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Abstract: A retrial queuing system with two types of batch arrivals is considered. The arrivals are called type I and type II customers. 

The type I customers arrive in batches of size k with probability ck and type II customers arrive in batches of size k with probability dk 

(k>0) according to two independent Poisson processes with rates 𝝀𝟏  𝒄 =  𝝀𝟏 𝒌 𝒄𝒌
∞
𝒌=𝟏  and 𝝀𝟐  𝒅

 =  𝝀𝟐 𝒌 𝒅𝒌
∞
𝒌=𝟏  respectively. Service 

time distributions are identical, independent and are different for both type of customers. If the arriving customers are blocked due to 

server being busy, type I customers are queued in a priority queue of infinite capacity where as type II customers enter into a retrial 

group of infinite capacity in order to seek service again after a random amount of time. All the customers in the retrial group behave 

independent of each other. The retrial time is exponentially distributed with rate  𝜶. A type I or type II customer who has received service 

departs the system with probability (1-q) or returns to the retrial group with probability q. For this model the joint distribution of the 

number of customers in the priority queue and in the retrial group is obtained in closed form. Some particular models and operating 

characteristics are obtained. A real life example is given. Few numerical models are generated by assuming particular values to the 

parameters. 
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1. Introduction 
 

In the field of queuing theory, retrial queues have been 

concentrated research topic for the last sixty years. Retrial 

queues are characterised by the fact that an arrival finds the 

server busy upon arrival is asked to leave or decides to leave 

the service area and joins a queue called orbit. After some 

random time the customer in the orbit can repeat their 

request for service. This request is independent of the rest of 

the customers in the orbit. For detailed survey one can see 

Yang and Templeton (1987), Falin (1992), Choi and Chang 

(1999), Artalejo and Gomez-Corral (2008) and Kim and 

Kim (2016). 

 

Falin (1984) investigated a multichannel retrial queuing 

system. Choi and Park (1990) investigated an M/G/1 retrial 

queue with two types of customers in which the service time 

distribution for both type of customers are the same. Khalil 

et al. (1992) investigated the above model at Markovian 

level in detail. Falin et al. (1993) investigated a similar 

model, in which they assumed different service time 

distributions for both type of customers. In 1995, Choi et al., 

studied an M/G/1 retrial queue with two types of customers 

and finite capacity. Kalyanaraman and Srinivasan (2004), 

studied an M/G/1 retrial queue with geometric loss and with 

type I batch arrivals and type II single arrivals. Lee (2005) 

studied a non-Markovian retrial queue with two types of 

customers and with feedback of customers. In 2011, 

Thillaigovindan and Kalyanaraman have analyzed a 

feedback retrial queuing system with two types of arrivals. 

Kalyanaraman (2012) analysed a feedback retrial queue with 

two types of batch arrivals. Gao (2015) analyzed a retrial 

queue with two class of customers, in which the primary 

customers have pre-emptive priority over secondary 
customers. Toth and Sztrik (2021) studied the performance 

analysis of two-way communication retrial queuing systems 

with non-reliable server and impatient customers in the 

orbit. 

 
This paper deal with a retrial queuing system with two types 

of batch arrivals and with feedback to orbit, in which both 

type of customers arrive in batches of variable size. In 

section 2, we give the descrition of the system. In section 3, 

we obtain the joint probability generating function for the 

number of customers in the priority queue and in the retrial 

group when the servers are busy as well as idle.  The 

expressions for some particular models are deduced in 

section 4. Some operating characteristics are derived in 

section 5 and a real life related situation is given in Section 

6. A numerical study is carried out in section 7. Finally, the 

last section ends with a conclusion. 

 

2. The Model 
 
A retrial queuing system with two types of customers is 

considered in this paper. The type I customers arrive in 

batches of size k with probability ck and type II customers 

arrive in batches of size k with probability dk (k>0) 

according to two independent Poisson processes with rates 

𝜆1  𝑐 =  𝜆1  𝑘 𝑐𝑘
∞
𝑘=1  and 𝜆2 

 𝑑 =  𝜆2  𝑘 𝑑𝑘  ∞
𝑘=1 respectively. 

The services are given singly by a server. If type II 

customers, upon arrival find the server busy, they enter in to 

an orbit of infinite capacity in order to seek service again 

after a random amount of time. All the customers in the 

retrial group behave independent of each other. The retrial 

time is exponentially distributed with mean   1 𝛼  . The type 

I customers are queued in a priority queue of infinite 

capacity after blocking, if the server is busy. As soon as the 

server is free, the customers in the priority queue are served 

using FCFS (First Come First Served) rule and the 

customers in the retrial group are served only if there are no 

customers in the priority queue. A type I or type II customer 
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who has received service departs the system with probability 

(1-q) or returns to the retrial group with probability q, 0<q<1  

for additional service, as feedback customer. The model 

description is given in Figure 2.1. 

 

 
 
The service time distributions for both type of customers are 

independently distributed random variables with different 

distributions. Supplementary variable technique is used for 

the analysis and the variable considered is the residual 

service time of a customer in service. The service time 

density functions are 𝑏𝑘  (𝑥);  𝑘 = 1,2  and 𝐵𝑘
 ∗  𝑠 =

 𝑒−𝑠𝑥
∞

0
𝑏𝑘  (𝑥)𝑑𝑥, 𝑘 = 1,2 is the Laplace transformation of 

the distribution function 𝑏𝑘  (𝑥). 
 

