NANOFORMULATIONS FOR TOPICAL DISEASES

ARTI SHANKAR CHIKATE, SMITA PRAFULL BORKAR

Abstract: This study is to provide a complete idea about nanoformulations for topical medication delivery. Nanotechnology is a novel area in the field of medicine, especially pharmaceuticals for safe and targeted drug delivery. The medication concentration in the carrier is increased which increase the flow of drugs into and out of the skin. Both hydrophobic as well as hydrophilic medications and have the ability to release them in regulated manner for an extended period of time. The examples provided show that this field of study has a lot of potential and have a significant impact on clinical results as well as the development of new drugs.

Keywords: Nanoformulations; Skin; Topical Drug delivery

1. Introduction

Nanotechnology is a relatively new and quickly evolving technology that reduces the size of a material particle to that of a single atom, molecule, or cluster of molecules. The study of particles with a diameter of less than 100 nanometers is involved. [1] It covers topics as nanoparticle medication drug delivery and molecular nanotechnology and nanovaccinology applications. [2] These nanoformulations are intended to provide an effective, specific and flexible therapeutic choices. Nanotechnology-based devices and pharmaceuticals are more efficient, tailored, flexible and cost-effective.

1.1 Dermatology

Skin is the largest organ in the human body with total surface area around 2m². The skin is a fantastic vehicle via nanomaterials can be studied for drug administration, both in terms of active component delivery and efficacy. The skin's defense mechanism protects not only the physical body but also the immune system, metabolism, and UV rays. [3] The outermost layer is epidermis, around 50-150 m thick, the inner layer is dermis, about 250 m thick and subcutaneous tissue is about 50-150 m thick. The epidermis lacks blood vessels and nutrients so it is must to diffuse through the dermal-epidermal junction that keep epidermis alive. The five layers that make up the stratum corneum (basal layer) are stratum corneum, stratum lucidum, stratum granulosum, stratum spinosum and stratum germinativum. The epidermis without the stratum corneum is known as viable epidermis. [4] The stratum corneum, the epidermis' outermost layer (15-20 m), is important for the skin's barrier function. Keratinocytes are stiff, desmosome-linked epithelial cells, embedded in lamellar structure created by intercellular lipids. The basic skin permeation resistance presented by peculiar organization, which prevents molecules larger than 500 Da from passing through. [5] Keratinocytes, melanocytes, merkel cells and Langerhans cells may all play a role in the healthy function of epidermis. Keratinocytes develop and travel upward through a process known as keratinization i.e. from the basal layer to the outermost layer. Appendages such as pilosebaceous units, apocrine and eccrine sweat glands are present in addition to foregoing cellular components. The outer layers of the stratum corneum, known as the stratum disjunctum, are primarily desquamated. The stratum corneum is totally replaced depending on the anatomical region and age to preserve its optimal protective characteristics. [6] Passive diffusion is used to transport substances across the stratum corneum. There are three possible routes: transcellular, intercellular, and appendageal. [7]

1.3 Various skin disorders and their origin

<table>
<thead>
<tr>
<th>Skin disorders</th>
<th>Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacterial skin disease</td>
<td>Impetigo: a contagious bacterial skin infection forming pustules and yellow crusty sores. Cellulitis: a common and potentially serious bacterial skin infection.</td>
</tr>
<tr>
<td>Fungal skin disease</td>
<td>Superficial: caused by dermatophytes, non-dermatophyte molds as well as yeasts. Deep: occur from primary infection of skin or from cutaneous dissemination due to systemic infection. E.g. Sporotrichosis, Mycetoma and Chromomycosis. Systemic: yeast penetrate beneath the surface of skin and cause infection. e.g. Histoplasmosis, Blastomycosis.</td>
</tr>
<tr>
<td>Viral skin disease</td>
<td>Herpes Simplex Virus (HSV) Infection: virus causing contagious sores, most often around mouth and on the genitals. Eczema herpeticum: painful, blistering rash caused by the herpes simplex virus. Herpetic whitlow: painful infection of finger caused by herps virus. Herpes gladiatorum: skin infection caused by herpes virus type-1.</td>
</tr>
<tr>
<td>Inflammatory skin disease</td>
<td>Atopic dermatitis: appearance of rashes on skin Psoriasis: thought to build an immune system problem. Triggers include infections, stress and cold.</td>
</tr>
</tbody>
</table>

