The Life-Saving Mission for COVID-19 Vaccination on Google Cloud (GC) Ecosystem

Ramamurthy Valavandan¹, Kumaraswamy Reddy², Prasanth Parayatham³, Ubaiyadulla Sherif⁴, Pallav Kohli⁵, Vikram Sharma⁶, Pragathi S⁷, Vijay R⁸, Surasa Mukherjee⁹, Nitin Ambekar¹⁰, Dinesh Sai Teja Neeli¹¹, Santosh Baran¹², Vijender Singh¹³, Saurabh Uniyal¹⁴, Praveen B¹⁵, Musheer Ahmed N¹⁶

^{1, 2, 3, 44, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}Kyndryl Solutions Private Limited, GC Guild Project, 6th Floor, D-1, Manyata Tech Park, Bangalore 560024, Karnataka, India

> ¹Corresponding Author Email: ramamurthy.valavandan[at]kyndryl.com ²kumaraswamy.yanamala[at]kyndryl.com ³prasanth.parayatham[at]kyndryl.com ⁴ubaiyadulla.sherif[at]kyndryl.com ⁵pallav.kohli[at]kyndryl.com ⁶vikram.sharma1[at]kyndryl.com ⁷pragathi.s[at]kyndryl.com ⁸vijay.r1[at]kyndryl.com ⁹surasa.mukherjee[at]kyndryl.com ¹⁰nitin.ambekar[at]kyndryl.com ¹¹dinesh.sai.teja.neeli[at]kyndryl.com ¹²santosh.baran[at]kyndryl.com ¹³vijender.singh[at]kyndryl.com ¹⁴saurabh.uniyal[at]kyndryl.com ¹⁵praveen.b[at]kyndryl.com ¹⁶musheer.ahmed.n[at]kyndryl.com

Abstract: Google Cloud (GC) provisioning the ecosystem for stakeholders involved in the vaccination drive for World Health Organization (WHO). The COVID-19 vaccination dataset is available in the WHO portal and refreshed every day. In this paper, the pain area of collecting the source of data and the region or location of the data collection is addressed. A python program is developed to connect to the WHO portal with the help of Google Cloud Scheduler and process comma-separated variable (CSV) data on daily basis. The parameter of the location of data ingestion is parsed by Google Cloud Big Query by the data analytics and Log Analytics for capturing the location of the data ingestion. An ecosystem developed using Google Cloud Big Query for data analytics and Google Data Studio for data visualization is key for decision-makers of vaccination drive. In the process of access to the WHO dataset available in the WHO, the portal helps the researchers and stakeholders and visions the data visualization in the design and development. Also helps the researchers to give insight into the vaccination data and add value to the beneficiary.

Keywords: Google Cloud, COVID- 19, Vaccination, Python, Data Visualization, WHO, Google data studio, Big Query, Data analytics, Cloud storage, Compute Engine

1. Introduction

Creating a Cloud ecosystem in Google Cloud for the public community, healthcare research, medical practitioners, government, and private body to access the Google data for the scope for decision making in the healthcare domain.

2. Google Cloud (GC) (Services and Resources)

2.1 GC for Data Analytics

Identification of GC services and resources for data and analytics Services.

2.2 GC Project

The project scope is to create a cloud ecosystem in Google Cloud (GC) as Infrastructure Modernization.

Functional scope: To create 'Use Cases' in Google Cloud for accessing COVID-19 vaccination dataset of World Health Organization (WHO).

Services used in the projects are Google Storage, Compute Engine, and 'Big Query' for Data Analytics.

Development: Client to store the files and provide the access on-demand in GC

2.3 SKUs | Google Cloud

https://cloud.google.com/skus

A Google Cloud Enterprise Agreement contracted directly by Google is eligible for the following Service Families, in addition to Google Cloud Services (availability of specific services may vary by country):

- Business Application Platform: Apigee and AppSheet
- Business Intelligence: Looker
- Compute Solutions: Bare Metal Solution

www.ijsr.net

- Productivity Applications: Google Workspace subscription products
- Productivity Applications: Google Workspace usagebased products
- Security: Chronicle
- Security: Virus Total

A Google Cloud Enterprise Agreement contracted by Partners is eligible for the following Service Families, in addition to Google Cloud Services

- Business Application Platform: Apigee and AppSheet
- Business Intelligence: Looker
- Productivity Applications: Google Workspace subscription products
- Productivity Applications: Google Workspace usagebased products

2.2.1. GC-Big Query

GCData Analytics Service, Big Query is considered for processing the vaccination dataset of WHO. The process is created for patch jobs on getting the daily records uploaded to the WHO Portal.