The Stochastic process related to this model is  𝑋 𝑡  =

  𝜉 𝑡 , 𝑁𝑝 𝑡 , 𝑁𝑟 𝑡 , 𝑆𝑘 𝑡  : 𝑡 ≥ 0   where 

𝑁𝑝  (𝑡) = number of customers in the priority queue at time t 

𝑁𝑟  (𝑡)= number of customers in the retrial group at time  t 

𝜉 (𝑡)= the server state at time t, 
𝜉 𝑡 

=   
0,        𝑤ℎ𝑒𝑛 𝑡ℎ𝑒 𝑠𝑒𝑟𝑣𝑒𝑟 𝑖𝑠 𝑖𝑑𝑙𝑒                                                     
1, 𝑤ℎ𝑒𝑛 𝑡ℎ𝑒 𝑠𝑒𝑟𝑣𝑒𝑟 𝑖𝑠 𝑏𝑢𝑠𝑦 𝑤𝑖𝑡ℎ 𝑎 𝑡𝑦𝑝𝑒 𝐼 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟   
2,           𝑤ℎ𝑒𝑛 𝑡ℎ𝑒 𝑠𝑒𝑟𝑣𝑒𝑟 𝑖𝑠 𝑏𝑢𝑠𝑦 𝑤𝑖𝑡ℎ 𝑎 𝑡𝑦𝑝𝑒 𝐼𝐼 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟

  

and   

𝑆𝑘 𝑡 =
𝑡ℎ𝑒 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑎 𝑡𝑦𝑝𝑒 𝑘 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟  

𝑖𝑛 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡, 𝑘 = 1,2. 
 
The stochastic process {𝑋 𝑡 :  𝑡 ≥ 0}   is Markov process 

with state space 

Ω =   0,1,2   𝑋   0,1,2, …   𝑋  0,1,2, …   𝑋  (0,∞)   and the 

corresponding stationary process is    𝜉,   𝑁𝑝 ,   𝑁𝑟 ,   𝑆𝑘  . 

 
The related probabilities are defined as 

 𝑞𝑗  𝑡 = 𝑃𝑟 𝜉 𝑡 = 0, 𝑁𝑟 𝑡 = 𝑗    and 

𝑝 (𝑘, 𝑖, 𝑗; 𝑥, 𝑡)𝑑𝑥 =  𝑃𝑟{𝜉 (𝑡) = 𝑘, 𝑁𝑝  (𝑡) = 𝑖, 𝑁𝑟  (𝑡) =

𝑗, 𝑆𝑘  (𝑡)𝜖 (𝑥, 𝑥 + 𝑑𝑥)}, 𝑘 = 1, 2. 

 

In steady state, the corresponding probabilities are,     𝑞𝑗 =

log𝑡→∞ 𝑞𝑗  𝑡    and  

𝑝 𝑘, 𝑖, 𝑗; 𝑥 = log𝑡→∞ 𝑝 𝑘, 𝑖, 𝑗; 𝑥, 𝑡     and the Laplace 

transformation of 𝑝 (𝑘, 𝑖, 𝑗; 𝑥) is  

𝑝 ∗  𝑘, 𝑖, 𝑗; 𝑠 =  𝑒−𝑠𝑥
∞

0

𝑝 𝑘, 𝑖, 𝑗; 𝑥 𝑑𝑥,

𝑘 = 1,2, ∶ 𝑖, 𝑗 ≥  0. 
 

It is clear that,   

𝑝 ∗  𝑘, 𝑖, 𝑗; 0 =  p k, i, j; x dx = Pr = {ξ = k, Np =
∞

0

i, Nr = j}  

is the steady state probability that there are i customers in 

the priority queue, j customers in the retrial group and the 

server services a k
th

  type customer. 

For −1 ≤  𝑍1, 𝑍2   ≤ 1,   the following probability 

generating functions are defined for the analysis: 

 𝑄 𝑍2 =   𝑞𝑗𝑍2
𝑗∞

𝑗=0  

 𝐶 𝑍1 =   𝑐𝑗𝑍1
𝑗∞

𝑗=0  

 𝐷 𝑍1 =   𝑑𝑗𝑍2
𝑗∞

𝑗=0  

𝑃 ∗  𝑘, 𝑖; 𝑠, 𝑍2 =   𝑝 ∗ 
∞

𝑗=0
 𝑘, 𝑖, 𝑗; 𝑠 𝑍2

𝑗
,

𝑖 = 0,1,2, … ; 𝑘 = 1,2 

𝑃 ∗  𝑘; 𝑠, 𝑍1, 𝑍2 =   𝑃 ∗ 
∞

𝑗=0
 𝑘, 𝑖; 𝑠, 𝑍2 𝑍1

𝑗
, 𝑘 = 1,2 

𝑃 𝑘, 𝑖; 0, 𝑍2 =   𝑝 ∗ 
∞

𝑗=0
 𝑘, 𝑖, 𝑗; 0 𝑍2

𝑗
,

𝑖 = 0,1,2, … ; 𝑘 = 1,2 
 

𝑃 𝑘; 0, 𝑍1, 𝑍2 =   𝑃
∞

𝑗=0
 𝑘, 𝑖; 0, 𝑍2 𝑍1

𝑗
, 𝑘 = 1,2 

 

3. The Analysis 
 
Using the mean drift argument of Falin (1984), it can be 

shown that the system is stable if 𝜌1 + 𝜌2 < 1   where 

  𝜌1 = −𝜆1𝑐  𝐵1
 ∗ ′ 0 , 𝜌2 = −𝜆2𝑑  𝐵2

 ∗ ′ 0 .  
 

Now the mathematical equations that govern the system are 

obtained by employing the remaining service time as the 

supplementary variable. Relating the state of the system at 

time t and t+dt, the following partial differential difference 

equations are obtained. 

