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Abstract: In the field of medication, specifically, clinical imaging, the publicity of late years about man-made consciousness (AI) has 

had a critical effect. Despite the fact that news in the day to day press and clinical distributions about new capacities and 

accomplishments of AI is practically overpowering, for some mediators the term and the working of AI stay a ''discovery,'' prompting 

overstated assumptions from one perspective and unwarranted feelings of dread on the other. Individuals as of now connect with AI in 

an assortment of routes in day to day existence - for instance, on cell phones, in the vehicle, or while riding the web - however 

frequently without really acknowledging it. Artificial intelligence likewise can possibly take on an assortment of basic or dreary 

undertakings in the medical services area sooner rather than later. Be that as it may, AI unquestionably won't make radiologists or 

atomic medication experts outdated as clinical specialists within a reasonable time-frame. As opposed to the disturbance evoked in 

certain media, a consistent change can be anticipated; this change doubtlessly will start or has started in the demonstrative disciplines, 

specifically, clinical imaging. According to the point of view of the radiologist or atomic medication trained professional, this turn of 

events, rather than being seen as a danger, should be visible as a valuable chance to play a spearheading job inside the medical care 

area and to effectively shape this change interaction. In this article, we endeavor to give a calculated order of AI, a short rundown of 

what we view as the main specialized basics, a conversation of potential applications in atomic medication and, at last, a concise 

thought of the conceivable effect of these innovations on the calling of the doctor. 
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1. How to Define AI  
 

The term artificial intelligence first appeared in an 

application for a 6-wk workshop entitled Dartmouth 

Summer Research Project on Artificial Intelligence at 

Dartmouth College in Hanover, New Hampshire, and is 

often defined as ‘‘intelligence demonstrated by machines, in 

contrast to the natural intelligence displayed by humans and 

animals’’. However, since its first appearance, the term has 

undergone a constant redefinition against the background of 

what is technically feasible. On the one hand, the definition 

per se is already vague, because the partial term intelligence 

is not itself well defined. On the other hand, it depends 

directly on human perception and evaluation, which change 

constantly. Only a few decades ago, chess computers were 

regarded as a classic example of AI, because a kind of 

‘‘intelligence’’ was considered a prerequisite for the ability 

to master this game. With the exponential growth of 

performance in computer hardware, however, it was soon 

possible to program chess computers that played masterfully 

without developing an understanding of the game as human 

players do. In simple terms, a computer’s memory had 

stored such a large number of moves from archived chess 

games between professional human players that the 

computer could look up an equivalent in a historical game 

for almost every imaginable game situation and derive the 

next move from it. This procedure, although simplified here, 

did produce extremely successful chess computers, but their 

behavior was predictable in principle and lacked typical 

human qualities, such as strategy and creativity. This 

‘‘explainability,’’ together with a certain wear and tear of 

the ‘‘wow effect,’’ finally led to the fact that chess 

computers are no longer regarded as examples of AI by 

most people today. An attempt to systematize the area of AI 

leads to a multitude of different procedures which, only in 

their entirety, define the field of AI. From the 1950s to the 

1980s, AI was strongly dominated by so-called symbolic 

reasoning, through which AI is implemented by rules 

engines, expert systems, or so-called knowledge graphs. 

What these methods have in common is that they model 

entities of the real world and their logical relationships in 

the form of symbols with which arithmetic operations can 

then be performed. The main advantages of these systems 

are, on the one hand, their often comparatively low demand 

on the computing capacity of a computer system and, on the 

other hand, their comprehensible behavior, with which 

every step of the system (data input, processing, and data 

output) can be reproduced and understood. The main 

disadvantage, however, is the necessary step of modeling, in 

which the part of the real world required for the concrete 

application domain has to be converted into symbols. This 

extremely labor-intensive task often has to be performed by 

people, so that the creation of such systems is mostly 

reserved for corporationsor, recently, well-organized 

crowdsourcing movements. The larger problem in 

modeling, however, is that the performance and accuracy of 

such systems are bound a priori to the human understanding 

of the real world. Although this situation seems 

unproblematic in a game such as chess, with a manageable 

number of game pieces and their well-defined relationships 

to each other, for other applications (such as medicine), this 

situation results in considerable difficulties. Thus, many 

physicians are probably aware that even the most complex 

medical ontologies and classifications ultimately represent 

crude simplifications of the underlying biologic systems and 

do not fully describe the variability of diseases or their 

dependencies. Moreover, such classification systems can 

hardly keep pace with the medical knowledge gained in the 
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digital age, a fact that inevitably limits symbolic AI systems 

based on such models. However, with the strongly 

increasing performance of computer hardware, 

nonsymbiotic AI systems increasingly came to the fore from 

the mid-1980s onward. What these systems have in 

common is that they are data driven and work statistically. 