2. Designing of topical drug delivery system

Topical administration medications encompass a wide range of therapeutic purposes. They have certain physicochemical features, such as high lipophilicity and poor water solubility, despite having different molecular structures. The log octanol/water partition coefficients [log P] of medicines should be greater than 6.0. The rate and extent of drug administration are sufficient to achieve therapeutic local concentrations in a timely manner and provide long-term...
pharmacological action. [8] In comparison to any other route of drug administration, the effects of formulation on absorption characteristics are substantially stronger with topical medication delivery. [9] The target biologic membrane's barrier function presents a significant difficulty for optimal therapy. Drugs with poor skin/nail/cornea penetration have lower local bioavailability and effectiveness. The nail, corneal, stratum corneum, mucosal barriers have different morphologies, yet all obstruct drug transport significantly. The barrier function is primarily influenced by the epithelial architecture and physicochemical composition. For delivery efficiency and therapeutic impact, drug diffusion affinity and interactions between formulation excipients and membrane components are responsible. As a result, formulations and medications should be better designed and changed to pass through certain biologic barriers. [8]

3. The need of nanotechnology in Skin Infection

In recent years, the prevalence of fungal yeast infections, including resistant infections, has grown. Nanotechnology incorporation provides better skin penetration, long lasting effects, controlled drug release, enhance stability and many more. [10, 11]

4. Conventional approach

The traditional topical medicines are mainly designed to deliver the medicament locally rather than systemically. Traditional remedies are said to work on the skin's surface. Traditional topical skin care involves the application of ointments or lotions. When drugs from these preparations are applied to the skin, they partition, resulting in a highly concentrated layer of active substance that is quickly absorbed. [12] It could also cause side effects including irritation and allergic reactions. Uncontrolled evaporation of the active substance and an unpleasant odor are further disadvantages. [13] For medications to be effective, they must first reach the site of action in a considerable amount and then remain at the site in an effective concentration for a period of time. Although the skin, as the outermost organ, is easily accessible for medication application, this does not imply that the drug has an easy route to its target. Penetration enhancers, such as dimethylsulfoxide or propylene glycol leads, have been used to promote medication penetration across the skin layers. Penetration enhancers boost drug transport through the epidermal barrier, but they also increase undesired side effects due to increased drug levels in the blood. Penetration enhancers have been linked to irritative or even hazardous adverse effects, raising concerns about their usage in topical medication administration. [14,15]

5. Treatment strategies based on nanomedicines

5.1 Liposome

Liposomes are phospholipid-based vesicles with concentric lipid bilayers that contain an aqueous phase and are high in phosphatidylcholine. The capacity to localize medications at the site of action, biodegradability, biocompatibility, enhanced deposition within skin, and protection of drug molecules from the inactivating effects of external circumstances are all advantages of liposomes for the treatment of topical infectious illnesses. [16-22] Liposomes also have the advantage of overcoming limited stratum corneum permeability, resulting in increased antimicrobial molecule permeation via the skin layers while lowering systemic absorption [23]. The presence of phospholipids in liposomal systems causes bilayer fluidity in the stratum corneum to be disrupted, lowering skin barrier characteristics.
Table 1: List of various Nanomedicines for the treatment of Topical Infectious Disorders along with their composition and target pathogen