 

For  𝑗 ≥ 0, 𝑥 ≥ 0, 𝑖 ≥ 0 

 (𝜆 + 𝑗 𝛼)
𝑑

𝑑𝑡
𝑞𝑗  (𝑡)

=  (1 − 𝑞)𝑝 (1,0, 𝑗; 0, 𝑡) + (1
− 𝑞)𝑝 (2,0, 𝑗; 0, 𝑡) + 𝑞𝑝 (2,0, 𝑗 − 1; 0, 𝑡) 

--------- (3.1) 
−𝜕𝑝 1,0, 𝑗; 𝑥, 𝑡 

𝜕𝑥
+  

−𝜕𝑝 1,0, 𝑗; 𝑥, 𝑡 

𝜕𝑡
 

=  −𝜆𝑝 1,0, 𝑗; 𝑥, 𝑡  +  𝜆1  𝑏1 𝑥 𝑞𝑗  𝑡  

+ 1 − 𝑞 𝑏1 𝑥 𝑝 1,1, 𝑗; 0, 𝑡 + 𝜆2  𝑑𝑘
𝑗
𝑘=1 𝑝 (1,0, 𝑗 −

𝑘; 𝑥, 𝑡)  ---------------------- (3.2) 

  
−𝜕𝑝 1, 𝑖, 𝑗; 𝑥, 𝑡 

𝜕𝑥
+ 

−𝜕𝑝 1, 𝑖, 𝑗; 𝑥, 𝑡 

𝜕𝑡
 =  −𝜆𝑝 1, 𝑖, 𝑗; 𝑥, 𝑡   

+ 1 − 𝑞 𝑏1 𝑥 𝑝 1, 𝑖 + 1, 𝑗; 0, 𝑡 

+ 𝜆1  𝑐𝑘
𝑖

𝑘=1
𝑝 1, 𝑖 − 𝑘, 𝑗; 𝑥, 𝑡  

   𝜆2  𝑑𝑘
𝑗
𝑘=1 𝑝 1, 𝑖, 𝑗 − 𝑘; 𝑥, 𝑡                    ------------- (3.3) 

 
−𝜕𝑝 2,0, 𝑗; 𝑥, 𝑡 

𝜕𝑥
+  

−𝜕𝑝 2,0, 𝑗; 𝑥, 𝑡 

𝜕𝑡
 

=  −𝜆𝑝 2,0, 𝑗; 𝑥, 𝑡  

+  𝜆2 𝑏2 𝑥  𝑑𝑘+1

𝑗

𝑘=0
𝑞𝑗−𝑘 𝑡  
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+ 𝑗 + 1 𝛼𝑏2 𝑥 𝑞𝑗+1  (𝑡) +  𝜆2  𝑑𝑘
𝑗
𝑘=1 𝑝 (2,0, 𝑗 − 𝑘; 𝑥, 𝑡)  -- 

------------------------ (3.4) 

 

  
−𝜕𝑝 2, 𝑖, 𝑗; 𝑥, 𝑡 

𝜕𝑥
+ 

−𝜕𝑝 2, 𝑖, 𝑗; 𝑥, 𝑡 

𝜕𝑡
 =  −𝜆𝑝 2, 𝑖, 𝑗; 𝑥, 𝑡   

+ 𝜆1  𝑐𝑘
𝑖

𝑘=1
𝑝 2, 𝑖 − 𝑘, 𝑗; 𝑥, 𝑡 

+ 𝜆2  𝑑𝑘

𝑗

𝑘=1

𝑝 2, 𝑖, 𝑗 − 𝑘; 𝑥, 𝑡   

                                                                                                  

------------------------ (3.5) 

 

In steady state, the equations (3.1) to (3.5) become, 

 

 (𝜆 + 𝑗 𝛼)𝑞𝑗 =  (1 − 𝑞)𝑝 (1,0, 𝑗; 0) + (1 − 𝑞)𝑝 (2,0, 𝑗; 0) +

𝑞𝑝 (2,0, 𝑗 − 1; 0) ------ (3.6) 

−𝑝′ (1,0, 𝑗; 𝑥)  =  −𝜆𝑝 1,0, 𝑗; 𝑥  +  𝜆1 𝑏1 𝑥 𝑞𝑗  

+ 1 − 𝑞 𝑏1 𝑥 𝑝 1,1, 𝑗; 0 + 𝜆2  𝑑𝑘
𝑗
𝑘=1 𝑝 (1,0, 𝑗 − 𝑘; 𝑥)      

------------------------ (3.7) 

  

−𝑝′ (1, 𝑖, 𝑗; 𝑥)  =  −𝜆𝑝 1, 𝑖, 𝑗; 𝑥   
+ 1 − 𝑞 𝑏1 𝑥 𝑝 1, 𝑖 + 1, 𝑗; 0 

+ 𝜆1  𝑐𝑘
𝑖

𝑘=1
𝑝 1, 𝑖 − 𝑘, 𝑗; 𝑥  

   𝜆2  𝑑𝑘
𝑗
𝑘=1 𝑝 1, 𝑖, 𝑗 − 𝑘; 𝑥    ---------------------- (3.8) 

 

−𝑝′ (2,0, 𝑗; 𝑥)  =  −𝜆𝑝 2,0, 𝑗; 𝑥  

+  𝜆2 𝑏2 𝑥  𝑑𝑘+1

𝑗

𝑘=0
𝑞𝑗−𝑘  

+ 𝑗 + 1 𝛼𝑏2 𝑥 𝑞𝑗+1 +  𝜆2  𝑑𝑘
𝑗
𝑘=1 𝑝 (2,0, 𝑗 − 𝑘; 𝑥)                       

---- (3.9) 

 

  

−𝑝′ (2, 𝑖, 𝑗; 𝑥) =  −𝜆𝑝 2, 𝑖, 𝑗; 𝑥   

+ 𝜆1  𝑐𝑘
𝑖

𝑘=1
𝑝 2, 𝑖 − 𝑘, 𝑗; 𝑥 + 𝜆2  𝑑𝑘

𝑗

𝑘=1

𝑝 2, 𝑖, 𝑗 − 𝑘; 𝑥   

                                                                                                   

--------------------- (3.10) 

and  the normalization condition is, 

 

   𝑝 1, 𝑖, 𝑗, 𝑥 𝑑𝑥
∞

0
∞
𝑖=0

∞
𝑗=0 +    𝑝 2, 𝑖, 𝑗, 𝑥 𝑑𝑥

∞

0
∞
𝑖=0

∞
𝑗=0 +

 𝑞𝑗
∞
𝑗=0 = 1      ------------ (3.11) 

where 𝜆 =  𝜆1 + 𝜆2.  

 

By taking Laplace transformation of equations (3.6) to 

(3.10) and  multiplying by 𝑍2
𝑗
  and then summing over j, 

from 0 to ∞  the following equations are obtained. 