These procedures are often summarized under the term 

machine learning in which computer systems learn to 

accomplish a task independently-that is, without explicit 

instructions-and thus perform observational learning from 

large amounts of data. The obvious advantage of these 

systems is that the time-consuming and limiting modeling 

phase is omitted, because the machine largely independently 

appropriates the internal abstraction of the respective 

problem and, assuming a sufficient and representative 

amount of example data, can also record and map its 

variability. In addition to the high demand for computing 

capacity during the training phase, these methods primarily 

have 2 disadvantages. On the one hand, there is a large to 

very large demand for example datasets during the training 

phase for almost all methods because, despite all technical 

advances, the abstraction of a problem is far less efficient 

than in the human brain. On the other hand, the internal 

representation of this abstraction in most of these systems is 

so complex that it can no longer be comprehended and 

understood by people, so that such systems are often 

referred to as ‘‘black boxes,’’ and the corresponding output 

of such systems can no longer be reliably predicted outside 

the set of tested input parameters. For complex and highly 

variable input parameters, such as medical image data, these 

systems thus can produce unexpected results and show a 

quasi-nondeterministic behavior; for example, an image of 

an elephant can be placed clearly visible into an image, and 

a state-ofthe-art trained neural network either will most 

often not see it at all or will mistake it as other objects, such 

as a chair (2). In principle, machine learning procedures can 

be divided into supervised and unsupervised learning. In 

supervised learning, not only the input data but also the 

desired output data are given during the training phase, and 

the model learns to generate those outputs from the given 

inputs. To prevent the model from learning only the 

example data by memorization (also referred to as 

overfitting), various techniques are used; the central element 

is that only part of the data is presented to the model during 

training, and the performance of the model (i.e., the control 

of learning success) is measured against the other part of the 

data. In contrast, in unsupervised learning, the input data are 

given without any labels. The goal is then to understand the 

inherent structure in the data. Using clustering methods, for 

example, the observations to be analyzed are divided into 

subgroups according to certain features or feature 

combinations. Generative methods derive a probability 

distribution from sampled observations that can be used to 

generate synthetic observations. In the medical domain, in 

which the cost of labeling the data is high, semi supervised 

learning could be more useful. Here, only part of the data is 

labeled, and although the task is similar to supervised 

learning, the advantage is that the structure of the unlabeled 

data-which are often more abundant- can be exploited. 

Another form of classification is the division of the area of 

machine learning into conventional machine learning and 

deep learning. Conventional machine learning includes a 

large number of established methods, such as naive Bayes 

classifiers, support vector machines, random forests, or even 

hidden Markov models, and has been used for years and 

decades in a wide variety of application areas, such as time 

series predictions, recommendation engines in e-commerce, 

spam filters, text translation, and many more. In recent 

years, however, the field of machine learning has been 

strongly influenced by deep learning, which is based on 

artificial neural networks (ANNs). Because of a multitude 

of layers (so-called hidden layers) between the input and 

output layers, these neural networks have a much larger 

space for free parameters and thus allow much more 

complex abstractions than conventional machine learning 

methods. An area of medical imaging currently receiving 

much attention, so-called radiomics, can be reduced to a 2-

step process. In the first step, image data are converted by 

image processing methods into high-dimensional vectors 

(so-called feature vectors); from these vectors, predictive 

models-usually a classifier or a regressor-for deriving 

certain information from the same image data are then 

generated in the second step using conventional machine 

learning. Radiomics is currently being evaluated in a 

multitude of small, often retrospective studies, which often 

try to predict information such as histologic subtype, 

mutational status, or a response to a certain therapy from 

medical images of tumors. Because the first step requires 

careful feature engineering and strong domain expertise, 

there are already some attempts to replace the 2-step process 

in radiomics with deep learning by placing the image data 

directly into the input layer of an ANN without prior feature 

extraction. Because an article dedicated to radiomics also 

appears in this supplement to The Journal of Nuclear 

Medicine, we will not discuss radiomics further and will 

focus in particular on other applications of machine learning 

and deep learning.  

