Comparative Analysis and Design of Multistory Reinforced Concrete SMRF and OMRF Buildings in Seismic Zone II

Prasanna Pradip Kanoje¹, Hrashvardhan Rangari², Girish Sawai³

¹Research Scholar, V M Institute of Engineering and Technology, Nagpur, Structural Department, Rashtrasant Tukdoji Maharaj Nagpur University, Nagpur, Maharashtra

²Assistant Professor, V M Institute of Engineering and Technology, Nagpur, Structural Department, Rashtrasant Tukdoji Maharaj Nagpur University, Nagpur, Maharashtra

³Head of the Department, V M Institute of Engineering and Technology, Nagpur, Structural Department, Rashtrasant Tukdoji Maharaj Nagpur University, Nagpur, Maharashtra

Abstract: The present work has been performed on G+ 15 story OMRF & SMRF Symmetrical Building for seismic zone II as per IS 1893:2002 (Part I). Building has been Modelled Analysed in ETABS & design Calculations & optimizations are done in RCDC. Structure Modelled is having 6 Bays of 4m & 1 bay of 5m along 29m side & 4 Bays of 4m & 2 Bays of 3m along 22m side. Amount of steel required, Story drift, story Displacements, lateral loads, story stiffness, story moments are taken as Parameters of comparison.

Keywords: SMRF, OMRF, Story drift, Earthquakes

1. Introduction

Some of the largest earthquakes of the world have occurred in India & the earthquake engineering development in the country started rather early. After, 1987 earthquakes in Assam, A new Earthquake Resistant type of housing was developed which is still prevalent in north east India. After the Baluchistan earthquakes of 1935 the evolution of first seismic zone map started

Seismic analysis will ascertain the conduct of RCC structures during seism. The seismic evaluation greatly hinge on materials, Ductility of structural members, strength, stiffness & Reinforcement detailing. Criteria for Earthquake resistant design of structures (IS1893:2002) Have provision to follow different framing system.

The code has provision over SMRF & OMRF framing systems. The best framing system whirl economical, dependable, safe & better seismic performance. Indian seismic codes divides the country into five zones (I, II, III, IV, V) Depending upon seismic risks. OMRF is commonly adopted type of framing in mild seismic zones. As the seismic peril increases OMRF becomes deficient to defy the gain of lateral force and is supersede by SMRF. OMRF is comprised of less stringently proportioned and detailed members and joints, while SMRF consist of additional requisite to ameliorate inelastic response characteristics.

The study focuses on seismic performance of various moment resisting frames in high rise buildings. The two buildings are provided with SMRF & OMRF Framing system and analysed in seismic zone II. The analysis is carried out in ETABS software. The analysis and results are then compared to find out the best framing system.

2. Methodology

The Methodology follows in this study is;

- 1) Study of ETABS & RCDC software's and literature Reviews.
- 2) Preparation of the Architectural plan of the building in AutoCAD software.
- 3) Framing of the above mentioned building in ETABS-19 software.
- Analysing the Building with SMRF & OMRF Configuration in Seismic Zone II Using ETABS-19. Designing the structure on the basis of above mentioned Analysis in RCDC-V9.software.
- 5) Comparative study of all the results in terms of Max. Shear force, Maximum Bending Moment, Max. Story drift, Economical & serviceability.

3. Building Description & Modelling Details

Building Description

S. No.	Description	Dimensions
1.	Plan dimensions	31m x 22m
2.	No of stories	G+15
3.	Total height of building	49.5M
4.	Height of each story	GF=4.5M, Rest all
		floors=3m each
5.	Size of beams	300 x 500 mm
6.	Size of columns	300 x 600 mm
7.	Thickness of slab	150 mm
8.	Thickness of walls	230 mm
9.	Seismic zone	II
10.	Soil Condition	Medium Soil
11.	Importance Factor	1.2
12.	Response Reduction Factor	SMRF=5
	(R)	OMRF=3
13.	Damping of structure	0.05
14.	Live loads	a) On Roof = 1.5 KN/m2