𝑄 𝑍2 + 𝛼𝑍2 𝑄′ 𝑍2 
=  1 − 𝑞 𝑃 1,0; 0, 𝑍2 
+  1 − 𝑞 𝑃 2,0; 0, 𝑍2 + 𝑞𝑃 2,0; 0, 𝑍2  

                                                                                                                                

---------- (3.12)  

  

 𝑠 − 𝜆 + 𝜆2𝐷 𝑍2  𝑃
 ∗  1,0; 𝑠, 𝑍2 = 𝑃 1,0; 0, 𝑍2 −

𝜆1  𝐵1
 ∗  𝑠 𝑄 𝑍2 −  (1 − 𝑞)𝐵1

 (∗)
 (𝑠)𝑃 (1,1; 0, 𝑍2))   --- 

(3.13)    

 𝑠 − 𝜆 + 𝜆2𝐷 𝑍2  𝑃
 ∗  1, 𝑖; 𝑠, 𝑍2 

= 𝑃 1, 𝑖; 0, 𝑍2 

− 𝜆1   𝑐𝑘𝑃
 ∗ 

𝑖

𝑘=1

 1, 𝑖 − 𝑘; 𝑠, 𝑍2  

− (1 − 𝑞)𝐵1
 ∗  (𝑠)𝑃 (1, 𝑖 + 1; 0, 𝑍2))                                                              

---- (3.14) 

 

 𝑠 − 𝜆 + 𝜆2𝐷 𝑍2  𝑃
 ∗  2,0; 𝑠, 𝑍2 = 𝑃 2,0; 0, 𝑍2 −

𝜆2  𝐵2
 ∗  𝑠 

𝐷 𝑍2 

𝑍2
𝑄 𝑍2 − 𝛼𝐵2

 ∗  𝑠 𝑄′ (𝑍2)        ------ (3.15) 

 

               𝑠 − 𝜆 + 𝜆2𝐷 𝑍2  𝑃
 ∗  2, 𝑖; 𝑠, 𝑍2 =

−𝜆1   𝑐𝑘𝑃
 ∗ 𝑖

𝑘=1  2, 𝑖 − 𝑘; 𝑠, 𝑍2          ----------- (3.16) 

 

Multiplying equations (3.14) and (3.16) by    𝑍1
𝑖   and 

summing over i=1,2,... and using equations (3.13) and (3.15) 

we get, 

 

 𝑠 − 𝜆 + 𝜆1 𝐶 𝑍1 + 𝜆2𝐷 𝑍2  𝑃
 ∗  1; 𝑠, 𝑍1 , 𝑍2 =

𝑃 1; 0, 𝑍1 , 𝑍2 − 𝜆1𝐵1
 ∗  𝑠 𝑄 𝑍2 +

 (1−𝑞)𝐵1
 ∗  𝑠 

𝑍1
[𝑃 (1; 0,0, 𝑍2) − 𝑃 (1; 0, 𝑍1, 𝑍2)                                         

----- (3.17) 

 

 𝑠 − 𝜆 + 𝜆1  𝐶 𝑍1 + 𝜆2𝐷 𝑍2  𝑃
 ∗  2; 𝑠, 𝑍1, 𝑍2 

= 𝑃 2; 0,0, 𝑍2 − 𝜆2𝐵2
 ∗  𝑠 

𝐷 𝑍2 

𝑍2

𝑄 𝑍2  

− 𝛼𝐵2
 ∗  𝑠 𝑄′ (𝑍2)                                                                                        

------------------ (3.18) 

Substituting 𝑠 = 𝜆 − 𝜆1  𝐶 𝑍1 − 𝜆2𝐷 𝑍2   in (3.17) and 

(3.18), we get 

𝑃 1,0; 0, 𝑍2 =  
𝜆1𝑍1

1−𝑞
𝑄 (𝑍2) −

𝑍1− (1−𝑞)𝐵1
 ∗  𝑙 

 (1−𝑞)𝐵1
 ∗  𝑙 

𝑃 (1; 0, 𝑍1, 𝑍2)                          

-------------- (3.19) 

 

                  𝑃 2,0; 0, 𝑍2 =  𝐵2
 ∗  (𝑙)  𝜆2

𝐷 𝑍2 

𝑍2
𝑄 𝑍2 +

 𝛼𝑄′ (𝑍2)                     --------------------- (3.20)      

  where      𝑙 = 𝜆 − 𝜆1 𝐶 𝑍1 − 𝜆2𝐷 𝑍2         
 

Using equations (3.19) and (3.20) in (3.12) and simplifying 

one can get the following equation,            

 

𝛼[𝑍2 − (1 − 𝑞 + 𝑞 𝑍2)𝐵2
 ∗  (𝑙)]𝑄′ (𝑍2)     

+ 𝜆 − 𝜆1𝑍1  −  1 − 𝑞 + 𝑞 𝑍2 𝜆2𝐵2
 ∗  𝑙 

𝐷 𝑍2 

𝑍2

  𝑄 𝑍2     

=      
 1−𝑞 𝐵1

 ∗  𝑙 −𝑍1

𝐵1
 ∗  𝑙 

𝑃 (1; 0, 𝑍1, 𝑍2)     ------------- (3.21) 

Define, 

𝑓 (𝑍1, 𝑍2) =
 1−𝑞 𝐵1

 ∗  𝑙 −𝑍1

𝐵1
 ∗  𝑙 

  for each fixed 𝑍2 ,       − 1 ≤

  𝑍2   ≤ 1.  By Rouche's theorem, there is a unique solution 

 𝑍1 =   ℎ (𝑍2)  of the equation f (𝑍1, 𝑍2 )=0.  Now (3.21) 

becomes 

 

  𝑄′ 𝑍2 =
1

α

λ−λ1h Z2 −λ2U Z2 
D Z2 

Z2

U Z2 −Z2
Q 𝑧2      ------- (3.22) 

where h Z2  is the root of the equation 𝑍1 = 𝐵1
∗ 𝑙     and 

U (𝑍2) =  (1 − q + q𝑍2)𝐵2 
 (∗)