2.2.2. Big Query External Table

The Big Query SQL is created for an external table dataset in the 'tracking-matrix'. The syntax for an external table for the project.

CREATE

EXTERNAL

TABLE `tracing-matrix.covid19.WHO_Vaccination_data`

2.2.3. GCLOUD CLI (Gcloud Commands)

The gcloud command line is your gateway to manage and interact with the cloud and offers a variety of options to automatically parse and format the results. Here, we have used in this use case demonstrates gcloud commands together with python to extract the data and create the external table with the utility to auto-generate the formats for Google Cloud-Native Services.

gcloud auth activate-service-account

-- key-file "nature-labs-key. json"

3. Google GDK CLI

3.1. gcloud utilities in the project

In order to set the tracing-matrix as a project, in CLI the following command is performed. gcloud config set project tracing-matrix then, to view the config settings in the GC gcloud config list [accessibility] screen_reader = False [compute] region = us-central1 [core] account = nature-labs[at]tracingmatrix.iam.gserviceaccount.com

	l• cloud ▾	Q Search	Products, reso	urces, docs	- () 	`	2.	•	0	•	Ð
You're working in cloud											
Project number: 886953969839	Project ID:	tracing-matrix	rī -						•		
Dashboard Recommendation	s										
Create a VM	n a query in BigQu	ery 🖬	Create a GKE clu	ster	Create a storage	bucket					
Quick access											
Quick access	*	cloud		*	cloud						

Figure 1: The caption of the GC Console

To create the ecosystem in Google Cloud and Dataset with details of the audit log of GC.

Source: WHO Coronavirus (COVID-19) data

Type of the data: Data is available in the comma-separated values (CSV) files

Research is carried out by the motivation of providing secure data ingestion, ecosystem, development of line of treatment, decision making in healthcare domain as per the WHO standards in healthcare.

3.2 Table (Schema and data integration)

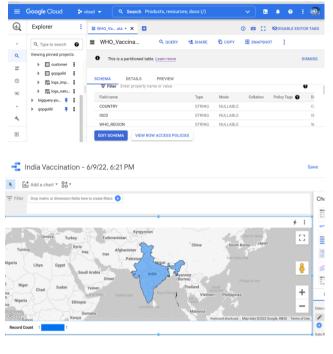
CREATE EXTERNAL TABLE `tracing-matrix. covid19. WHO_Vaccination_data`

COUNTRY STRING, ISO3 STRING, WHO_REGION STRING, DATA SOURCE STRING, DATE UPDATED DATE, TOTAL_VACCINATIONS FLOAT64, PERSONS_VACCINATED_1PLUS_DOSE FLOAT64, TOTAL_VACCINATIONS_PER100 FLOAT64, PERSONS_VACCINATED_1PLUS_DOSE_PER100 FLOAT64, PERSONS_FULLY_VACCINATED FLOAT64, PERSONS_FULLY_VACCINATED_PER100 FLOAT64, VACCINES USED STRING, FIRST VACCINE DATE DATE, NUMBER_VACCINES_TYPES_USED FLOAT64, PERSONS BOOSTER ADD DOSE FLOAT64. PERSONS_BOOSTER_ADD_DOSE_PER100 FLOAT64)

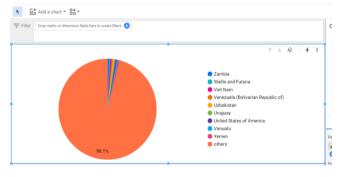
OPTIONS (skip_leading_rows=0, format="CSV", uris= ["https://drive.google.com/file/d/132PDmI2o9gParYa4F23o _IqdR8Ncxo0J/view?usp=sharing"]);

3.3. GC Compute Engine (Optimization)

To improve the big query to improve the performance of the GC, below _partitiontime for pseudo partitioning. SELECT


FROM `tracing-matrix.covid19.WHO_Vaccination data` WHERE

Volume 11 Issue 6, June 2022


<u>www.ijsr.net</u>

Save

DATE (_PARTITIONTIME) = "2022-05-12" AND COUNTRY = 'India'

📑 Vaccination - 6/9/22, 6:23 PN

4. GC Log Analytics

GC log analytics helps to identify the location of the data ingestion.

SELECT timestamp, resource. type, log_name, text_payload, proto_payload, json_payload FROM `logs_naturelabs_US._AllLogs` WHERE timestamp > TIMESTAMP_SUB (CURRENT_TIMESTAMP (), INTERVAL 100 DAY) LIMIT 50

5. GC Project in Log Analytics

The project is designed and developed for the motivation of open source in healthcare. The project is a tax exception and noncommercial research program.