 

Applications in Nuclear Medicine  

The rise of AI in medicine is often associated with 

‘‘superhuman’’ abilities and precision medicine. At the 

same time, often overlooked are the facts that large parts of 

physicians’ everyday work consist of routine tasks and that 

the delegation of those tasks to AI would give the human 

workforce more time for higher-value activities (3) that 

typically require human attributes such as creativity, 

cognitive insight, meaning, or empathy. The day-to-day 

work of medical imaging involves a multitude of activities, 

including the planning of examinations, the detection of 

pathologies and their quantification, and manual research 

for additional information in medical records and textbooks-

which often tend to bore and demand too little intellectually 

from the experienced physician but, with continuously 

rising workloads, tend to overwhelm the beginner. Without 

diminishing the prospects of ‘‘superdiagnostics’’ and 

precision medicine, seemingly more easily achievable goals 

of AI in medicine should not be forgotten because they 

might relieve people who are highly educated and have 

specialized skills of repetitive routine tasks. A typical 

medical imaging work flow can be divided into 4 steps: 

planning, image acquisition, interpretation, and reporting. 

Steps such as admission and payment could be included as 

well. We have deliberately focused on the parts of the work 

flow in which the physician is directly and primarily 

involved. Next, we discuss existing or potential AI-based 

solutions clustered by that structure Planning Before an 
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examination is performed on a patient at all, whether a 

planned procedure is medically indicated should be 

determined. The more unpleasant, risky, or expensive the 

respective examination is, the more this guideline applies. 

For example, in the recruitment of amyloid-positive 

individuals for clinical trials. One of the greatest challenges 

in the scheduling of medical examinations is ‘‘no-shows’’; 

this challenge is particularly problematic in the case of 

nuclear medicine because of tracer availability, decay, and 

cost. A highly relevant study from Massachusetts General 

Hospital demonstrated the feasibility of predicting no-shows 

in the medical imaging department using relatively simple 

machine learning algorithms and logistic regression. The 

authors included 54,652 patient appointments with 

scheduled radiology examinations in their study. 

Considering 16 data elements from the electronic medical 

record grouped by no-show history, appointment-specific 

factors, and sociodemographic factors, their model had a 

significant power to predict failure to attend a scheduled 

radiology examination (area under the curve [AUC], 0.75) 

(4). Given the recent technical improvements in deep 

learning, the relatively small number of included predictors 

in that study, and the recent availability of methods such as 

continuous (or incremental) learning, it is not far-fetched to 

hypothesize that the prediction of no-shows at a much 

higher accuracy could be available soon. Often patient-

related information given at the time of referral is sparse, 

and extensive manual searching through large numbers of 

unstructured text documents by the physician is necessary to 

gather all of the information that is needed for optimal 

preparation and planning of the examination. Although the 

analysis of text documents may seem easy (compared with, 

e.g., image analysis) and recent advances in natural 

language processing and natural language understanding 

became very visible in gadgets such as Alexa 

(https://alexa.amazon.com), Google Assistant 

(https://assistant.google.com), or Siri 

(https://www.apple.com/siri/), such analysis in fact remains 

a particularly delicate task for machine learning. Still, the 

research community is making steady progress, structured 

reporting that allows straightforward algorithmic 

information extraction is gaining popularity, and data 

interoperability standards such as Fast Healthcare 

Interoperability Resources (FHIR) (https://www.hl7.org/ 

fhir/) will gradually become available in clinical systems. 

Therefore, it can be assumed that, in the future, the time-

consuming manual research of patient information will be 

performed by intelligent artificial assistants and presented to 

the physician in the form of concise casespecific 

dashboards. Such dashboards not only will aggregate 

relevant patient information but also likely will enrich this 

information by putting it into context. For example, a 

relatively simple rule-based symbolic AI could 

automatically check for certain contraindications, such as 

allergies, or reduce unnecessary duplication of examinations 

by analyzing prior examinations. Scanning Modern scanner 

technology already makes increasing use of machine 

learning, and recent advancements in research suggest 

considerable technical improvements in the near future (5). 