<table>
<thead>
<tr>
<th>Delivery System</th>
<th>Type of Infection</th>
<th>Composition</th>
<th>Studies</th>
<th>Study Findings</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liposome</td>
<td>Bacterial infection which is result of lesions and burn</td>
<td>Gelatin, usnic acid, phosphatidylcholine, propylen</td>
<td>In vitro and in vivo studies</td>
<td>Liposomal system showed the development and maturation of granulation tissue and scar repair as compared to silver sulphadiazine ointment</td>
<td>24</td>
</tr>
<tr>
<td>Terbinafine Hydrochloride (TBFHCL)- loaded liposomal gel</td>
<td>Onychomycosis (fungal infection)</td>
<td>Phospholipon 90 G, Lipoid S 100, Lecithin, Cholesterol</td>
<td>In vitro release and ex vivo permeation study across the nail plate</td>
<td>Formulation proved to be a promising system for ungual drug delivery due to better accumulation at the infection site</td>
<td>25,26</td>
</tr>
<tr>
<td>Itraconazole (ITR)- loaded liposomes</td>
<td>Keratitis caused by Aspergillus flavus</td>
<td>Phospholipid, Cholesterol</td>
<td>In vitro and in vivo studies</td>
<td>Liposomal system demonstrated better antifungal activity than the unencapsulated drug</td>
<td>27</td>
</tr>
<tr>
<td>Ketoconazole (KTZ)- loaded Deformable liposomes (DL)</td>
<td>Fungal infection</td>
<td>Phospholipid, cholesterol and Sodium dodecyl sulfate</td>
<td>In vitro and in vivo studies</td>
<td>KTZ- loaded DL acted as a drug depot for effective in fungal infection</td>
<td>28</td>
</tr>
<tr>
<td>Idoxuridine (IDU)- loaded liposomal gel</td>
<td>Herpes Simplex infection (HSV)</td>
<td>Phosphatidylcholine and cholesterol</td>
<td>In vitro, ex vivo and double-blind clinical studies</td>
<td>Study suggested improvement of therapeutic efficacy of IDU entrapped in liposomes in treatment of HSV-1 and HSV-2 patients</td>
<td>29</td>
</tr>
<tr>
<td>Ethosomes</td>
<td>Fungal infection</td>
<td>Phospholipon 90 G, Lipoid S</td>
<td>caused In vitro release</td>
<td>Ethosomal gel formulation</td>
<td>30</td>
</tr>
<tr>
<td>Econazole (EN)- loaded nanoethosomal gel</td>
<td>Fungal infection</td>
<td>Soy-bean phosphatidylcholine and ethanol</td>
<td>In vitro and ex vivo studies</td>
<td>EN ethosomal gel showed controlled drug release and better antifungal activity</td>
<td>31</td>
</tr>
<tr>
<td>Mupirocin (MP)- loaded liposomes</td>
<td>Burn related infections</td>
<td>Phosphatidylcholine, chitosan hydrogel</td>
<td>in-hydrogels In vitro release</td>
<td>Superior bioadhesiveness and sustained release profile in burn therapy</td>
<td>32</td>
</tr>
</tbody>
</table>
Silver nanoparticle loaded amorphous hydrogel (SNP-CMC) | Infected deep wounds | Silver nanoparticles, carboxymethylcellulose | Cytocompatibility and antimicrobial activity | SNP-CMC could be ideal for the treatment of deep infected wounds | 33

Lipidic Nanoparticles Fluconazole loaded solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) | Cutaneous candidiasis | Compritol 888 ATO, Oleic acid, Egg phosphatidylcholine, Pluronic F-68 | In vitro and ex vivo studies | NLCs provided a good skin targeting effect and sustained release resulting in effective treatment of cutaneous fungal infection | 34

Emulsion Pseudolatic acid (PA) loaded Microemulsion (ME) based hydrogel | Fungal infection | Isopropyl myristate, Ceramphor EL, Transcutol P, Carbopol gel | In vitro and ex vivo studies | ME enhanced in vitro permeability, in vivo dermal bioavailability and antimicrobial activity | 35

Itraconazole (ITR) loaded ME | Superficial skin infections | Acconon CC400, Acconon Sorb20, Capmul, Tween 40 | In vitro studies | The system proved good alternative to conventional antifungal therapies against superficial fungal infection | 36

Acylovir (ACV) loaded | Cutaneous Herpetic Infections | Transcutol, Labrafac, Tween 20, Span 20 | ME In vitro and in vivo studies | The system resulted in suppression of herpetic skin lesions | 37

Eucalyptus oil nanoemulsion (NE) | Staphylococcus aureus (SA) and Methicillin resistant Staphylococcus aureus (MRSA) infection | Eucalyptus oil, Triton X-100 and Tween 80 | In vitro and skin safety studies | The studies suggested the non-irritant nature and higher wound contraction rate with respect to control and neomycin treated rats | 38

