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Abstract: In this paper, we prove the Hyers-Ulam-Rassias stability of second order partial differential equation:

PO U X, )X, HUx(X, )+ A(X, ux(X, )+ gu(X,Hulx,H)=g(x,tu(x,1)).
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1. Introduction

In 1940, S. M. Ulam’s [14] presented a famous talk to the
Mathematics Club of the University of Wisconsin, where he
discussed a number of important unsolved problems. One of
them was concerned with the stability of group
homomorphismand D. H. Hyers [5] gave partial solution to
it in 1941. Thereafter numbers of authors have studied the
stability of solutions of differential equations [3, 6, 7] and
partial differential equations [8, 9]. This is now known as
Hyers-Ulam (HU) stability and its various extensions has
been named with additional word. One such extension is
Hyers Ulam Rassias (HUR) stability. In [10] and [11],
HURstability for linear differential operators of n"order with
non-constant coefficients was studied.HUR stability for
special types of non-linear equations have been studied in [1,
2, 12]. HUR stability of second order partial differential
equation have been studied in [13]. In 2011, Gordji et al. [4],
proved the HUR stability of non-linear partial differential
equations by using Banach’s Contraction Principle. In this
paper, by using the result of [4], we prove the HUR stability

of second order partial differential equation:
PO D) Uy (X, ) +Px (X, D U(X, 1) + (X, D)ux(x,t)+
ae(xulx,)=g(x,t,u(x,t)). (1.1)

Here p,q:J xJ— R* be a differentiable function at least
once w. r. t both the arguments and
p(x,t)=/0,q(x,t)=/0Vx,tel,g:JxJxR—R be a continuous
function and J=[a, b] be a closed interval.

Definition 1.1: A function u: JxJ—R is called a solution of
equation (1.1) if ueC?(JxJ) and satisfies the equation (1.1).

2. Preliminaries

Definition 2.1: The equation (1.1) is said to be HUR stable
if the following holds:

Letp: Jx J— (0, o) be a continuous function.Then there
exists a continuous function

¥:J x J — (0, o), which depends on ¢ such that whenever
u:J x J — R is a continuous function with

P DU+ DU+ g DudXx)+ axx,Hulx.t)-
g(xtu(x.n)<e(x.1),

There exists a solution ug:JxJ—Rof (1.1) such that
[u(X,H)—Uo(X,t)[S¥(x,1), V(x,t)eIxJ.

We need the following.

Banach Contraction Principle:

Let(Y,d) be a complete metric space, then each contraction
map T:Y—Y has a unique fixed point, that is, there exists
beY such that Th=b. Moreover,

d(b,w) < (lfa)d(w, Tw), VWE Y and0<a< 1.

Following the results from Gordji et al. [4], we establish the
following result.

3. Main Result

In this section we prove the HUR stability of first order
partial differential equation (1.1).

Theorem 3.1: Let ceJ. Let p, g and g be a sin (1.1) with

additional conditions:

() pkx,H=1,vxted.

(ii) ¢:JxJ—(0,00) be a continuous
M:JxJ—[1,0) be an integrable function.

(i) Assume that there exists a, 0<a<1 such that

I M@ e Hdr < ao(x,t).(3.1)
and

function and

K(x,t,u(x,t))
={p(x, )} [P(C. u, (¢, t)
—q(x, Hulx, t) + q(c,hulc, t)
+ fxg(r, t,u(t, t))dr]

(3.2
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Suppose that the following holds:

CL:|K (z.t,I(t,5))—K (z.t, m(z,0))|[<M(z, )|l (7, 0)—m(z, £)|, V7, t€ Jandll,
meC (IxJ).

C2:u:JxJ—R be a function satisfying the inequality (2.1).

Then there exists a unique solution uy:JxJ—R of the
equation (1.1) of the form

ug(x,t) = ulc, t) + fo(r, t,ug (xt))dr

c

Such that

[uCx,t) — up(x, )| <

. a)go(x t), Vx,te]j.
Proof: Consider

[P U(X, D) +P (X DU )+ g Hu(X, )+ ax(X,Hu(x,t)-
g(x,tu(x,1)|

=[{p(x.ux(x. ) hH{a(x.hux,)}x - glx,tu(x,1))|
From the inequality (2.1), we get
Kp(xux(x,HhH{a ux, 0} - g tux,n)i<p(x.t).

==X D={P(X, (X ) heH{ax u(x,t) 3« ]
g(thiu(th)SQD(X,t).

={pxDuxx.Hh+Hax.ux,Hh - g Luxt=p(x.t).

Integrating from c to x we get,
p(x, Ouy (x, 1) — p(e, Du,(c, t) + q(x, hu(x, t)

—q(c,u(c,t) — f g(t, t,u(z, t)) dt
< fxrp(r, t)dr.

= p(x, O, (1) — p(x, O} ple, (e, t) —
grlux,t+qgctuc,t+
CXGLLuUntdr < cxprtar.