 (𝑙) 
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Using (3.22) in equation (3.21), it can be seen that 

P 1; 0; 𝑍1, 𝑍2 =
 𝐿 𝑍2− 1−𝑞+𝑞𝑍2 𝐵2 

 (∗)
 𝑙  +𝑅 𝑈 𝑍2 −𝑍2  𝐵1 

 (∗)
 𝑙 

  1−𝑞 𝐵1 
 (∗)

 𝑙 −𝑍1   𝑈 𝑍2 −𝑍2 
𝑄 (𝑍2)  ------- (3.23) 

              where L = λ − λ1h Z2 − λ2U (Z2)
D (Z2)

Z2
  and 

 R = λ − λ1𝑍1 − (1 − q + q𝑍2)λ2𝐵2 
 (∗)

 (𝑙)
D (Z2)

Z2
 

Using equation (3.23) in (3.19), we obtain 

 P 1; 0,0, 𝑍2 =
[ 𝜆1𝑍1+𝑅][𝑈 (𝑍2)−𝑍2]+𝐿[𝑍2− (1−𝑞+𝑞𝑧2)𝐵2 

 (∗)
 (𝑙)] 

 1−𝑞 [𝑈 (𝑍2)−𝑍2]
Q 𝑍2     -------- 

(3.24) 

Using equation (3.22) in (3.20), we get 

P 2; 0,0, 𝑍2 =
{λ2

D Z2 

Z2
[𝑈 (𝑍2)−𝑍2]+𝐿}𝐵2 

 (∗)
 (𝑙)

[𝑈 (𝑍2)−𝑍2]
 Q 𝑍2      ----- 

(3.25) 

The general solution of the differential equation (3.22) is 

𝑄 (𝑍2) = 𝑄 (1)exp⁡ 
−1

𝛼
 

λ−λ1h 𝑥 −λ2U x 
D x 

x

U x −x

1

𝑍2
 𝑑𝑥      --- 

(3.26)                      

Where Q (1) is a constant, which is the probability that the 

server is idle. 

 

Putting s = 0 in equation (3.13) and in equation (3.14) and 

summing over   i = 0 to ∞, we get  

𝜆2 𝐷 (𝑍2 − 1) 𝑃 (∗) 1, 𝑖; 0, 𝑍2 =∞
𝑖=0  (1 −

q) P (1,0; 0, 𝑍2) − 𝜆1 Q (𝑧2)             ------------ (3.27) 

 

Putting s = 0 in equation (3.15) and in equation (3.16) and 

summing over i = 0 to ∞, we get  

𝜆2 𝐷 (𝑍2 − 1) 𝑃 (∗) 2, 𝑖; 0, 𝑍2 =∞
𝑖=0 P 2; 0,0, 𝑍2 −

 λ2Q 𝑧2 
D Z2 

Z2
 −  α𝑄′ (𝑍2)              - (3.28) 

 

Adding equations (3.27) and (3.28) and using equation 

(3.12), leads to  

λ2  (D Z2 − 1)  𝑃 (∗) 𝑘, 𝑖; 0, 𝑍2 =2
𝑘=1

∞
𝑖=0 λ2  1 −

D Z2 

Z2
−

𝑞1−𝑍2𝐵2  (∗)𝑙DZ2Z2Q𝑍2+ α1−𝑍2q𝐵2  (∗)𝑙−1𝑄′𝑍2       
3.29) 

 

Evaluating at 𝑍2=1 and using normalization condition we 

get  

𝑄′ 1 =
λ2𝑑−λ2  (1−𝑞)𝑄 (1)

𝛼 (1−𝑞)
                     ----------- (3.30)                                                                          

 

Using equation (3.30) in (3.26) leads to  

Q 1 =  
𝑐[ 1−𝜌1  1−𝑞 −𝜌2   ]

 (1−𝑞) (𝑐+𝜌1−𝜌1𝑐)
               ---------- (3.31)                                

 

In steady state, the probability generating function for the 

number of customers in the orbit when the server is idle is 

obtained from equations (3.31) and (3.26). 

 

Substituting s = 0  in equation (3.17) 

𝑃 (∗) 1,0, 𝑍1, 𝑍2 =
𝐴

𝑍1𝑙
                     ------------ (3.32)                                                                      

Where 

 A =  [ (1 − q) − 𝑍1]P (1; 0, 𝑍1 , 𝑍2) + 𝜆1𝑍1𝑄 (𝑍2) – (1 −
q) P (1; 0,0, 𝑍2)  

 (3.32) together with equations (3.23) and (3.19) yields the 

joint probability generating function for the number of 

customers in the priority queue and in the orbit when the 

server is busy with type I customer as  

𝑃 (∗) 1,0, 𝑍1, 𝑍2 =
𝐵

𝑙  1−𝑞 𝐵1
∗ 𝑙 −𝑍1  𝑈 𝑍2 −𝑍2 

Q 𝑍2   ---- (3.33) 

B =  [1 − 𝐵1
 (∗) 𝑙 ]{𝐿 𝑍2 −  1 − 𝑞 + 𝑞𝑍2 𝐵2 

 (∗) 𝑙  

+ 𝑅 𝑈 𝑍2 − 𝑍2 } 

 

Putting s=0 in equations (3.18) and (3.22) we get 

𝑃 (∗) 2,0, 𝑍1, 𝑍2 =
1

𝑙
  

𝐿

𝑈 𝑍2 −𝑍2
+ 𝜆2

D Z2 

Z2
 𝑄 𝑍2 −

𝑃2,0,0,𝑍2               ------------ (3.34) 

 (3.34) together with equations (3.22) and (3.20) yields the 

joint probability generating function for the number of 

customers in the priority queue and in the orbit when the 

server is busy with type II customer as 

𝑃 (∗) 2,0, 𝑍1, 𝑍2 =
[1−𝐵2

 (∗)
 𝑙 ]

𝑙
 
𝜆2D 𝑧2 

𝑍2
+

𝐿

𝑈 (𝑍2−𝑍2)
  𝑄 𝑍2  

(3.35)             