Project team: Google Cloud Guild Team, Kyndryl Solutions Private Limited.

Business requirement: Identification of sources of data and audit log of GC resources and Services.

Project outcome: Research papers and filing of a patent for GC Guild team.

A score of work: Create the ecosystem in Google Cloud for the public community, healthcare research, medical practitioners, government, and private body to access the Google data for the scope for decision making in the healthcare domain.

Purpose of the research: By publishing the sources of data ingestion from various sources papers and getting the insight of the COVID-19 data of WHO and development of Line of Treatment and collecting the data clenching and providing complete end-to-end ecosystem in Google Cloud (GC).

Task: To create the ecosystem in Google Cloud and Dataset with details of the audit log of GC.

Source: WHO Coronavirus (COVID-19) data

Type of the data: Data is available in the comma-separated values (CSV) files

Research is carried out with the motivation of providing secure data ingestion, ecosystem, development of a line of treatment, and decision making in the healthcare domain as per the WHO standards in healthcare.

The log analytics query: SELECT STRUCT (proto_payload. type AS type, (proto_payload. audit_log.service_name STRUCT AS service_name, proto_payload.audit_log.method_name AS method_name, proto_payload.audit_log.resource_name AS resource_name, proto_payload.audit_log.resource_location AS resource location, proto_payload.audit_log.resource_original_state AS resource_original_state, proto_payload.audit_log.num_response_items AS num_response_items, proto_payload.audit_log.status AS status, STRUCT (proto_payload.audit_log.authentication_info. principal_email AS principal_email, proto_payload.audit_log.authentication_info. authority selector AS authority selector, proto payload.audit log.authentication info.third party pri ncipal AS third party principal, proto_payload.audit_log.authentication_info. service_account_key_name AS service_account_key_name, proto_payload.audit_log.authentication_info.service_accoun t_delegation_info AS service_account_delegation_info, proto_payload.audit_log.authentication_info. principal_subject AS principal_subject) AS authentication_info, proto_payload.audit_log.authorization_info AS authorization_info, proto_payload.audit_log.policy_violation_info AS policy_violation_info, STRUCT

Volume 11 Issue 6, June 2022

<u>www.ijsr.net</u>

(proto_payload.audit_log.request_metadata.caller_ip AS caller ip, proto_payload.audit_log.request_metadata.caller_supplied_u ser_agent AS caller_supplied_user_agent, proto_payload.audit_log.request_metadata.caller_network AS caller_network, proto_payload.audit_log.request_metadata.request_attributes AS request_attributes, proto_payload.audit_log.request_metadata.destination_attrib utes AS destination attributes) AS request metadata, proto pavload.audit log.request AS request. proto payload.audit log.response AS response, proto payload.audit log.metadata AS metadata, proto_payload.audit_log.service_data AS service_data) AS audit log, proto_payload.request_log AS request_log) AS proto payload, STRUCT (operation. id AS id, operation.producer AS producer, operation.first AS first, operation.last AS last) AS operation FROM `logs_naturelabs_US._AllLogs` la

CREATE LOG BUCKET

6. Life saving Services of GC

ΈΞ

Log Analytics PREVIEW

With the Big Query, all ethical approval and consent are taken with GC Big Query to provide the data analytics and Google Dashboard for the health care based on Blockchain and Privacy Computing).

GC has provided the analytical view and data ingestion of Vaccination from every country and locations. Google Log Analytics provides the information on a complete view of the vaccination dataset.

SII-Covishield, SII-Covovax, Zydus-ZyCov-D	Vaccination used Bharat-Covaxin, Biological E-Corbevax, Gamaleya-Gam-Covid-Vac, Janssen-Ad26.COV 2-S, Moderna-Spikevax,
, , ,	1 · ·
	, , ,

The cumulative records of Vaccination				
Country Total_Vaccinations Persons_Vaccinated_1plus_D	ose			
India 1906551885 1004921253				

Nature Labs is the United Nations research wing in COVID-19 and has involved Kyndryl Solutions Private Limited for the dataset creation, python, Big Query, Compute Engine.

caller_ip	count
122.161.50.5	429
106.201.116.76	296
106.201.116.76	196
49.204.201.54	160
202.12.83.129	117
202.164.136.44	106
115.96.183.233	65
103.99.109.66	50
49.204.135.142	17
223.187.115.248	15
223.187.123.202	6
27.34.241.129	5
202.164.136.44	5

6.1 GC Services and resources

GC Guild has followed WHO healthcare as it is a health care based on Blockchain and Privacy Computing.

Google Cloud (GC), big query is allowed by the Kyndryl Solutions Private Limited in WHO dataset in the cloud platform. All the authors are pleased to support the publishers and any further communication from the readers and stakeholders.