Since M: JxJ—[1,00) be an integrable function, we have

= {u, (x,t) = K(x, t,u(xt))} < fo(‘r, He(r, t)dr.

Using inequality (3.1) we have,
{u,(x,t) = K(x, t,u(xt))} <f M(z, t)p(t, t)dt < ap(x,t).

{u (x,t) — K(x t, u(xt))}
K(x t, u(xt))} <

ap(x,t).

{ux (x,t) — o(x,1).(3.4)

Again, integrating from c to x we get,

u(x,t) —ulc,t) — fo(T, t, u(r, t))dr < J-xgo(r, t)dr.

c
Since M: JxJ—[1,00) be an integrable function, we have
X

u(x,t) —u(c,t) —f K(‘r t,u(t, t))d‘r

f M(z,t)p(t, t)dr.

Using inequality (3.1) we have,
ulx, t) —ulc, t) — f K(z,tu(r,t))dr <
f M(t,t)o(t, t)dt < ap(x,t).
= u(x,t) —u(c,t) — f K(z t,u(z, t))dt(%sgup(x t).

= u(x,t) — [ule, ) + fc K(z,t,u(r, t))dr] < o(xt)
, (v0< a<1). (35
In a similar way, from the left inequality of (3.3), we obtain
- [u(x, t) — [uc,t) + fcx K(z t,u(r, t))dr]] < o(x,t).
(3.6)

From the inequalities (3.5) and (3.6) we get,
lux, t) = [ulc, t) + fCXK(T, t,u(xt))dr]| < o(x,t). (3.7)

Let Y be the set of all continuously differentiable functions
y: J x J — R. We define a metric d and an operator T on Y
as follows: For I, meY

_ I(x,t) —m(x,t)
= {ux(x, t) d(l,m)=sup, ;¢ R
and the operator
—{p(x, )} [p (¢, Du,(c, t) (Tm)(x,t)
— G DU, £) + 4, Hule, v _ [u(c, 0
+ f 7, t,u(t, t))dt x
C g(r.tuw b)) ]} +f K(z,t,m(r, t))dr]. (3.8)
< o0} [ o ode “
€ Consider,
_ Tl(x,t) —Tm(x,t)
> {ux(x, t) d(Tl, Tm)=sup, ¢ {—(p(“) }
B (FF K@elan) dr - [ K(tm () de )
— {pCe, O} e, D e, ) =SUPs ey ) :
—q(x,Hulx,t) + q(c,Hulc,t) (f K(t, t,l(z,t)) dt — f K(z,t,m(t,t)) dr)
x < SUPy i) .
+ f g(r, t,u(r, t))dr]} p(x,t)
% FIK (@t Uz 6) — K(z,t,m(, t)|dr
< SUDy i) .
S (P(T: t)dT, (p(x‘ t)
x,t) =1
(P8 ) By using condition C1 we get,
{u (x,t) — K(x t, u(xt))} f ¢ (t,t)dr.
whereK (x, t, u(xt)) is given by equation (3.2).
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d(T1,Tm)

[AM@ DT, 6) — mz,)l}de

< SUPy i) D .

Iy {M (T.)(r,t) (W)} i
@(x,1)

lL@t) —m@0)l
fcx { (@ DP(T, 1) X Supre) ( - ;(TT)(T : )} dr
< ;
< SUPy ey .

= SUPy tej

o, t)

d(TL,Tm) < d(l,m) X supy e {fa M(T,)e(r, t)}dr}.

@(x,t)

By using inequality (3.1) we get,
d(T,Tm) < ad(l,m).

By using Banach contraction principle, there exists a unique
UgEX such that
Tug=Uy, that is

[u(c, t)+ J-XK(T, t,uy(t, t))dr = uy(x, t),
(By using equation (3.5))

and
d(ug,u) < ﬁd(u,Tu). (3.9)
Now by using in equality (3.7) we get,
[u(x,t) — (Tu)(x, t)| < a p(x,t).
lu(x,t) — (Tw)(x,t)|
= <a.
P(x,t)
= sy [u(x,t) — (Tu)(x,t)] <
px,te] (p(x’ t) ==
Thus
d(u,Tu) < a. (3.10)
Again
d (U, w)=sup, ey [0,
From equation (3.9) we get,
<
d(ug,u) < a—a d(u, Tu).
up(x,t) — u(x,t)
Su'px,tE] | (p(x’ t) — (1 _ a) d(u’ Tu)
|u0(x, t) — u(x,t) < up(x,t) — u(x,t)
< sup,
(6 0) S e
< .
ST d(u,Tu)
up(x,t) — u(x,t)
< d(u, Tu).
| @(x,t) 1-a ( )

From equation (3.10) we get,

up(x,t) — u(x,t) < 1
| o(x,0) Sa-o”
lug(x,t) — u(x, t)| < o(x,t),Vxt € ]J.

1-a
Hence the result

4. Conclusion
In this paper we have proved the HUR stability of the

second order partial differential equation (1.1) by employing
Banach’s contraction aprinciple.
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