Manually Calculating Elevation of a Single Point in India

Gaurav Wayal ${ }^{1}$
${ }^{1}$ Gaurav Dadabhau Wayal, M. Sc-1 Urban Water and Sanitation, Savitribai Phule Pune University, Pune, India wayalg97[at]gmail.com

Abstract

The elevation of a point is significant for creating a 3D model of the earth or for giving the positioning of the object. There are different methods or instruments are used for determining the elevation of the point. In this method, we use the trigonometric function for calculating the elevation of a single point which can be as small as possible. for the calculation, we draw two parallel lines one from a single point (observed point) and another from the observer that are perpendicular to India's mean sea elevation which is 160 m and is taken from Mumbai high. The elevation of the observer, angle, and distance between the point and the observer is also needed for calculating the elevation. The accuracy of this method is very high which gives the exact elevation of a single point.

Keywords: Trigonometric function, India's mean sea elevation, Single-point elevation

1. Introduction

In the modern world, map-making is a difficult task as the earth has many undulations, rivers, forest cover, and many steep slopes which makes map-making as difficult as possible. In the 3D map-making process, the elevation is used which needs to be very precise so that the map gets its accuracy so it shows its exact position in the real world. So, the map maker needs to take very places elevations which are then used in 3D map-making. Using the information on the Earth's surface geologists can determine the zones of erosion and those zones that are prone to landslide and sediment accumulation.

In military and defense for a country, elevation maps help to analyze and determine strategic locations for watch towers, and unit placement and deal with any hostiles in the area. In urban planning and design, elevation maps are very crucial in planning and designing large infrastructure. For example, construction of railway tracks; for this, a very accurate understanding of the elevation will be needed. This is applicable for the water pipes, gas pipes, electrical cables, and placement of telecommunication towers. Also, in navigation elevation maps can help a great deal in navigating while trekking or hiking. These maps give a good idea about the topology of the area making it possible to plan movement and camping grounds. In, Navigation elevation is also needed for locating the location. The elevation also plays role in farming where the farmer uses elevation to farm mainly fruit crops in hilly areas. An elevation map can be used to calculate the average slope of a hill to identify the crop that would be suitable for that location.

The elevation plays a crucial role in our lives in many fields like e. g, 3D modeling, farming, urban planning, and infrastructure. But the elevation accuracy needs to be very precise so that this information about elevation makes human life very easy.

2. Problem Statement

To find the elevation of a single point that is observed by the observer.

3. Instrument Used

1: GARMIN etrex 30x (to measure elevation)

4. Solution

Case 1: For calculating the elevation of a single point that is above 90°. we consider the following diagram.

Figure 1: Point above 90°
In the given diagram,
Line X and line Y are parallel to each other, and both are perpendicular to line Z . point C is an observer and A is a single point.

Figure 2
In $\triangle \mathrm{ABC}$,
Line $A C=30 \mathrm{~m}$,
$\angle A C B=2^{\circ}$
To find line $A B=$?
Also, in the rectangle $\square \mathrm{BCDE}$,

Figure 3
Line $C D=600 \mathrm{~m}$
Line $\mathrm{BC}=$ Line DC \&
Line $\mathrm{BE}=$ line CD ,
By using trigonometric function,
$\sin ^{\theta}=\frac{\text { OPPOSITE SIDE }}{\text { HYPOTENUSE }}$
$\sin \theta=$ \qquad
Line AC

```
\(\therefore\) Sin \(2^{0}=\) Line \(A B\)
            D
\(\therefore\) line \(\mathrm{AB}=\sin 2^{0} * 30 \mathrm{~m}\)
    \(=0.03489 * 30 \mathrm{~m}\)
```

\qquad

``` (from fig \(2 \& 3\) )
```

Line $\mathrm{AB}=1.0467 \mathrm{~m}$

Therefore, line $\mathrm{AB}=1.0467 \mathrm{~m}$.
Hence, the elevation of a single point is
$=$ line $A B+$ line $B E$
$=1.0467 m+600 \mathrm{~m}$ \qquad (from 1, $2 \& 3$)

Elevation of a single point A (from mean sea level) = 601.0467 m

Observation table:

NO	Elevation of observer	Distance between observer and point	The angle between observer and point	By calculation	Checked by GRAMIN etrex 30 x
1	600 m	30 m	2^{0}	601.0467 m	602 m
2	585 m	60 m	2^{0}	587.09396 m	587 m
3	596 m	90 m	1^{0}	597.57071 m	598 m
4	582 m	120 m	1^{0}	584.09428 m	585 m
5	591 m	150 m	3^{0}	598.85039 m	597 m

Case 2: For calculating the elevation of a single point that is below 90°. We consider the following diagram,

Figure 4: Point below 90°
In the given figure 4,
The line M and the line N are parallel to each other, and both are perpendicular to line O. point Q is an observer and G is a single point,

Figure 5
In $\Delta \mathrm{QPG}$,
Line $\mathrm{QG}=30 \mathrm{~m}$,
$\angle G Q P=2^{\circ}$
To find line $\mathrm{PG}=$?
Also, In the rectangle $\square \mathrm{PQRS}$

Figure 6

Line $\mathrm{QR}=586 \mathrm{~m}$
Line $\mathrm{PQ}=$ Line $\mathrm{SR} \&$
Line $\mathrm{QR}=$ line PS ,
By using trigonometric function,

$\sin ^{\theta}=\frac{\text { Line PG }}{\text { Line QG }}$
$\therefore \operatorname{Sin} 2^{\circ}=\quad$ Line PG
D
\therefore line $\mathrm{PG}=\sin 2^{0} * 30 \mathrm{~m}$ $=0.03489 * 30 \mathrm{~m} \ldots \ldots($ from fig $5 \& 6)$
Line $\mathrm{PG}=1.0467 \mathrm{~m}$
Therefore, line $\mathrm{PG}=1.0467 \mathrm{~m}$.
Hence, elevation of single point is
= line PS - line PG
$=586 \mathrm{~m}-1.0467 \mathrm{~m} \ldots \ldots .($ from fig $4,5 \& 6)$
Elevation of a single point G (From mean sea level) = 584.9533 m .

Observation table:

NO	Elevation of observer	Distance between observer and point	The angle between observer and point	By calculation	Checked by GRAMIN etrex 30 x
1	586 m	30 m	2^{0}	584.9533 m	
2	594 m	60 m	1^{0}	585 m	
3	580 m	90 m	2^{0}	591 m	
4	592 m	120 m	2^{0}	576.95286 m	
5	596 m	150 m	1^{0}	587.81207 m	586 m

5. Result and Discussion

The calculated elevation by this method is very precise and it is applicable in the Indian scenario which gives us the exact elevation of a single point. Using the elevation of a single point we make your life very easy to perform our work.3D modeling, survey land, farming, and infrastructure buildings are fields where elevation is needed for optimum working. If the elevation calculating instrument gets fails, but still, by this method, we can find the elevation of a single point.

6. Application

Following are the fields where elevation can be calculated by this method are,

Single Point in the air.
Single Point on / or in the water.
Navigation, 3D model building and big infrastructures.

Author Profile

Gaurav Dadabhau Wayal, B. Sc Physics, from Savitribai Phule Pune University, M. Sc Urban Water and Sanitation from Savitribai Phule Pune University and IHF Delft Netherland. Associate Researcher in Removal Heavy Metal from water.