	GC Service	GC References	
		a. https://cloud.google.com/compute	
		b. particular Managed Instance Groups for	
	Compute Engine	scaling	
	1 0	https://cloud.google.com/compute/docs/instance-	
		groups#managed_instance_groups	
	IaC:use tools like		
	Terraform to create	https://cloud.google.com/docs/terraform	
	multiple	https://eloud.google.com/docs/terratorm	
	environments:		
	Cloud CDN can		
	provide Content	https://cloud.google.com/cdn	
	Delivery Network		
	services		
	Google Workspace		
	can provide email		
	services and plenty more when it	https://workspace.google.com/	
	comes to employee		
	collaboration		
	controlation	a. https://mariadb.com/products/skysql/google-	
		cloud-platform/	
	MariaDB SkySQL	b. Or you can have Microsoft SQL Server,	
	runs on Google Cloud	MySQL and PostgreSQL as a service through	
	Cioud	the Cloud SQL service:	
		https://cloud.google.com/sql	
	For high volume,		
	high performance		
	storage for assets,	https://cloud.google.com/storage	
	nothing better than	<u> </u>	
	Google Cloud		
	Storage And for shared		
	NFS storage for		
1	web servers, check	https://cloud.google.com/filestore	
1	out Filestore		
]	One can reserve		
	public static IP		
	addresses for web	https://cloud.google.com/compute/docs/ip-	
	applications-be it a	addresses/reserve-static-external-ip-address	
	VM or a load		

Volume 11 Issue 6, June 2022

<u>www.ijsr.net</u>

balancer	
Backup and	
Disaster Recovery	https://cloud.google.com/solutions/backup-dr
tooling available	
A broad range of	a. https://cloud.google.com/terms/sla there is
SLAs are available	also comprehensive support offering depending
and depending on	on need
solution	h https://eloud.co.colo.com/ourport
architecture	<u>b. https://cloud.google.com/support</u>

6.2 Python for use cases in vaccination data

The dataset is available for 24X7X365 days as per the Google Platform (GC) provisioning in the cloud service level agreement.

Client: WHO-Nature Labs Project Scope: GC as Infrastructure Modernization Functional scope: Function to create 'Use Cases' in Google Cloud GC Projects Used: Google Storage, Compute Engine Development: Client to storage the files and provide the access on-demand in GC Generate the Google Storage and Generate the compute engine for performance Written by Kyndryl for GC Data store location in Nature Labs Project Author: GCguild@gmail.com gcloud components

""" ipfile="vaccination-data.csv"

#ifl="Latest reported counts of cases and deaths"

currentdirds="ds3" coviddir="covid19" basepath = "C:\\nature-labs\\who" gcli="WHO"

#C:\nature-labs\who\covid19\ds3 projectID="tracing-matrix" dataset="covid19"

URI="https://drive.google.com/file/d/132PDmI209gParYa4 F230_IqdR8Ncxo0J/view?usp=sharing"

ifc="Vaccination data"

sl=27 ls=len (ifc) if (ls <= sl): ifl=ifc else: ifl= (ifc [0:sl])

.....

NO CHANGE SHOULD BE DONE AFTERWARDS...

gcloudcodepaths = ("{}{}{}". format (basepath, "\\", coviddir, "\\", currentdirds))

chkwho = ("{}{}". format (gcloudcodepaths, "\\", ipfile))

import re import glob from tkinter import W import pandas as pd

from pandas import ExcelWriter from pandas import ExcelFile from os. path import expanduser as ospath

from pathlib import Path import logging import socket from inspect import getsourcefile

import chardet import pandas as pd

from datetime import datetime

import shutil import xlrd

import runpy

import os import sys

logf ="GClog. txt"
logfi = ("{}{". format ("\\", logf))
logfile = (gcloudcodepaths + logfi)

logging. basicConfig (filename = logfile, level = logging.INFO, format = '% (levelname) s: % (asctime) s: % (message) s')

logging. info ('Compute Engine Directory: %r', {gcloudcodepaths})

fileinfo= (os.path.split (sys.argv [0]) [1])
hostname= (socket.gethostbyaddr (socket. gethostname ())
[0])
datestamp = datetime.now ().date ()

logging.info ('----- Start of Google Log Analytics Projects------')

logging.info ('Host Name %r, Compute Engine = %r', hostname, fileinfo)

path = Path (chkwho)

def prt (p):

width = len (p) + 4 print (' r' + "---''*width + "¬") print (' |' + p. center (width) + ' |') print (' -+ "---''*width + "-"")

if path. is_file (): pi="\'Excel file is created \': " p = ("{} {}". format (pi, chkwho)) prt (p)