Volume 11 Issue 5, May 2022 <u>www.ijsr.net</u> Licensed Under Creative Commons Attribution CC BY

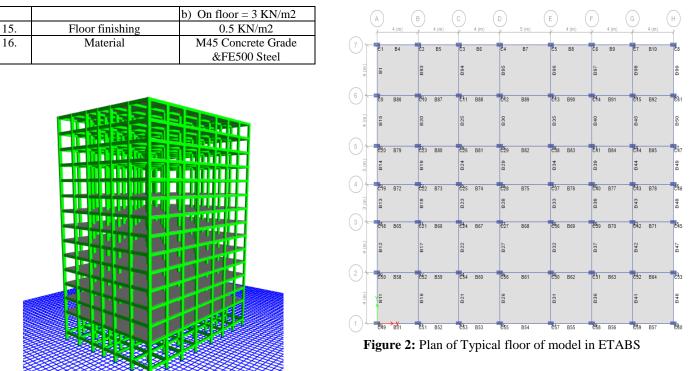


Figure 1: 3D Rendered view of model in ETABS

4. Load Cases & Load Application On The Model

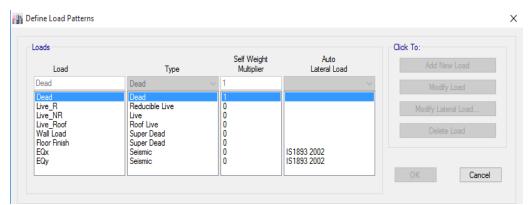


Figure 3: Load Patterns applied

Direction and Eccentricity		Seismic Coefficients Seismic Zone Factor, Z		
X Dir + Eccentricity	Y Dir + Eccentricity	Per Code	0.1 ~	
X Dir - Eccentricity Y Dir - Eccentricity		O User Defined		
Ecc. Ratio (All Diaph.)		Ste Type	H ~	
Overwrite Eccentricities	Overwrite	Importance Factor, I	1.2	
Story Range		Time Period		
Top Story	00_F15 ~	O Approximate Ct (m) =		
Bottom Story	Base 🗸	O Program Calculated		
Factors		Output Defined T =	0.72 sec	
Response Reduction, R	5			

Figure 4: Seismic Load Input Pattern for SMRF

Volume 11 Issue 5, May 2022

<u>www.ijsr.net</u>

Licensed Under Creative Commons Attribution CC BY

Direction and Eccentricity		Seismic Coefficients			
X Dir X Dir + Eccentricity X Dir - Eccentricity	Y Dir Y Dir + Eccentricity Y Dir - Eccentricity	Seismic Zone Factor, Z Per Code User Defined 		0.1	~
Ecc. Ratio (All Diaph.) Overwrite Eccentricities	Overwrite	Site Type Importance Factor, I		II 1.2	~
Story Range		Time Period			
Top Story	00_F15 ~	Approximate	Ct (m) =		
Bottom Story	Base ~	O Program Calculated		[
Factors		User Defined	T =	0.72	sec

Figure 5: Seismic Load Input Pattern For OMRF

5. Graphical Results

A) For Ordinary moment Resisting Frame (R=3)& IS 456:2000

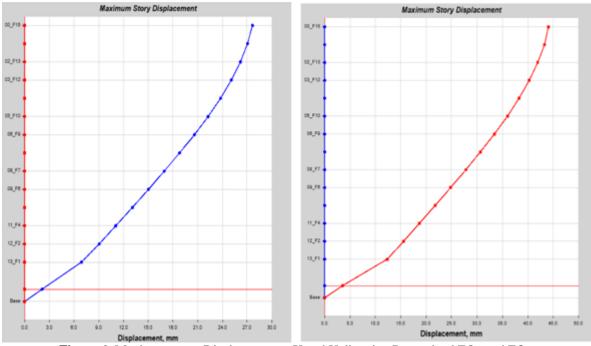


Figure 6: Maximum story Displacement at X and Y direction Due to load EQx and EQy