Thus we have the following theorem: 

 

Theorem 3.1: The stationary distribution of { (ξ,𝑁𝑝 , 𝑁𝑟 ,𝑆𝑘} 

has the following generating functions 

Q 𝑍2 =
𝑐[ 1−𝜌1  1−𝑞 −𝜌2]

 (1−𝑞) (𝑐+𝜌1−𝜌1𝑐)
exp  

1

𝛼
 

λ−λ1h 𝑥 −λ2U x 
D x 

x

U x −x

𝑍2

1
 𝑑𝑥           

--------- (3.36) 

 

𝑃 (∗) 1,0, 𝑍1, 𝑍2 =
  1−𝐵1

 (∗)
 𝑙   𝐿 𝑍2− 1−𝑞+𝑞𝑍2 𝐵2 

 (∗)
 𝑙  +𝑅 𝑈 𝑍2 −𝑍2  

𝑙  1−𝑞 𝐵1
 (∗)

 𝑙 −𝑍1  𝑈 𝑍2 −𝑍2 
Q (𝑍2)      --------

--- (3.37)        

 

𝑃 (∗) 2,0, 𝑍1, 𝑍2 =
[1−𝐵2

 (∗)
 𝑙 ]

𝑙
 
𝜆2D 𝑧2 

𝑍2
+

𝐿

𝑈 (𝑍2−𝑍2)
  𝑄 𝑍2                                       --

--------- (3.38)                

Corollary: 1  

The probability that the server busy is  

𝑃𝐵 = 𝑃 (∗) 1; 0,1,1 + 𝑃 (∗) 2; 0,1,1 =
[𝜌1 1−𝑞 +𝑐𝜌2]

 (1−𝑞) (𝑐+𝜌1−𝜌1𝑐)
                                     ----------- (3.39)                   

 

Corollary: 2 

The probability that the server idle is  

𝑃𝐼 = Q 1 =
𝑐[ 1−𝜌1  1−𝑞 −𝜌2]

 (1−𝑞) (𝑐+𝜌1−𝜌1𝑐)
                                                                                    

________ (3.40)                                                             
 

4. Particular Models 
 

By taking particular values to some parameters of the 

queuing system analyzed in the paper, the following models 

can be obtained: 

 

Theorem 4.1: For 𝑑𝑘 = 𝑐𝑘 = 0, 𝑘 ≠  1, 𝑞 = 0  and 𝐵1  (𝑥) =
𝐵2  (𝑥) = 𝐵 (𝑥)  the stationary distribution of 

  𝜉,   𝑁𝑝 ,   𝑁𝑟 ,   𝑆𝑘  . has the following generating functions 

𝑄 (𝑍2) =  (1 − 𝜌1 − 𝜌2)   
1

𝛼
 

𝜆 − 𝜆1ℎ 𝑥 − 𝜆2𝑈 (𝑥)

𝑈 𝑥 − 𝑥

𝑧2

1

𝑑𝑥  
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𝑃 (∗) 1; 0, 𝑍1 , 𝑍2 

=
 1 − 𝐵 ∗  𝑙   𝐿 𝑍2 − 𝐵 ∗  𝑙  + 𝑅 𝑈 𝑍2 − 𝑍2  

𝑙 𝐵 ∗  𝑙 − 𝑍1  𝑈 𝑍2 − 𝑍2 
𝑄 (𝑍2) 

𝑃 (∗) 2; 0, 𝑍1 , 𝑍2 =  
 1 − 𝐵 ∗  𝑙  

𝑙
 𝜆2

+  
𝐿

𝑈 𝑍2 − 𝑍2

 𝑄 (𝑍2) 

where 𝜌1 = −𝜆1𝑐  𝐵
 ∗ ′ 0 , 𝜌2 = −𝜆2𝑑  𝐵

 ∗ ′ 0 , 𝑙 = 𝜆 −

𝜆1 𝑍1 − 𝜆2𝑍2, 𝐿 = 𝜆 − 𝜆1  ℎ (𝑍2) − 𝜆2𝑈 (𝑍2), 𝑅 =  𝜆 −

𝜆1 𝑍1 − 𝜆2𝐵
 ∗  (𝑙), 𝑈 (𝑍2) = 𝐵 ∗  (𝑙)  and ℎ (𝑍2) is the root 

of the equation 𝑍1 = 𝐵 ∗  (𝑙) (Choi and Park (1990)). 

 

Theorem 4.2.  For 𝑑𝑘 = 𝑐𝑘 = 0, 𝑘 ≠  1, 𝑞 = 0  , the 

stationary     distribution of   𝜉,   𝑁𝑝 ,   𝑁𝑟 ,   𝑆𝑘  . has the 

following generating functions 

𝑄 (𝑍2) =  (1 − 𝜌1 − 𝜌2)   
1

𝛼
 

𝜆 − 𝜆1ℎ 𝑥 − 𝜆2𝑈 (𝑥)

𝑈 𝑥 − 𝑥

𝑧2

1

𝑑𝑥  

𝑃 (∗) 1; 0, 𝑍1 , 𝑍2 

=
 1 − 𝐵1

 ∗  𝑙   𝐿 𝑍2 − 𝐵2
 ∗  𝑙  + 𝑅 𝑈 𝑍2 − 𝑍2  

𝑙 𝐵1
 ∗  𝑙 − 𝑍1  𝑈 𝑍2 − 𝑍2 

𝑄 (𝑍2) 

𝑃 (∗) 2; 0, 𝑍1 , 𝑍2 =  
 1 − 𝐵2

 ∗  𝑙  

𝑙
 𝜆2

+  
𝐿

𝑈 𝑍2 − 𝑍2

 𝑄 (𝑍2) 

where 𝜌1 = −𝜆1 𝐵1
 ∗ ′ 0 , 𝜌2 = −𝜆2 𝐵2

 ∗ ′ 0 , 𝑙 = 𝜆 −
𝜆1 𝑍1 − 𝜆2𝑍2, 𝐿 = 𝜆 − 𝜆1  ℎ (𝑍2) − 𝜆2𝑈 (𝑍2), 𝑅 =  𝜆 −

𝜆1 𝑍1 − 𝜆2𝐵2
 ∗  (𝑙), 𝑈 (𝑍2) = 𝐵2

 ∗  (𝑙) and ℎ (𝑍2) is the root 

of the equation 𝑍1 = 𝐵 ∗  (𝑙) (Falin et al. (1993)). 