Volume 11 Issue 6, June 2022

<u>www.ijsr.net</u>

else: pi="\'excelfilefordtye is missing !\': " p = ("{ } { }". format (pi, chkwho)) prt (p) logging. error ('Could not find xls file: %r', {p}) exit(1) targetdir = ("{}{}". format (basepath, "\\", currentdirds)) $sno=("{}_{ })^{"}$. format (gcli, ifc)) dc=sno $dc = re.sub (' [^A-Za-z0-9]+', '', dc)$ dc = dc.strip()dc = dc.rstrip()dc = dc.lstrip()dc = re.sub ("\s", "_", dc) N="\\" csvout = ("{}{}. {}". format (N, dc, "csv")) pi = "\'Before Renaming \': " $p = ("{}\t) t{}". format (pi, chkwho))$ prt (p) csvfileforuploadcsv = (gcloudcodepaths + csvout) pi="\'After Renaming \': " $p = ("{}] t$ prt (p) shutil. copy (chkwho, csvfileforuploadcsv) sno= ("{}_{}". format (gcli, ifl)) fno= ("{ }_{ }". format (gcli, ifc)) filetylst= ['sql', 'csv', 'xlsx'] dc=fno $dc = re.sub (' [^A-Za-z0-9]+', '', dc)$ dc = dc.strip()dc = dc.rstrip()dc = dc.lstrip()dc = re.sub ("\s", "_", dc) ext_table_name=dc $N="\setminus\=$ for fl in (filetylst): thr= ("{}. {}". format (dc, fl)) if (fl == 'sql'): $bqf = ("{}{}"{}". format (N, 'BQ_', thr))$ if (fl == 'csv'): $incsv = ("{}{}". format (N, thr))$ csvout = ("{}{}{}". format (N, 'Upload_', 'GC_', thr)) else: $outxls = ("{}{}". format (N, thr))$ infc = (gcloudcodepaths + incsv)

conxls = (gcloudcodepaths + intest) conxls = (gcloudcodepaths + outxls) csvfileforupload = (gcloudcodepaths + csvout) bqfile = (gcloudcodepaths + bqf) excelfilefordtye=csvfileforupload

with open (infc, 'rb') as f:

enc = chardet.detect (f.read ()) dfc = pd.read_csv (infc, encoding = enc ['encoding'])

dfc. to_excel (conxls, sheet_name=sno, index=False)

excelfilefordtye = conxls

xl = pd.ExcelFile (excelfilefordtye)

sheet1st=x1.sheet_names

for sn in (sheetlst): sheetname=sn logging. info ('Sheet Name: %r', sheetname)

with open (excelfilefordtye, "rb") as f: df_input_file = pd.read_excel (f, sheet_name=sheetname, header=0, index_col=None)

colname=df_input_file. columns
datatypes=dict (df_input_file.dtypes)

row_count=df_input_file.count () [0]

logging.info ('No of rows in Input File %r, Row Count %r', excelfilefordtye, row_count)

logging.info ('\n Generating the Project account in GC:\n')

logging.info ('Google Log Analytics Projects Generated File %r', conxls)

df_input_file.head (row_count).to_csv (csvfileforupload, encoding='utf-8', header=False, index=False)

def switch (check_data_type): dict={ 'object': 'STRING', 'int64': 'INT64', 'float64': 'FLOAT64', 'DATE': 'DATE' } return dict.get (check_data_type, 'Unable to find Data Type')

datearray= ['date', 'DATE', 'Date'] fldnames= [] for fld in colname:

for cdatesrt in (datearray): check_date_return = fld.find (cdatesrt) check_date_lu=cdatesrt if (check_date_return !=-1): check_data_type='DATE' break

else: dtdef=df_input_file [fld].dtypes check_data_type = str (dtdef) logging.info ('Field Name %r, Check Data Type %r, Check DATE Return code %r', {fld}, {check_data_type}, {check_date_return})