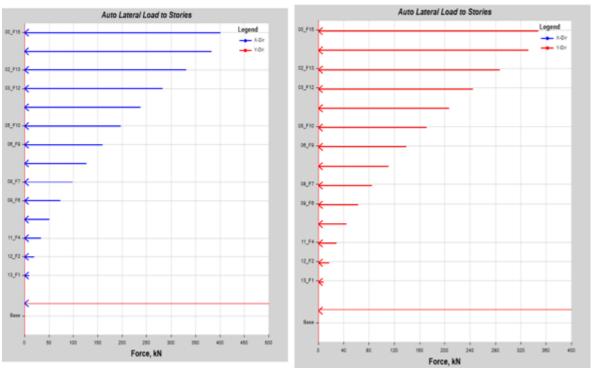


Figure 7: Lateral Loads at X and Y direction Due to load EQx and EQy

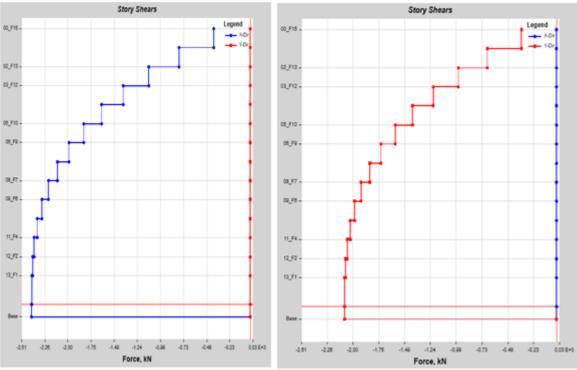


Figure 8: Story Shear at X and Y direction Due to load EQx and EQy

Volume 11 Issue 5, May 2022 <u>www.ijsr.net</u> Licensed Under Creative Commons Attribution CC BY

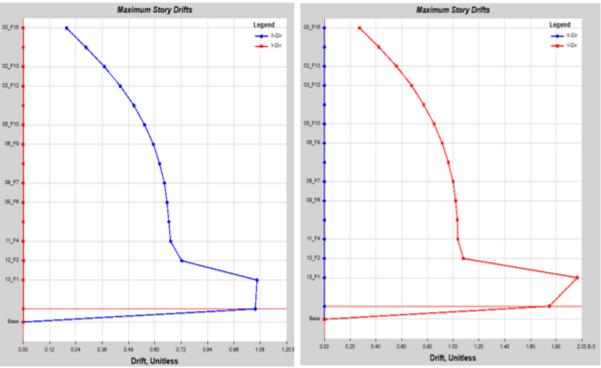


Figure 9: Story Drifts at X and Y direction Due to load EQx and EQy

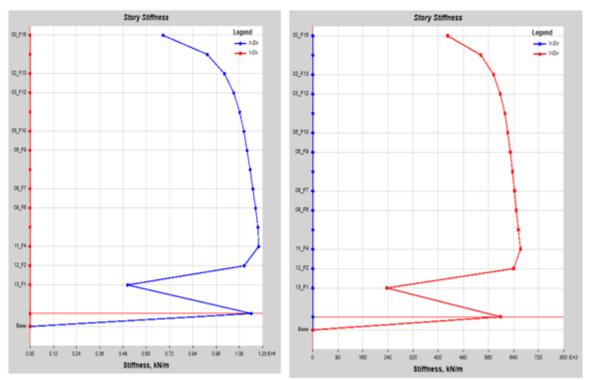


Figure 10: Story Stiffness at X and Y direction Due to load EQx and EQy

DOI: 10.21275/SR22527131214

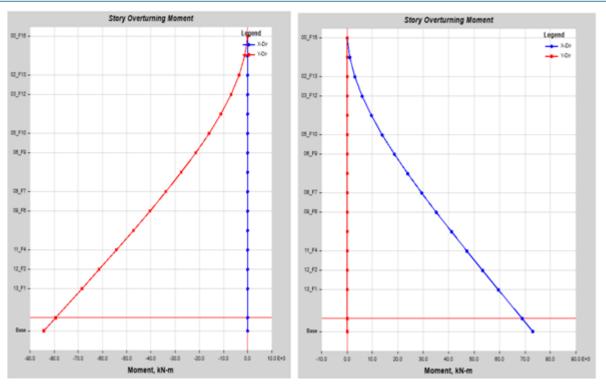
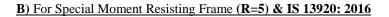