 

5. Operating Characteristics 
 
Using straight forward calculations, the operating 

characteristics like the mean number of customers in the 

priority queue and the mean number of customers in the 

orbit  are calculated. After putting 𝑍2 = 1  in equations 

(3.33) and (3.35), then differentiating with respect to      𝑍1  

and taking the limit as 𝑍1 → 1, we get 

 

lim𝑧1→1 𝑃
 ∗ ′  1; 0, 𝑍1, 1 =  1 −

𝜌11−𝑞−𝜌21−𝑐𝐴1+𝜆1𝜆2𝛽1𝛽2𝑐𝑑21−𝜌1−𝑞1−𝑞
− 𝑐2𝜌 1[ (1−𝜌1)1−𝑞−𝜌2] 2𝑐1−𝜌1−𝑞1−𝑞[𝜌1+𝑐 
(1−𝜌1)]--------- (5.41) 

 

where  𝐴1 =  
 1−𝑞  𝑐2𝜌 1+𝜆1

2𝑐  3𝛽1 +2𝑞𝑐  𝜌1
2

2𝑐   1−𝜌1−𝑞 
2 1−𝑞 [𝜌1+𝑐   (1−𝜌1)]

 

 

lim𝑧1→1 𝑃
 ∗ ′  2; 0, 𝑍1 , 1 =  

𝜆1𝜆2𝛽2𝑐  𝑑 

2 (1−𝑞)
   -----

---- (5.42) 

 

After putting 𝑍1 = 1  in equations (3.33) 

and (3.35) and then differentiating with respect to 

𝑍2 and taking  limit as 𝑍2 → 1, we get 

 

lim
𝑍2→1

𝑃 (∗)′ 1; 0,1, 𝑍2 =  
𝐷1 𝜆1𝑐

2
 1−𝜌1 

2𝐷2− 1−𝑞−𝜌2 𝐷3 

2𝜆1𝑐
2
𝑑

2
 1−𝜌1 

2 𝑞−1  𝜌1 +𝑐 1−𝜌1  𝐷0

+

 1−𝑞−𝜌2  𝐷4+𝜆2𝑐𝐷5−𝐷6−𝐷7 

2𝜆1𝜆2𝑐
2
𝑑

2
 1−𝜌1 

2 1−𝑞  𝜌1 +𝑐 1−𝜌1  
+

𝐷8𝑐[ 1−𝜌1  1−𝑞 −𝜌2 ]

2𝑑
2
 1−𝑞2  𝜌1+𝑐 1−𝜌1  

+

𝜆2𝜌1𝐷1
 1−𝑞−𝜌2−𝜌2𝑐 

𝛼𝑐   1−𝑞  𝜌1+𝑐 1−𝜌1  𝐷0
              -------- (5.43) 

 

Where 

𝐷0 =   1 − 𝑞  1 − 𝜌1 − 𝜌2  

𝐷1 = 𝜌1𝑑 + 𝜌2𝑐 + 𝑐 (1 − 𝜌1) (d − 1 − 𝑞) 

𝐷2 = 𝐷0  2𝑞𝜌2𝑑 + 𝜌2𝑑2 + 𝜆2
2𝑑

3
𝛽2  

𝐷3 = 𝜆1𝑐
2
𝜌2 1 − 𝜌1 

2 2𝑑𝑞 + 𝑑2 + 𝜆1𝜆2
2𝑐

2
𝑑

3
𝛽2 1 − 𝜌1 

+ 𝜆2𝑐2𝑑
2
𝜌1

2𝜌2 + 𝜆2𝜆1
2𝑐

3
𝑑

2
𝛽1𝜌2 

𝐷4 = 𝜆1
2𝜆2

2𝑐
3
𝑑

3
𝛽1 + 𝜆2

2𝑑
3
𝜌1

3𝑐2

+ 𝜆1𝜆2𝑑2𝑑𝜌1𝑐
2
 1 − 𝜌1 

2

+ 2𝜆1𝜆2𝑐
3
𝑑𝑞𝜌2 1 − 𝜌1 

2 

𝐷5 = 𝜆1𝜆2
2𝑐

2
𝑑

3
𝛽2 1 − 𝜌1 + 𝜆2𝑑

2
𝜌1

2𝜌2𝑐2

+ 𝜆1
2𝜆2𝑐

3
𝑑

2
𝛽1𝜌2 + 𝜆1𝑐

2
𝑑2𝜌2 1 − 𝜌1 

2 

𝐷6 = 2𝜆1𝜆2𝑐
3
𝑑 (𝑑-1) 1 − 𝜌1 

2 1 − 𝜌1 − 𝜌2 − 𝑞 1 − 𝜌1   

𝐷7= 𝜆1𝜆2𝑐
2
𝑑2 1 − 𝜌1 

2[𝜌1𝑑 + 𝑐 𝑞 1 − 𝜌1 + 𝜌2 −
𝑐 1 − 𝜌1 ] 

𝐷8 = 2𝑑 (1-𝑑) (q+𝜌2 − 1) -𝜆2
2𝑑

3
 

lim
𝑍2→1

𝑃 ∗ ′ 2; 0,1, 𝑍2 

=
𝜆2

2𝑑
2
𝛽2

2 1 − 𝑞 
+

𝜆2𝜌2𝐷1

𝛼𝑐 1 − 𝑞 𝐷0

+
𝜌2

2𝑞

 1 − 𝑞   1 − 𝜌1  1 − 𝑞 − 𝜌2 
 

+
𝜌2[ 1−𝜌1−𝜌2 𝐷9+ 𝑐+𝜌1−𝜌1𝑐 𝐷5]