In nuclear medicine, attenuation maps and scatter correction 

remain hot topics for PET and SPECT imaging, so it is not 

surprising that these are the subjects of intensive research by 

various AI groups. Hwang et al. used a modified U-Net, 

which is a specialized convolutional network architecture 

for biomedical image segmentation, to generate the 

attenuation maps for whole-body PET/ MRI (6). They used 

activity and attenuation maps estimated from the maximum-

likelihood reconstruction of activity and attenuation 

algorithm as inputs to create a CT-derived attenuation map 

and compared this method with the Dixon-based 4-segment 

method. Compared with the CT-derived attenuation map, 

the U-Net–based approach achieved significantly higher 

agreement (Dice coefficient, 0.77 vs. 0.36). Instead of an 

analytic approach based on image segmentation, it is also 

possible to use generative adversarial networks (GANs) to 

directly translate 1 imaging modality into another. The 

feasibility of direct MR-to-CT image translation using 

context-aware GANs was demonstrated by Nie et al. in a 

small study involving 15 brain and 22 pelvic examinations. 

Another topic of research is the improvement of image 

quality. Hong et al. used a deep residual convolutional 

neural network (CNN) to enhance the image resolution and 

noise property of PET scanners with large pixelated 

crystals. Kim et al. showed that iterative PET reconstruction 

using a denoising CNN with local linear fitting improved 

image quality and was robust against noise-level disparities. 

Improvements in reconstructed image quality could also be 

translated to dose savings, as shown by multiple groups that 

estimated full-dose PET images from lowdose scans (i.e., 

reduction in applied radioactivity) using CNNs or GANs 

with favorable results. Obviously, this approach could also 

be translated to shorter acquisition times and result in higher 

patient throughput. In addition, improved image quality 

could also be translated to higher temporal resolution, as 

shown by Cui et al., who used stacked sparse autoencoders 

(unsupervised ANNs that learn a representation by training 

the network to ignore noise) to improve the quality of 

dynamic PET images. Berg and Cherry used CNNs to 

estimate time-offlight directly from the pair of digitized 

detector waveforms for a coincident event; this method 

improved timing resolution by 20% compared with leading-

edge discrimination and 23% compared with constant 

fraction discrimination. In principle, this method could 

make the additional MRI scan obsolete. In nuclear 

medicine, scanning depends directly on the application of 

radiotracers, the development of which is a time-consuming 

and costly process. As in the pharmaceutical industry, the 

prediction of drug–target interactions (DTI) is an important 

part of this process in the radiopharmaceutical industry and 

has been performed with computer assistance for quite some 

time; AI-based methods are increasingly being used (6). For 

example, Wen et al. were able to predict the interactions 

between ziprasidone or clozapine and the 5-

hydroxytryptamine receptor 1C (or 2C) or alprazolam and 

g-aminobutyric acid receptor subunit r-2 with a deep-belief 

network. Interpretation many interpreters maintain a list of 

examinations that they have to interpret and that they 

process chronologically in a first-in, firstout order. In 

reality, however, some studies have findings that require 

prompt action and therefore should be prioritized. Recently, 

a deep learning–based triage system that detects free gas, 

free fluid, or fat stranding in abdominal CTs was published 

(7), and multiple studies have already demonstrated the 

feasibility of detecting critical findings in head CT scans. In 

the future, such systems could work directly on raw data, 

such as sinograms, and raise alerts during the scan time, 
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even before reconstruction. In such a scenario, the 