Volume 11 Issue 6, June 2022

<u>www.ijsr.net</u>

uris= ("{}{}{}". format ("uris= [", "\"", URI, "\"]")) flddty=switch (check data type) pi="\'Check Data Type of Field is Date: \': " line4="\n);" p = ("{}: {}: {}". format (pi, fld, flddty)) cene.write (line1) cene.write (line2) dc=fld cene.writelines (L) $dc = re.sub (' [^A-Za-z0-9]+', '', dc)$ cene.write (line3) dc = dc.strip()dc = dc.rstrip()cene.write (s) dc = dc.lstrip()dc = re.sub ("\s", " ", dc) cene.write (uris) $dc = re.sub (r'' [^w]'', '', dc)$ dc = re.sub (r'' + ', '', dc)cene.write (line4) ddc=dc logging.info ('Field Name: %r, Data Type: %r ', dc, flddty) cene.close () logging.info ('Fld Name: %r, Original DTy %r: Converted DTy is: %r', ddc, check_data_type, flddty) logformatfile = ("{}{}_{}". format ("\\", hostname, tblsting= ("{} {}". format (dc, flddty)) datestamp, logf)) fldnames.append (tblsting) logdfilenew = (gcloudcodepaths + logformatfile)logging.info ('Elements in Table Field and Datatype %r', shutil.copy (logfile, logdfilenew) fldnames) L=[] postscript="cleanfiles.py" lc=1 cfls = ("{}{}". format ("\\", postscript)) ll=len (fldnames) cleanfile = (gcloudcodepaths + cfls)logging.info ('Number of Elements in Tbl Fld and Dty List clean = open (cleanfile, 'w') or Array %r', ll) def cleanfl (rmv, removefile): for fldy in (fldnames): logging.info ('Field and DTy: %r ', fldy) $fldy = ("{}] t }". format ("t", fldy))$ L.append (fldy) ldc = str (removefile)if (lc == 11): $slfs = (ldc.split ('\\'))$ $N="\backslash n"$ else: leba=len (slfs)-1 N=", n" for rf in range (0, len (slfs)): lc += 1L.append (N) if (rf == 0): $sla = ("{})$. format (rmv, " = \"")) cene = open (bqfile, 'w')else: $sla = ("{}". format ("\\", "\\"))$ tbe=ext_table_name tbe= re.sub (' [^A-Za-z0-9]+', ' ', tbe) arf= ("{}{}". format (sla, slfs [rf])) tbe = tbe.strip () larys.append (arf) tbe = tbe.rstrip () if (rf == leba): tbe = tbe.lstrip () dq= ("{}{}". format ("\"", "\n")) tbe = re.sub ("\s", "_", tbe) larys.append (dq) tbe = re.sub (r'' $[^w]''$, ", tbe) clean.writelines (larys) tbe = re.sub (r''s+'', '_', tbe) removefile=logfile ts= ("{} {} {}". format ("-- Generated schema for table: ", larys= [] tbe, "-- ")) cleanfl ('logfile rm', removefile) fulltblname= ("{}. {}. {}". format (projectID, dataset, tbe)) line1= ("{} {}{}". format ("CREATE EXTERNAL larys= [] TABLE", "`", fulltblname, "`\n")) cleanfl ('excel_rm', excelfilefordtye) s = """ line2=" (n" line3="\n)" import shutil s = """ import os **OPTIONS (** import sys skip leading rows=0, format="CSV", #remove file if exists def remove_if_exists (removefile):

Volume 11 Issue 6, June 2022

<u>www.ijsr.net</u>

try: if os.path. exists (removefile): os.remove (removefile) print ("File removed successfully", removefile) except: print ("Error while deleting file ", removefile)

#remove previous log file

removefile = logfile_rm remove if exists (removefile)

removefile = excel_rm
remove_if_exists (removefile)
"""
clean.write (s)

clean.close

pi="\'Create 'Table' GC Big Query \': "
p = ("{} {}". format (pi, bqfile))
prt (p)

pi="Execute 'python' for cleaning file (s): "
p = ("{} {}". format (pi, cleanfile))
prt (p)

pi="python "
p = ("{ } { }". format (pi, cleanfile))
prt (p)

6.3 Competing interests

The data, program, and artifacts are available for all the stakeholders free of cost and there is no commercial interest.

6.4 Funding

GC Guild Team has contributed to the WHO dataset and created the program for the benefit of the COVID-19 vaccination and WHO – Nature Labs has provided the GC billing and support for the programming, big query knowledge transfer.

6.5 Authors' contributions

Kyndryl Solutions Private Limited, GC Guild members have contributed their time and efforts for the WHO successfully in provisioning the dataset and automated Python programming, Big Query Tables.

