γ𝑎1
𝜃1

 𝑎1−1 
𝑒−𝑏1𝜃1

𝑏2
𝑎2

Γ𝑎2
𝜃2

 𝑎2−1 
𝑒−𝑏2𝜃2𝑑𝜃2

∞

0𝑚

   𝜃1𝛽1 
𝑚𝑈1𝑒

−𝜃1𝑇3𝑚  𝜃2𝛽2 
𝑛−𝑚𝑈2𝑒

−𝜃2( 𝑇3𝑛−𝑇3𝑚 ) 𝑏1
𝑎1

Γ𝑎1
𝜃1

 𝑎1−1 
𝑒−𝑏1𝜃1

𝑏2
𝑎2

Γ𝑎2
𝜃2

 𝑎2−1 
𝑒−𝑏2𝜃2𝑑𝜃1𝑑𝜃2

∞

0𝑚

 

𝜌 𝜃1|𝑥 =
 𝑒−𝜃1 𝑇3𝑚 +𝑏1 𝜃1

 𝑚+𝑎1−1 
 𝑒−𝜃2 𝑇3𝑛−𝑇3𝑚 +𝑏2 𝜃2

 𝑛−𝑚+𝑎2−1  𝑑𝜃2
∞

0𝑚

  𝑒−𝜃1 𝑇3𝑚 +𝑏1 𝜃1
 𝑚+𝑎1−1  𝑑𝜃1  𝑒−𝜃2 𝑇3𝑛−𝑇3𝑚 +𝑏2 𝜃2

 𝑛−𝑚+𝑎2−1  𝑑𝜃2
∞

0

∞

0𝑚

 

  Assuming    𝜃1 𝑇3𝑚 + 𝑏1 = 𝑦           &𝜃2 𝑇3𝑛 − 𝑇3𝑚 + 𝑏2 = 𝑧 

𝜃1 =
𝑦

 𝑇3𝑚 + 𝑏1 
&𝜃2 =

𝑧

𝑇3𝑛 − 𝑇3𝑚 + 𝑏2

 

𝑑𝜃1 =
𝑑𝑦

 𝑇3𝑚 + 𝑏1 
&d𝜃2 =

𝑑𝑧

𝑇3𝑛 − 𝑇3𝑚 + 𝑏2

 

𝜌 𝜃1|𝑥 =
 𝑒−𝜃1 𝑇3𝑚 +𝑏1 𝜃1

 𝑚+𝑎1−1 Γ 𝑛−𝑚+𝑎2 

 𝑇3𝑛−𝑇3𝑚 +𝑏2  𝑛−𝑚 +𝑎2 𝑚

 
Γ 𝑚+𝑎1 

 𝑇3𝑚 +𝑏1 
 𝑚 +𝑎1 𝑚 

Γ 𝑛−𝑚+𝑎2 

 𝑇3𝑛−𝑇3𝑚 +𝑏2  𝑛−𝑚 +𝑎2 

 

 

𝜌 𝜃1|𝑥 =  
 𝑒−𝜃1 𝑇3𝑚 +𝑏1 𝜃1

 𝑚+𝑎1−1 Γ 𝑛−𝑚+𝑎2 

 𝑇3𝑛−𝑇3𝑚 +𝑏2  𝑛−𝑚 +𝑎2 𝑚

𝜉 𝑎1,𝑎2,𝑏1,𝑏2,𝑚, 𝑛 
 1.5.1.14  

 

The marginal posterior distribution of   𝜃2, using the equation  1.5.1.6 & 1.5.1.8  is 

𝜌 𝜃2|𝑥 =  
L 𝜃1 ,𝜃2 x   π θ2 

 L 𝜃1 ,𝜃2 x   π θ2  dθ2
∞

0

 

 

𝜌 𝜃2|𝑥 =
   𝜃1𝛽1 

𝑚𝑈1𝑒
−𝜃1𝑇3𝑚  𝜃2𝛽2 

𝑛−𝑚𝑈2𝑒
−𝜃2( 𝑇3𝑛−𝑇3𝑚 ) 𝑏1

𝑎1

Γ𝑎1
𝜃1

 𝑎1−1 
𝑒−𝑏1𝜃1

𝑏2
𝑎2

Γ𝑎2
𝜃2

 𝑎2−1 
𝑒−𝑏2𝜃2𝑑𝜃1

∞

0𝑚

   𝜃1𝛽1 
𝑚𝑈1𝑒

−𝜃1𝑇3𝑚  𝜃2𝛽2 
𝑛−𝑚𝑈2𝑒

−𝜃2( 𝑇3𝑛−𝑇3𝑚 ) 𝑏1
𝑎1

Γ𝑎1
𝜃1

 𝑎1−1 
𝑒−𝑏1𝜃1

𝑏2
𝑎2

Γ𝑎2
𝜃2

 𝑎2−1 
𝑒−𝑏2𝜃2𝑑𝜃1𝑑𝜃2

∞

0𝑚

 