technician could modify or extend the planned scan protocol 

to accommodate the unexpected finding; for example, an 

intracranial hemorrhage detected during a lowdose PET/CT 

scan could trigger an immediate full-dose CT scan of the 

head. However, the automatic detection of pathologies also 

offers other interesting possibilities beyond the prioritization 

of studies. For example, the processing of certain 

examinations, such as bone or thyroid scans, could be 

automated or at least accelerated with preliminary 

assessments, or an AI assistant working in the background 

could alert the human interpreter to possibly overlooked 

findings. Another, often disregarded possibility is that 

recurring secondary findings could be automatically 

detected and included in the report, freeing the human 

interpreter from an often annoying task. Many studies have 

already addressed the early detection of Alzheimer disease 

and mild cognitive impairment using deep learning. Ding et 

al. were able to show that a CNN with InceptionV3 

architecture could make an Alzheimer disease diagnosis 

with 82% specificity at 100% sensitivity (AUC, 0.98) on 

average 75.8 mo before the final diagnosis based on 18F-

FDG PET/CT scans and outperformed human interpreters 

(majority diagnosis of 5 interpreters). Similar network 

architecture was used by Kim et al. in the diagnosis of 

Parkinson disease from 123I-ioflupane SPECT scans; the 

test sensitivity was 96.3% at 66.7% specificity (AUC, 0.87). 

Li et al. used a 3-step process of automatic segmentation, 

feature extraction, and classification using support vector 

machines and random forests to automatically detect 

pancreas carcinomas on 18F-FDG PET/CT scans (4). On 

their test dataset of 80 scans, they found a sensitivity of 

95.23% at a specificity of 97.51%. Perk et al. combined 

threshold-based detection with machine learning–based 

classification to automatically evaluate 18F-NaF PET/CT 

scans for bone metastases in patients with prostate cancer. A 

combination of statistically optimized regional thresholding 

and random forests resulted in a sensitivity of 88% at a 

specificity of 89% (AUC, 0.95). However, the ground truth 

in learning data originated from only 1 human interpreter, so 

that the performance of the machine learning approach must 

be evaluated with care. Interestingly, in a subset of patients 

who were evaluated by 3 additional nuclear medicine 

specialists, the machine learning classification performance 

was high when the ground truth originated from any of the 4 

physicians (AUC range, 0.91–0.93), whereas the agreement 

between the physicians was only moderate (k, 0.53). That 

study (8) underlined the importance of reliable ground truth 

not only during validation but also during training when 

supervised learning is used. Nevertheless, it should not be 

forgotten that although existing systems sometimes provide 

excellent results with regard to the detection of 1 or more 

classes of pathologies, they still cannot generalize results as 

well as a human diagnostician. For this reason, human 

supervision remains absolutely mandatory in most 

scenarios. 

 

Overall, however, the detection of pathologies during 

interpretation often accounts for only a small part of the 

total effort for the experienced interpreter. The increasing 

demand for quantification and segmentation usually 

involves much more effort, although these tasks are 

intellectually not very challenging and often are rather 

tiring. Therefore, the reasons for the wish to delegate these 

tasks to intelligent systems seem obvious. Roccia et al. used 

machine learning to estimate the arterial input function for 

the noninvasive full quantification of the regional cerebral 

metabolic rate for glucose in 18F-FDG PET (9). Instead of 

measuring the arterial input function during the scan with an 

invasive arterial blood sampling procedure, it was predicted 

with data from medical health records and dynamic PET 

imaging data. Before planned radiotherapy, it is necessary to 

precisely quantify the target structures by segmentation 

which, in the case of nasopharyngeal carcinomas, is often a 

particularly difficult and time-consuming activity because of 

the anatomic location. Zhao et al. showed, for a small group 

of 30 patients, that the automatic segmentation of such 

tumors on 18F-FDG PET/CT data was, in principle, 

possible using the U-Net architecture (mean Dice score of 

87.47%). Other groups applied similar approaches to head 

and neck cancer and lung cancer (10). Still, fully automated 

tumor segmentation remains a challenge, probably because 

of the extremely diverse appearance of these diseases. Such 

an approach requires correspondingly large amounts of 

training data, for which the necessary ground truth in the 

form of segmentation masks usually has to be generated in a 

labor-intensive manual or semiautomatic task. Intelligent 

systems can also support the interpreter with classification 

and differential diagnosis. Many studies have shown 

possible applications for radiology, such as the 

differentiation of liver masses in MRI, bone tumor diagnosis 

in radiography, classification of interstitial lung diseases in 

CT, or diagnosis of acute infarct like myocarditis in MRI. 