6.6 Python programming

WHO – Nature Labs research team acknowledged the contributions of Kyndryl Solutions Private Limited in creating the GC projects and providing the data migration, Big Query and Python programming for the data analytics. Also thankful to Google for providing the Log Analytics for Nature Labs project.

import requests import re import shutil import os import sys who_data_url 'https://covid19.who.int/who-= data/vaccination-data.csv whodata=re.sub (r'^. +/ ($[^/]$ +) \$', r'\1', who_data_url) workingdirctory="ds3" customerdirctory="covid19" basepath = "C:\\nature-labs\\who" gcloudcodepaths = ("{}{}{}". format (basepath, "\\", customerdirctory, "\\", workingdirctory)) fullyqualifiedwhodata ("{}{}". format = (gcloudcodepaths, "\\", whodata))

def prt (p):

width = len (p) + 4 print (' + "-"*width + "¬") print (' | + p. center (width) + ' | ') print (' + "-"*width + "-")

#remove file if exists
def remove_if_exists (removefile):
try:
if os.path. exists (removefile):
os.remove (removefile)
#print ("File removed successfully", removefile)
pi="\File removed successfully \': "
p = ("{}{}". format (pi, removefile))
prt (p)
except:
print ("Error while deleting file ", removefile)

#remove previous log file

```
removefile = fullyqualifiedwhodata
remove_if_exists (removefile)
```

```
pi="\'Downloading WHO Vaccination data \': "
p = ("{}{". format (pi, who_data_url))
prt (p)
```

def downloading (download_url, local_file_data): file_stream = requests. get (download_url, stream=True) with open (local_file_data, 'wb') as local_file: for data in file_stream: local_file.write (data)

download_url=who_data_url local_file_data=fullyqualifiedwhodata downloading (download_url, local_file_data)

pi="\'Download is completed: \': "
p = ("{}{}". format (pi, fullyqualifiedwhodata))
prt (p)

6.7 Authors' information (GC Guild)

Kyndryl Solutions Private Limited Authors are Subject Matter Expert, GC Cloud Platform Architect, Big Data Engineering with solution and development experts for WHO – Nature Labs Project.

Acknowledgements

GC Guild team develops the Vaccination dataset for beneficiaries, World Health Organization (WHO) research operation, Nature Labs (United Nations Body) is responsible for the interpretation and use of the content lies with the reader. WHO reserves the right to make updates and changes to posted content without notice and accepts no liability for any errors or omissions in this regard. WHO assumes no responsibility or liability for any consequence resulting directly or indirectly from any action or inaction readers take based on or made in reliance on the information and material available on the WHO Health Emergency Dashboard. While every reasonable effort has been made to use appropriate language and pictures on the WHO Health Emergency Dashboard, WHO expressly disclaims any responsibility for inadvertent offensive or insensitive, perceived or actual, language or pictures. WHO will take no responsibility for or be liable for the WHO Health Emergency Dashboard being temporarily unavailable in the event of technical or other issues. The World Health Organization (WHO) Health Emergency Dashboard is a platform which aims to share information about public health events and emergencies. The data on the dashboard is refreshed every fifteen (15) minutes and data is accurate as at time of refreshing.

The WHO Health Emergency Dashboard is not a comprehensive representation of all the events and emergencies that WHO is aware of and responding to. The events displayed are a subset of those reported through official channels as mandated by the International Health Regulations (IHR 2005). The content of the WHO Health Emergency Dashboard is for general information only. It is subject to change without notice. While every reasonable effort has been made to make the information on the WHO Health Emergency Dashboard as timely and accurate as possible, WHO makes no claims, promises or guarantees about the effectiveness, completeness and accuracy of the contents of the WHO Health Emergency Dashboard, and expressly disclaims any liability for damages as a result of the use and/or application of the WHO Health Emergency Dashboard, errors and/or omissions in the content. The size of the pie charts corresponds to the number of events in a given country or territory; the size does not indicate the severity or risk associated with the event (s). The designations employed and the presentation of content on the WHO Health Emergency Dashboard, including names of the events, maps and other illustrative materials, do not imply the expression of any opinion whatsoever on the part of WHO concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delineation of frontiers and borders. Grey areas on maps represent approximate border lines for which there may not yet be full agreement.

References

[1] GC All products

- [2] Google Cloud and services
- [3] Management

[4] identity and access management, and use APIs

Name	Description
APIs & Services	API management for cloud services
Billing	Assortment of billing and cost management tools
IAM & Admin	Resource access control
[5] Compute	

[5] Compute

[6] Run scalable virtual machines and containers

Name	Description
Compute Engine	VMs, GPUs, TPUs, disks
Kubernetes Engine	Managed Kubernetes / containers
VMware Engine	VMware as a service
Anthos	Enterprise hybrid multi-cloud platform
Distributed Cloud	Managed edge infrastructure

[7] Storage

[8] Store long & term, VM, and Filestore securely

Name	Description
Cloud Storage	Enterprise-ready object storage
Filestore	Fully managed NFS server
Data Transfer	Secure and flexible way to move data