5.2 Ethosomes

Ethosomes are deformable vesicles that contain a high concentration of ethanol and water and are made up of phospholipids (phosphatidylcholine, phosphatidylserine, and phosphatidic acid). The inelasticity of phospholipids and high ethanol content helps them to squeeze through skin pores, resulting in deeper penetration and significant transdermal flux in the skin bilayers. [39,40] Because of their high ethanol concentration and malleability, ethosomes have the potential to improve medication penetration across the strong keratinized stratum corneum barrier. [41]

5.3 Transfersomes

Transfersomes are a type of liposome that is made up of natural phospholipids such phosphatidylcholine plus a single-chain surfactant that functions as an edge activator. [42,43] The aqueous core of these liposomal systems is surrounded by a lipid bilayer that incorporates both hydrophilic and hydrophobic molecules. Deformable liposomes had previously been reported to have the intrinsic ability to enhance the in vitro delivery of various medications and to penetrate intact skin in vivo for the treatment of various topical infections, according to a number of studies. [44-46]

5.4 Solid Lipid Nanoparticles (SLNs)

SLNs (sub-micron colloidal carriers) are sub-micron colloidal carriers (50nm-1µm) made up of physiological lipid distributed in water/aqueous surfactant solution. SLNs have a number of advantages, including controlled drug release, improved drug stability, the ability to incorporate hydrophobic and hydrophilic drugs, biocompatibility and biodegradability, and increased skin hydration due to greater occlusivity, making them effective for the treatment of topical infections. [47,48] The use of lipidic nanoparticles for topical drug delivery in skin conditions is an outstanding tool in the dermatological sector. The carriers’ antibacterial capabilities are due to their large surface area, which allows for increased drug penetration into bacterial cell walls, the creation of an occlusive film on the skin’s surface, and biocompatibility with tissues. [47]

5.5 Nanostructured Lipid Carriers (NLCs)

The second generation of lipidic nanocarriers, NLCs, were created to address the shortcomings of SLNs, such as limited drug loading and drug leakage during storage due to lipid polymorphism. [48] NLCs are made up of a mixture of solid lipid(s) and liquid lipid(s), resulting in a less precise crystalline structure that allows for increased drug integration. [49-52] Successful formulations and evaluations of various medications for skin disease therapy have been reported in the literature, demonstrating the relevance of NLCs for cutaneous illnesses and infections. The tiny size of lipidic carriers ensures direct contact with the SC barrier, allowing more medication to penetrate the skin. [53-57]

5.6 Polymeric Nanoparticles

Polymeric nanoparticles are colloidal particles with a diameter of less than a micron that are used to encapsulate active medicinal ingredients within a polymeric matrix or adsorb to the surface. [58] Improved drug bioavailability, larger loading capacity, ability to localize at infectious target sites due to increased permeability, and the surface of nanoparticles can be easily chemically modified with either drug moieties or targeting ligands are all advantages of polymeric NPs as carriers for topical infections. [59]
5.7 Lipid-Polymer Hybrid Nanoparticles (LPHNPs)

LPHNPs are sophisticated nano-drug delivery systems made up of liposomes and polymeric nanoparticles that have been hybridized. The hybrid nanostructures were created to overcome the shortcomings of both systems, such as low drug loading capacity, high initial burst release, drug leakage, polymer cytotoxicity, and the production process' use of hazardous organic solvents. [60] High structural integrity, stability, prolonged release from the polymer core, biocompatibility, enhanced drug loading capacity, and targeted drug delivery are all advantages of LPHNPs. [61-63]

5.8 Microemulsion and Nanoemulsion Microemulsions

(MEs) are transparent, isotropic monophasic systems with low interfacial tension made up of two immiscible liquids. When compared to traditional vehicles, ME as a possible delivery method has the possibility to improve topical medication delivery of both hydrophilic and lipophilic components. [64-68] It's an excellent carrier for increasing in vitro skin permeability because it contains permeation enhancers as a formulation component and has a small globule size. In comparison to the aqueous suspension, griseofulvin, an antifungal medication included as ME, showed 7-times higher drug permeability and 48-times higher skin deposition. [69]