 

The training dataset was considerably large, including 780 

samples of Graves’ disease, 438 samples of Hashimoto 

disease, 810 samples of subacute thyroiditis, and 860 

samples of normal cases. However, their validation strategy 

remains unclear, so the reported numbers must be evaluated 

with care (11). Reporting Medical imaging professionals are 

often confronted with referrer questions that, according to 

current knowledge and the state of the art, cannot be 

answered reliably or at all with the possibilities of imaging. 

In health care, AI is often intuitively associated with 

superhuman performance, so it is not surprising that there is 

such a high level of research activity in the area of 

prediction of unknown outcomes. Despite the high 

sensitivity and specificity of procedures such as PET/CT in 

tumor detection, it is still not possible to detect socalled 

micro metastases or early metastatic disease, although the 

detection of tumor spread has significant effects on the 

treatment concept. In an animal study of 28 rats injected 

with breast cancer cells, Ellmann et al. were able to predict 

later skeletal metastasis with an ANN based on 18F-FDG 

PET/CT and dynamic contrast-enhanced MRI data on day 

10 after injection with an accuracy of 85.7% (AUC, 0.90). 

Future prospective studies will show whether these results 

can also be achieved in people, but the approach seems 

promising. Another group achieved promising results in the 

detection of micro metastases in lymph nodes in head and 

neck cancers by combining radiomics analysis of CT data 

and 3-dimensional CNN analysis of 18F-FDG PET data 

through evidential reasoning. Another important question in 

oncology-one that often cannot be answered with imaging-is 

the prediction of the response to therapy and overall 

survival. A small study by Xiong et al. of 30 patients with 
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esophageal cancer demonstrated the feasibility of predicting 

local disease control with chemoradiotherapy using 

radiomics features from 18F-FDG PET/CT and machine 

learning models. Milgrom et al. analyzed 18F-FDG PET 

scans of 251 patients with stage I or II Hodgkin lymphoma. 

They found that 5 features extracted from mediastinal sites 

were highly predictive of primary refractory disease when 

incorporated into a machine learning model. In a study 

conducted to predict overall survival in glioblastoma 

multiforme by integrating clinical, pathologic, semantic 

MRI–based, and O-(2-18F-fluoroethyl)-L-tyrosine 

PET/CT–derived information as well as treatment features 

into a machine learning model, PET/CT was not found to 

provide additional predictive power; however, the fraction 

of patients with available PET data was relatively low 

(68/189), and 2 different PET reconstruction methods were 

used (8). A study by Papp et al. included L-S-methyl-11C-

methionine PET features, histopathologic features, and 

patient characteristics in a machine learning model to 

predict 36-mo survival in 70 patients with treatment-naive 

gliomas; an AUC of up to 0.9 was achieved. Ingrisch et al. 

tried to predict the outcome of 90Y radioembolization in 

patients with intrahepatic tumors from pretherapeutic 

baseline parameters (10). They trained a random survival 

forest with baseline levels of cholinesterase and bilirubin, 

type of primary tumor, age at radioembolization, hepatic 

tumor burden, presence of extrahepatic disease, and sex. 

Their model achieved a moderate predictive power, with a 

concordance index of 0.657, and identified baseline 

cholinesterase and bilirubin as the most important variables 

(10). Reporting in nuclear cardiology often involves the 

prediction of coronary artery disease and the associated risk 

of major adverse cardiac events.. The same group also 

evaluated the added predictive value of combining clinical 

information and myocardial perfusion imaging using the 

LogitBoost algorithm to predict major adverse cardiac 

events. Finally, when complex cases or rare diseases are 

being reported, it is often helpful to compare them with 

similar cases from databases and case collections. Although 

a textual searchfor example, in archived reportsis 

uncomplicated, an image-based search is often not possible. 

Through AI-based automatic image annotations (11) and 

content-based image retrieval, conducting large, direct 

image-based and ad hoc database searches and thereby 

finding potentially similar cases that might be helpful in a 

real diagnostic situation are increasingly possible. 

 

2. Limitations of AI  
 

Although the use of AI in health care certainly holds great 

potential, its limitations also need to be acknowledged. A 

well-known problem is the interpretability of the models. 