 

𝜌 𝜃2|𝑥 =
 𝑒−𝜃2 𝑇3𝑛−𝑇3𝑚 +𝑏2 𝜃2

 𝑛−𝑚+𝑎2−1 
 𝑒−𝜃1 𝑇3𝑚 +𝑏1 𝜃1

 𝑚+𝑎1−1  𝑑𝜃1
∞

0𝑚

  𝑒−𝜃1 𝑇3𝑚 +𝑏1 𝜃1
 𝑚+𝑎1−1  𝑑𝜃1  𝑒−𝜃2 𝑇3𝑛−𝑇3𝑚 +𝑏2 𝜃2

 𝑛−𝑚+𝑎2−1  𝑑𝜃2
∞

0

∞

0𝑚

 

 

Assuming  𝜃1 𝑇3𝑚 + 𝑏1 = 𝑦         &𝜃1 =
𝑦

 𝑇3𝑚 +𝑏1 
 

𝜌 𝜃2|𝑥 =
 𝑒−𝜃2 𝑇3𝑛−𝑇3𝑚 +𝑏2 𝜃2

 𝑛−𝑚 +𝑎2−1 
 𝑒−𝑦 𝑦 𝑚 +𝑎1−1 

 𝑇3𝑚 +𝑏1  𝑚 +𝑎1−1 
𝑑𝑦

 𝑇3𝑚 +𝑏1 
∞

0𝑚

  𝑒−𝑦∞
0𝑚

𝑦 𝑚 +𝑎1−1 

 𝑇3𝑚 +𝑏1  𝑚 +𝑎1−1 
𝑑𝑦

 𝑇3𝑚 +𝑏1  e−z∞
0

z 𝑛−𝑚 +𝑎2−1 

 𝑇3𝑛−𝑇3𝑚 +𝑏2  𝑛−𝑚 +𝑎2−1 
𝑑𝑧

 𝑇3𝑛−𝑇3𝑚 +𝑏2 

 

 

𝜌 𝜃2|𝑥 =
 

Γ 𝑚 +𝑎1 

 𝑇3𝑚 +𝑏1  𝑚 +𝑎1 𝑚  𝑒−𝜃2 𝑇3𝑛−𝑇3𝑚 +𝑏2 𝜃2
 𝑛−𝑚 +𝑎2−1 

𝜉 𝑎1,𝑎2,𝑏1,𝑏2,𝑚,𝑛 
 (1.5.1.15) 

 

1.4.2 Bayes Estimators under Precautionary Loss Function (PLF)  

The Precautionary loss function is given by 

𝐿3 𝜃 , 𝜃 =        
 𝜃 − 𝜃 

2

𝜃 
                            1.5.2.1  

The Bayes estimator of 𝜃 under precautionary Loss Function is obtain by solving the equation; 
𝜕

𝜕𝜃 
𝐸𝜌  𝐿3(𝜃 , 𝜃) = 0 

⇒ 𝜃 𝐵𝑃 =   𝐸𝜌 𝜃
2  

1∕2
                                1.5.2.2  

The Bayes estimate 𝑚 𝐵𝑃  of m using the marginal posterior from equation (1.5.1.14) is 

𝑚 𝐵𝑃 =   𝐸𝜌 𝑚
2  

1∕2
 

𝑚 𝐵𝑃 =  
 𝑚2 Γ 𝑚+𝑎1 

 𝑇3𝑚 +𝑏1 
 𝑚 +𝑎1 

Γ 𝑛−𝑚+𝑎2 

 𝑇3𝑛−𝑇3𝑚 +𝑏2  𝑛−𝑚 +𝑎2 𝑚

𝜉 𝑎1 , 𝑎2 , 𝑏1 , 𝑏2 , 𝑚, 𝑛 
 

1
2 

 1.5.2.3  
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The Bayes estimator 𝜃 1𝐵𝑃  of 𝜃1 under PLF using the marginal posterior from equation (1.5.1.14) is  

𝜃 1𝐵𝑃 =   𝐸𝜌 𝜃1
2  

1∕2
 

𝜃 1𝐵𝑃 =  
 

Γ 𝑛−𝑚+𝑎2 

 𝑇3𝑛−𝑇3𝑚 +𝑏2  𝑛−𝑚 +𝑎2  𝑒−𝜃1 𝑇3𝑚 +𝑏1 𝜃1
 𝑚+𝑎1+1 𝑑𝜃1

∞

0𝑚 

𝜉 𝑎1, 𝑎2 , 𝑏1 , 𝑏2, 𝑚, 𝑛 
 

1
2 

 