[9] Analytics

[10] Collect, store, process, and analyze large data

N	
Name	Description
BigQuery	Data warehouse/analytics
Pub/Sub	Global real-time messaging
Dataflow	Streaming analytics service
Composer	Managed workflow orchestration service
Dataproc	Managed Apache Hadoop
Dataprep	Visual data wrangling
IoT Core	Device management and data ingestion
Data Fusion	Data pipeline management
Looker	Enterprise BI and Analytics
Healthcare	Healthcare data storage and processing
Financial Services	Revenue growth through the cloud
Datastream	Managed CDC service
Life Sciences	Biomedical data at scale
Data Catalog	Metadata management service
Elastic Cloud	Data power to uncover actionable
Elastic Cloud	intelligence
Databricks	Platform for data, analytics, and AI
Dataofficks	workloads

[11] Networking

[12] Manage, connect, secure, and scale your networks

Name	Description
VPC network	Virtual private cloud
Network services	Network management tools
Hybrid Connectivity	Network connectivity options
Network Security	Tools that power safe networking
Network Intelligence	Network monitoring and topology
Network Service Tiers	Price vs performance tiering

[13] Serverless

[14] Build applications powered by serverless functions and containers

Volume 11 Issue 6, June 2022

www.ijsr.net

Name	Description
Cloud Run	Serverless for containerized applications
Cloud Functions	Event-driven serverless functions
App Engine	Managed app platform

[15] Databases

[16] Create, manage, and migrate relational and non-relational databases

Name	Description	
IOD	Managed MySQL, PostgreSQL, SQL	
<u>SQL</u>	Server	
Datastore	NoSQL database for your web and mobile	
Datastore	apps	
Firestore	Serverless NoSQL document DB	
Spanner	Horizontally scalable relational DB	
Bigtable	Petabyte-scale, low-latency, non-relational	
Memorystore	Managed Redis and Memcached	
Database Migration	Cloud SQL migrations simplified	
ManaoDD Atlas	JSON-like data models, querying, &	
MongoDB Atlas	scaling	
Neo4j Aura		
Professional	Integrated, fully managed graph databases	
Database-as-a-Service		
Redis Enterprise	Robust in-memory database platform	
DataStax Astra	Cloud-native Cassandra app development	

[17] Operations

[18] Monitor, troubleshoot, and improve application performance

Name	Description	
Logging	Real-time log management and analysis	
Monitoring	Infrastructure and application quality checks	
Error Reporting	Dashboard for app errors	
Trace	App latency insights	
Profiler	CPU and heap profiling	
Debugger	Code investigation in production	

[19] Security

[20] Meet policy and compliance objectives

Name	Description
Security	Security management controls and capabilities
Compliance	Tools that help support data regulations

[21] CI/CD

[22] Integrate and deliver continuously

Name	Description	
Cloud Build	Continuous integration delivery platform	
Container Registry	Private container registry storage	
Source Repositories	Hosted private git repos	
Artifact Registry	Universal build artifact management	
Cloud Deploy	Managed continuous delivery to GKE	

[23] Artificial Intelligence

[24] Leverage machine learning products on a trusted platform

Name	Description
Vertex AI	One AI platform, every ML tool you need
<u>Vision</u>	Custom image models, now also in Vertex AI
Natural Language	Custom text models

Tables	Custom data models, now also in Vertex AI	
Translation	Language detection and translation	
Document AI	Document analysis, classification, and searches	
Recommendations <u>AI</u>	Custom recommendations for products	
Video Intelligence	ML video analysis, now also in Vertex AI	
Retail	Data-driven solutions for retailers	
Data Labeling	Data labeling by humans	
Speech-to-Text	Audio-to-text conversion	
Talent Solution	Job search with ML	

[25] Application Integration

[26] Enable applications and microservices to work together seamlessly

Name	Description	
Cloud Scheduler	Managed cron job service	
Cloud Tasks	Asynchronous task execution	
API Gateway	API development, deployment, and	
	management	
Workflows	HTTP services orchestration	
Eventarc	Modern event delivery	

[27] Tools

[28] Discover	productivity	resources for	or your cloud
---------------	--------------	---------------	---------------

Discover productivity resources for your cloud		
Description		
Cloud API gateway		
Google-grade identity and access		
management		
Templated infrastructure deployment		
API Management		
Internal solutions catalog		
Your cloud carbon emissions		
Cloud-native managed service for		
Apache Kafka		
Data-to-Value Platform		

[29] Other Google products

[30] Explore gaming and Google Maps Platform products

Name	Description	
Google Maps	Real-world insights and location	
Platform	experiences	
Game Servers	Agones cluster orchestration	

[31] Support

[32] Find live support, leverage developer communities, and get self-service help

Name	Description
Support	From basic free help to paid packages

Volume 11 Issue 6, June 2022

<u>www.ijsr.net</u>