5.9 Hydrogel

The three-dimensional network of hydrophilic polymers held together by covalent bonds or cohesive forces is known as a hydrogel. Because of their biocompatibility, drug dispersion within the matrix, and high degree of control gained due to the polymer's unique properties, these swelling polymeric systems have piqued interest in the field of controlled drug delivery. [70] Hydrogels have traditionally been utilized to deliver hydrophilic medicinal molecules with excellent solubility in both the hydrophilic hydrogel matrix and the aqueous solvent swelling. Hydrogels have been extensively studied as carriers for antibacterial, antifungal, and antiviral medicines in topical applications. [71]

5.10 Silver nanoparticles

(SNPs) are ultrafine particles with a diameter of less than 100 nm and a silver content of 10000–15000 atoms. They are made by converting metallic silver into ultrafine particles. [72] The advent of antibiotic resistance has reignited interest in silver nanoparticles which cause bacterial cell death by modifying the structure of the cell wall and nuclear membrane. Silver also binds to the thiol groups of bacterial respiratory enzymes, halting respiration and killing the bacterium. [73] Topical ointments and lotions containing SNPs have been widely utilized to prevent infection in burns and open wounds. [74]

6. Conclusion

Infectious diseases caused by a variety of microorganisms, as well as some inflammatory diseases, provide considerable problems and are a developing research area. The advent of extremely resistant microorganisms has made combating the onus of topical infections even more difficult. The type of infection and the state of the skin layers determine the answer to this serious problem. Due to inadequate skin permeability and retention, traditional formulations such as ointments and creams have failed to produce the necessary therapeutic impact. The formulation scientists are on the lookout for the optimal drug delivery mechanism to boost the medicine's local concentration at the preferred spot, limit side effects, and overcome pathogenic resistance. The use of nanotechnology for drug delivery has resulted in a number of significant advancements in the pharmaceutical sector.

References

liposomal gel of idoxuridine for the treatment of
evaluation. J Mater Sci Mater M
ketoconazole: characterization, in vitro and in vivo
targeted lipid vesicles as novel nano
formulation in experimental Aspergillus f
terbinafine HCl liposome
osonychomycosis. Eur J Pharm Sci, 48(4
Tanriverdi S. T., Ozer O. (2013). Novel topical
formulations of Terbinafine-HCl for treatment of
Verma P., Pathak K. (2010). Therapeutic and
Hurler J., Berg O. A., Skar M., Conradi A. H.,
Johnsen P. J., (2012). Skalko-Basnet N. Improved
burns therapy: liposomes-in-hydrogel delivery system for
C., Ghosh D. Preparation and characterization of
silver nanoparticle loaded amorphous hydrogel of
delivery of drugs for the effective treatment of fungal
carrier approach for skin with enhanced stability, efficacy and dermatokinetic profile. RSC Adv., 6, 13-27.
based membrane containing usnic acid-loaded liposome improves dermal burn healing in a porcine
Tanriverdi S. T., Ozer O. (2013). Novel topical
formulations of Terbinafine-HCl for treatment of
Sudhakar B., Varma J. N., Murthy K. V. (2014). Formulation, characterization and ex vivo studies of
targeted lipid vesicles as novel nano-carrier of
ketocazole: characterization, in vitro and in vivo
liposomal gel of idoxuridine for the treatment of
formulations of Terbinafine-HCl for treatment of
[31] Verma P., Pathak K. (2010). Therapeutic and
[32] Hurler J., Berg O. A., Skar M., Conradi A. H.,
Johnsen P. J., (2012). Skalko-Basnet N. Improved
burns therapy: liposomes-in-hydrogel delivery system for
C., Ghosh D. Preparation and characterization of
silver nanoparticle loaded amorphous hydrogel of
innovative carrier for enhanced delivery into and
across the skin: Original research article: Ethosomes -
lipid suspensions on the skin: permeation enhancement, vesicle penetration, and transdermal drug
[43] Touitou E., Dayan N., Bergelson L., Godin B., Eliaz

potential in methicillin sensitive Staphylococcus aureus (MSSA) involved burn wound infection. J Drug Target., 23(10), 943-52.