 

Assuming  𝜃1 𝑇3𝑚 + 𝑏1 = 𝑦      &𝜃1 =
𝑦

 𝑇3𝑚 +𝑏1 
 

Then  

𝜃 1𝐵𝑃 =  
 

Γ 𝑛−𝑚+𝑎2 

 𝑇3𝑛−𝑇3𝑚 +𝑏2  𝑛−𝑚 +𝑎2  𝑒−𝑦 𝑦  𝑚 +𝑎1+1 

 𝑇3𝑚 +𝑏1 
 𝑚 +𝑎1+1 

𝑑𝑦

 𝑇3𝑚 +𝑏1 

∞

0𝑚 

𝜉 𝑎1, 𝑎2 , 𝑏1 , 𝑏2, 𝑚, 𝑛 
 

1
2 

 

𝜃 1𝐵𝑃 =  
 

Γ 𝑚+𝑎1+2 

 𝑇3𝑚 +𝑏1 
 𝑚 +𝑎1+2 

Γ 𝑛−𝑚+𝑎2 

 𝑇3𝑛−𝑇3𝑚 +𝑏2  𝑛−𝑚 +𝑎2 𝑚 

𝜉 𝑎1, 𝑎2 , 𝑏1 , 𝑏2, 𝑚, 𝑛 
 

1
2 

 

𝜃 1𝐵𝑃 =  
𝜉  𝑎1 + 2 , 𝑎2 , 𝑏1, 𝑏2 , 𝑚, 𝑛 

𝜉 𝑎1 , 𝑎2 , 𝑏1 , 𝑏2 , 𝑚, 𝑛 
 

1
2 

 1.5.2.4  

The Bayes estimator 𝜃 2𝐵𝑃  of 𝜃2 under PLF using the marginal posterior from equation (1.5.1.15) is  

𝜃 2𝐵𝑃 =   𝐸𝜌 𝜃2
2  

1∕2
 

𝜃 2𝐵𝑃 =  
 

Γ 𝑚+𝑎1 

 𝑇3𝑚 +𝑏1 
 𝑚 +𝑎1 𝑚  𝑒−𝜃2 𝑇3𝑛−𝑇3𝑚 +𝑏2 𝜃2

 𝑛−𝑚+𝑎2+1 𝑑𝜃2
∞

𝑜

𝜉 𝑎1 , 𝑎2 , 𝑏1 , 𝑏2 , 𝑚, 𝑛 
 

1
2 

 

 

Assuming  𝜃2 𝑇3𝑛 − 𝑇3𝑚 + 𝑏2 = 𝑦     &𝜃2 =
𝑦

 𝑇3𝑛−𝑇3𝑚 +𝑏2 
 

 

Then 

𝜃 2𝐵𝑃 =  
 

Γ 𝑚+𝑎1 

 𝑇3𝑚 +𝑏1 
 𝑚 +𝑎1  e−y∞

0

y 𝑛−𝑚 +𝑎2+1 

 𝑇3𝑛−𝑇3𝑚 +𝑏2  𝑛−𝑚 +𝑎2+1 

𝑑𝑦

 𝑇3𝑛−𝑇3𝑚 +𝑏2 𝑚  

𝜉 𝑎1 , 𝑎2 , 𝑏1, 𝑏2 , 𝑚, 𝑛 
 

1
2 

 

 

𝜃 2𝐵𝑃 =  
 

Γ 𝑚+𝑎1 

 𝑇3𝑚 +𝑏1 
 𝑚 +𝑎1 

Γ 𝑛−𝑚+𝑎2+2 

 𝑇3𝑛−𝑇3𝑚 +𝑏2  𝑛−𝑚 +𝑎2+2 𝑚 

𝜉 𝑎1, 𝑎2 , 𝑏1 , 𝑏2, 𝑚, 𝑛 
 

1
2 

 

𝜃 2𝐵𝑃 =  
𝜉 𝑎1,  𝑎2 + 2 , 𝑏1 , 𝑏2,𝑚, 𝑛 

𝜉 𝑎1 , 𝑎2 , 𝑏1 , 𝑏2 , 𝑚, 𝑛 
 

1
2 

 1.5.2.5  

 

 

Numerical Comparison for Burr Type III Distribution 

As in chapter 2 we have generated 20 random observations 

from Burr Type III distribution with  parameter 𝜃 = 2 and 𝛽 

= 0.5. The observed data mean is 𝜇 = 1.8829 and variance 

𝜍2 = 23.8886. Let  the change in sequence is at 11
th
  

observation, so the means and variances of both sequences 

(x1,x2,…,xm) and (x(m+1), x(m+2),…, xn)  are 𝜇1= 0.8277, 𝜇2= 

3.2668, 𝜍1
2 = 0.7281 and 𝜍2

2= 51.8509. If the target value of  

𝜇1  is unknown, its estimating (𝜇 1) is given by the mean of 

first m sample observation given m=11,  𝜇 = 0.8277. 