Figure 11: Story Moments at X and Y direction Due to load EQx and EQy

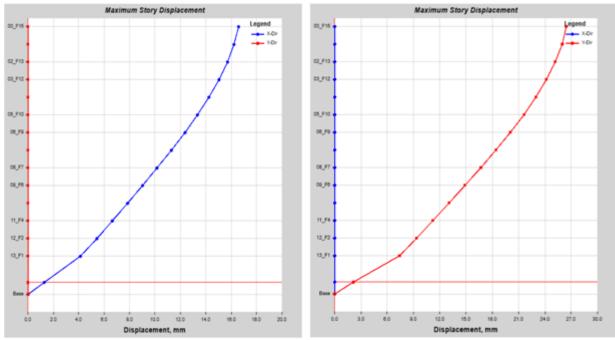


Figure 12: Maximum story Displacement at X and Y direction Due to load EQx and EQy

DOI: 10.21275/SR22527131214

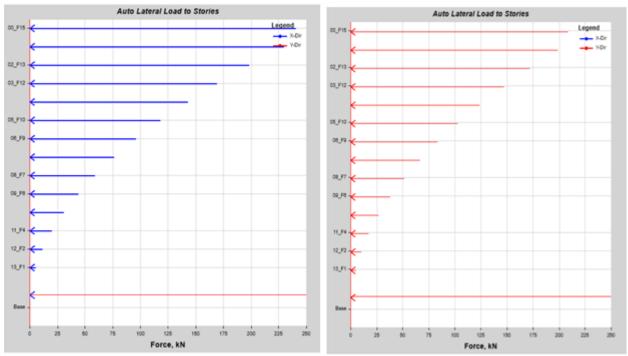


Figure 13: Lateral Loads at X and Y direction Due to load EQx and EQy

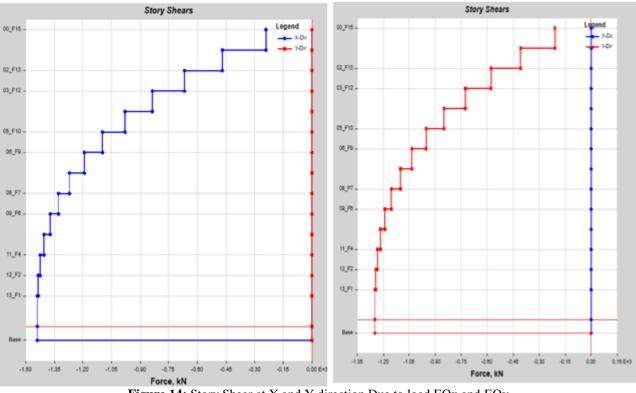


Figure 14: Story Shear at X and Y direction Due to load EQx and EQy

Volume 11 Issue 5, May 2022 <u>www.ijsr.net</u> Licensed Under Creative Commons Attribution CC BY