Although symbolic AI or simple machine learning models, 

such as decision trees or linear regression, are still fully 

understood by people, understanding becomes increasingly 

difficult with more advanced techniques and is now 

impossible with many deep learning models; this situation 

can lead to unexpected results and nondeterministic 

behavior (1). Although this issue also applies to other 

procedures in medicine in which the exact mechanisms of 

action are often poorly understood (e.g., pharmacotherapy), 

whether predictive AI can and may be used for far-reaching 

decisions if the exact mode of action is unclear remains 

unresolved. However, in cases in which AI acts as an 

assistant that provides hints or produces results that can be 

replicated by people or visually verified (e.g., by 

volumetry), the lack of interpretability of the underlying 

models may not be an obstacle to clinical application. For 

other cases, especially in image recognition and 

interpretation, certain techniques (such as activation maps) 

can provide highlevel visual insights into the inner workings 

of ANNs. The problem of interpretability is the subject of 

intensive research and various initiatives, although whether 

these will be able to keep pace with the rapid progress in the 

development of increasingly complex ANN architectures is 

unclear. Another problem is that many machine learning 

applications will always deliver a result on an input but 

cannot provide a measure of the certainty of their prediction. 

Thus, a human operator often cannot decide whether to trust 

the result of AIbased software or not. Possible solutions for 

this problem are the integration of probabilistic reasoning 

and statistical analysis in machine learning as well as 

quality control. Bias and prejudice are well-known problems 

in medicine. However, training AI systems with biased data 

will make the resulting models generate biased predictions 

as well (12) this issue is especially problematic because 

many users perceive such systems as analytically correct 

and unprejudiced and therefore tend not to question their 

predictions in terms of bias. One of the largest hurdles for 

AI in health care is the need for large amounts of structured 

and annotated data for supervised learning. Many studies 

therefore work with small datasets, which are accompanied 

by overfitting and poor generalizability and reproducibility. 

Therefore, increased collaboration and standardization are 

needed to generate large machine-readable datasets that 

reflect variability in real populations and that have as little 

bias as possible  

 

3. Outlook and Future Perspective  
 

Many publications on the topic of AI in medicine deal with 

some degree of automation. Whether it is the measurement 

(quantification and segmentation) of pathologies, the 

detection of pathologies, or even automated diagnosis, AI 

does not necessarily have to be superhuman to have a 

benefit for medicine. However, it is obvious that AI is 

already better than people in some areas, and this 

development is a consequence of technologic progress. 

Therefore, many physicians are concerned that they will be 

replaced by AI in the future-a concern that is partly 

exacerbated by insufficient knowledge of how AI works. On 

the other hand, Geoffrey Hinton, undoubtedly one of the 

most renowned AI experts, made the statement, ‘‘People 

should stop training radiologists now!’’ at a conference in 

2016. This statement triggered a lot of contradiction and is 

perhaps best explained by a lack of understanding of 

medicine in general and medical imaging in particular on 

his part. Although most experts and surveys reject the fear 

of AI replacing physicians, this fact does not mean that AI 

will have no impact on the medical profession. In fact, it is 

highly likely that AI will transform the medical profession 

and medical imaging in particular. In the near future, the 

automation of laborintensive but cognitively undemanding 

tasks, such as image segmentation or finding prior 

examinations across different PACS repositories, will be 

available for clinical application. This change should be 
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perceived not as a threat but as an opportunity to relieve 

oneself of this work and as a stimulus for the further 

development of the profession. In fact, it is imperative for 

the profession to grow into the role it will be given in the 

future by AI. The increasing use of large amounts of digital 

data in medicine will create the need for new skills, such as 

clinical data science, computer science, and machine 

learning, especially in diagnostic disciplines. It can even be 

assumed that the boundaries between the diagnostic 

disciplines will become blurred, as the focus will 

increasingly be less on the detection and classification of 

individual findings and more on the comprehensive analysis 

and interpretation of all available data on a patient (13). 

Although prospective physicians can be confident that 

medical imaging offers them a bright future, it is important 

for them to understand that this future is open only to those 

who are willing to acquire competencies like those 

mentioned earlier. Without the training of and necessary 

expertise among physicians, precision health care, 

personalized medicine, and super diagnostics are unlikely to 

become clinical realities. As Chan and Siegel and others 

have stated, physicians will not be replaced by AI, but 

physicians who opt out from AI will be replaced by others 

who embrace it. 
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