 

Sensitivity Analysis of Bayes Estimates 

In this section we have studied the sensitivity of the Bayes 

estimates with respect to changes in the parameters of prior 

distribution 𝑎1 , 𝑏1 , 𝑎2 and 𝑏2. The means and variances of 

the prior distribution are used as prior information in 

computing these parameters. Then with these parameter 

values we have computed the Bayes estimates of m, 𝜃1 and 

𝜃2 under PLF considering different set of values of 
 𝑎1, 𝑏1 and  𝑎2 , 𝑏2 .We have also considered the different 

sample sizes n=10(10)30. The Bayes estimates of the change 

point „m‟ and the parameters 𝜃1 and 𝜃2 are given in table-5.3 

under PLF. Their respective mean squared errors (M.S.E‟s) 

are calculated by repeating this process 1000 times and 

presented in same table in small parenthesis under the 

estimated values of parameters. All these values appears to 

be robust with respect to correct choice of prior parameter 

values and appropriate sample size. All the estimators 

perform better with sample size n=20 and 

(𝑎1=1.8,1.9)(𝑏1=2.3,2.4),(𝑎2=1.3,1.4) and (𝑏2=1.55, 

1.65).Similarly the Bayes estimates of  PLF are presented in 

table 5.2 appears to be  sensitive with wrong choice of prior 

parameters and  sample size.  All the calculations are done 

by R- programming. From the below two table we conclude 

that – 

 

The Bayes estimates of the parameters 𝜃1 and 𝜃2 of Burr 

Type III obtained with loss function PLF have more or less 

same numerical values. The respective M.S.E‟s shows that 

the Bayes estimates uniformly smaller for θ 1BP   and  θ 2BP  

under PLF except of m BP . The Bayes estimates of  the 

parameters are  robust uniformly with all values of prior 

parameters as and all sample size. 
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Table 1.1: Bayes Estimates of m,𝜃1&𝜃2for Burr Type III 

and their respective M.S.E.'s Under PLF 

(𝐚𝟏, 𝐛𝟏) (𝐚𝟐, 𝐛𝟐) N 𝐦 𝐁𝐏 𝛉 𝟏𝐁𝐏 𝛉 𝟐𝐁𝐏 

(1.25,1.50) (1.50,1.60) 10 
5.3682 

(16.1368) 

0.6411 

(0.3374) 

0.6479 

(0.0119) 

  20 
10.2381 

(93.3795) 

0.5447 

(0.1218) 

0.8243 

(0.2334) 

  30 
15.3143 

(195.4584) 

0.9061 

(0.0290) 

0.6031 

(0.0368) 

(1.50,1.75) (1.70,1.80) 10 
5.4855 

(14.6901) 

0.7828 

(0.0001) 

0.6574 

(0.1592) 

  20 
11.2830 

(82.3266) 

0.8828 

(0.2390) 

0.8064 

(0.1734) 

  30 
14.9025 

(227.2012) 

0.9301 

(0.0417) 

0.6859 

(0.0451) 

(1.75,2.0) (1.90,2.0) 10 
5.4091 

(11.3318) 

0.7551 

(0.1802) 

0.7881 

(0.0065) 

  20 
11.6450 

(103.7665) 

0.8941 

(0.0015) 

0.6386 

(0.0409) 

  30 
18.1470 

(177.9180) 

0.5218 

(0.0129) 

0.7267 

(0.0825) 

(2.0,2.25) (2.10,2.20) 10 
5.4949 

(8.2752) 

0.7759 

(0.4825) 

0.6723 

(0.0002) 

  20 
11.1375 

(89.0678) 

1.0261 

(0.0665) 

1.1985 

(0.0624) 

  30 
17.0109 

(305.2535) 

0.7120 

(0.1028) 

0.8602 

(0.0126) 

(2.25,2.50) (2.30,2.40) 10 
5.3972 

(11.5300) 

1.3856 

(.2231) 

0.9654 

(0.0305) 

  20 
11.2967 

(68.8955) 

0.6913 

(0.0032) 

0.7222 

(0.2218) 

  30 
16.1228 

(285.1916) 

0.9316 

(0.0014) 

0.6857 

(0.0233) 

(2.50,2.75) (2.50,2.60) 
10 

 

5.5867 

(14.1249) 

0.8565 

(3.3404) 

0.9124 

(0.0291) 

  20 
11.3819 

(82.1639) 

0.7271 

(0.1431) 

0.6055 

(0.0152) 

  30 
16.8922 

(96.9484) 

0.6598 

(0.0979) 

0.5785 

(0.4466) 
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