DOI: 10.21275/SR22527131214

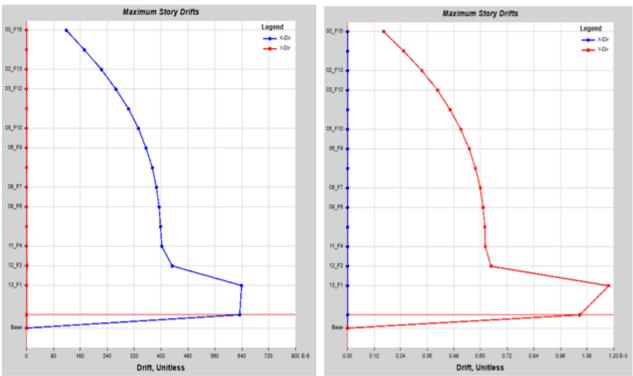


Figure 15: Story Drifts at X and Y direction Due to load EQx and EQy

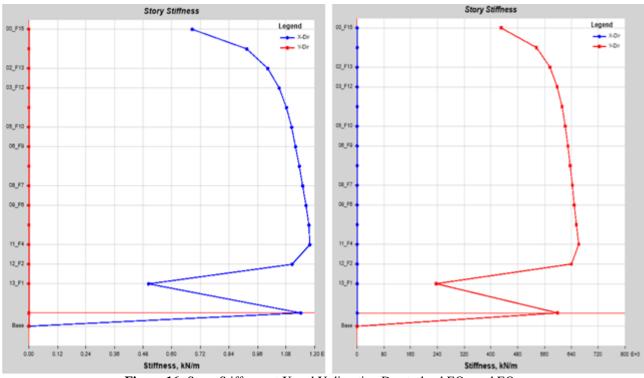


Figure 16: Story Stiffness at X and Y direction Due to load EQx and EQy

Volume 11 Issue 5, May 2022 <u>www.ijsr.net</u> Licensed Under Creative Commons Attribution CC BY

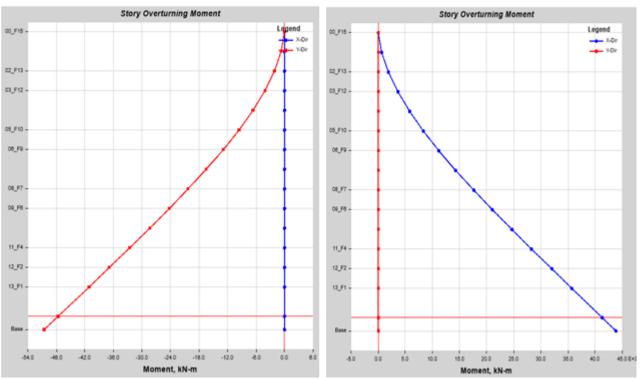


Figure 17: Story Moments at X and Y direction Due to load EQx and EQy

6. Conclusions

- a) From the graphical observations it is observed that In case of SMRF buildings when subjected to Seismic forces the Storey displacement is found to be 44% less in X direction & 33.33% less in Y direction than OMRF Buildings
- b) Similarly from the analysis we also Observed that Effect of Lateral loads Acting on SMRF buildings are 37.5% (x direction) & 40.78 % (y direction) Less than OMRF Buildings.
- c) The Storey drifts and Storey shear values For SMRF buildings are observed to be less than OMRF buildings. SMRF is more efficient than OMRF in resisting Shear.
- d) The SMRF Framing System offers better than OMRF in terms of **Bending Moment**. Increase in bending moment increases the area of steel, hence OMRF is uneconomical.
- e) The story **Stiffness Value** for SMRF are also found less than that OMRF especially in X direction.

References

- C. Ambika & N. Prerna "Analysis & Design of RC Moment Resisting frames with & withoutshear wall for different seismic parameters" *International Journal of Innovative Science, Engineering & Technology*, 1(6),(2014)
- [2] G.V.S Prasad & S. Adhiseshu "A comparative study of RC SMRF & OMRF Structural system for tall & high rise buildings subjected to seismic load" *International journal of Research in Engineering & Technology*, 2319-1163, (2013)
- [3] Shantilal Patel, Digvijay Chauhan & Netram Meena "Performance Analysis of OMRF Braced frame and SMRF frame Under Seismic condition" *International*

Referred Journal OfEngineering & Science 2319-183 X (Jul 2018) Criteria For Earthquake Resistant Design of structures (IS 1893:2002)

- [4] V. Varghese & T. Borkar "Comparative study of SMRF building over OMRF building withSeismic & wind effect" *International journal of Engineering Research & Applications*, 3(3),1501-1503. (2013)
- [5] A.K. Yadav & A. Rai "A Sesimic comparison of OMRF & SMRF Structural system for regular and irregular buildings. *International Journal For Research in Applied Science &Engineering Technology*, 5(3),(2017)

DOI: 10.21275/SR22527131214

1964