2𝜆1𝑑𝑐
2
 1−𝜌1 

2𝐷0  (𝑐+𝜌1−𝜌1𝑐)
                                                                                  

--------- (5.44)                           

Where 

 𝐷9 =  𝜆1𝜆2
2𝑐

2
𝑑

3
𝛽2 1 − 𝜌1 + 𝜆2𝑑

2
𝜌1

2𝑐2𝜌2 +

𝜆1
2𝜆2𝑐

3
𝑑

2
𝛽1𝜌2 +               𝜆1𝑐

2
𝑑2𝜌2 1 − 𝜌1 

2 

From (3.30) and (3.31) 

𝑄′ 1 =
𝜆2

𝛼
 

𝑑

1−𝑞
−

𝑐[ 1−𝜌1  1−𝑞 −𝜌2]

 (1−𝑞) (𝑐+𝜌1−𝜌1𝑐)
                                                              

--------------- (5.45)                            

(i) Mean number of customers in the priority queue is 

𝑁𝑝 = lim
𝑍1→1

𝑃 (∗) ′ 1; 0, 𝑍1, 1 + lim
𝑍2→1

𝑃 (∗)′ 2; 0, 𝑍1 , 1   -- (5.46) 

Adding equations (5.41) and (5.42) we get (5.46) 

(ii) Mean number of customers in the orbit as  

 𝑁𝑟 = lim
𝑍2→1

𝑃 (∗) ′ 1; 0, 1, 𝑍2 + lim
𝑍2→1

𝑃 (∗) ′ 2; 0, 1, 𝑍2 +  𝑄′ 1        

 ---------- (5.47) 

Adding equations (5.43), (5.44) and (5.45)) we get 

(5.47) 

(iii) Mean busy period : Busy period  𝑇𝑏  is the length of the 

time interval that  keeps the server busy continuously 

and this continues till the instant the server becomes 

free again and let𝑇0 be the length of the idle period. For 

this model 𝑇𝑏  and  𝑇0 generates an alternating renewal 

process and therefore 
𝐸 (𝑇𝑏 ) 

E (𝑇0) 
=

𝑃𝑟⁡{𝑇𝑏 }

1−𝑃𝑟⁡{𝑇𝑏 }
=

𝑃𝐵

1−𝑃𝐵
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But E 𝑇0 =  
1

𝜆
, E 𝑇𝑏 =

𝑃𝐵

𝜆 (1−𝑃𝐵)
 

 

Using equation (3.39) in the above equation, we get 

 

E 𝑇𝑏 =
[𝜌1 1−𝑞 +𝑐𝜌2]

𝜆𝑐[ 1−𝜌1  1−𝑞 −𝜌2]
      -------- (5.48) 

    

6. Numerical Models 
 

In this section, some numerical examples related to the 

model analyzed in this paper are given. By varying type I 

arrival rate, type II arrival rate and the retrial rate, the 

probability that the server busy, the probability that the 

server idle, the mean number of customers in the priority 

queue and the mean number of customers in the orbit are 

calculated. For the analysis the parameters 

𝑞, 𝑐 , 𝐶 ′′ 1 , 𝑑 , 𝐷′′ 1 , 𝛽1, 𝛽2 ,   𝐵1
 ∗ ′ 0  and  𝐵2

 ∗ ′ 0  fixed. The 

results are shown in graphs and tables. 

 

6.1. Graphs 

 

The mean number of customers and the mean busy periods 

are given as graphs in the Figures 6.1-6.6.   In Figures 6.1 

and 6.2, the retrial rate is taken as 0.6 and type II arrival rate 

is taken as 0.7 and 0.9 respectively, the graphs of the mean 

number of customers in the priority queue and the mean 

number of customers in the orbit are drawn by varying the 

value of type I arrival rate. Whereas in Figures 6.3 and 6.4, 

the retrial rate has been fixed as 0.9 but the type I arrival 

rates are 0.7 and 0.9 respectively. The graphs of the mean 

number of customers in the priority queue and the mean 

number of customers in the orbit are drawn against varying 

the value of type II arrival rate. 

 

 
Figure 6.1:  Type I arrival rate versus the mean number of 

customers 

 

 
Figure 6.2:  Type I arrival rate versus the mean number of 

customers 

 
Figure 6.3:  Type II arrival rate versus the mean number of 

customers 

 

 
Figure 6.4:  Type II arrival rate versus the mean number of 

customers 
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Figure 6.5:  Retrial rate versus the mean number of 

customers 
 
 

 
Figure 6.6:  Retrial rate versus the mean number of 

customers 

 

 
Figure 6.7: Type I arrival rate versus the mean busy period 

 

 
Figure 6.8: Type II arrival rate versus the mean busy period 

 

 
Figure 6.9:  Retrial rate versus the mean busy period 

 
In Figures 6.5 and 6.6, the same graphs with respect to 

varying retrial rate are drawn for fixed values of type I and 

type II arrival rates (𝜆1 = 0.7, 𝜆2 = 0.9 and 𝜆1 = 0.9, 𝜆2 =
0.7). From the graphs it is clear that as type I arrival rate 

(type II arrival rate) increases the mean number of customers 

in the priority queue and the mean number of customers in 

the orbit also increase whereas as the retrial rate increases 

the mean number of customers in the orbit decreases and the 

mean number of customers in the priority queue remains a 

constant. In Figures 6.7,6.8 the graphs of mean busy period 

are drawn against varying values of type I arrival rate and 

type II arrival rate respectively. From the Figure 6.7, it is 

clear that as type I arrival rate increases the  mean busy 

period also increases whereas from the Figure 6.8, it is clear 

that as type II arrival rate increases the  mean busy period 

decreases. Figure 6.9 corresponds to the graph of mean busy 

period with respect to retrial rate and is like the graph of 

constant function. 

 

6.2. Tables 

 
The values of idle probabilities and busy probabilities are 

given in the Tables. 

Tables 6.1, 6.2 presents the idle probability and busy 

probability. For various values of 𝜆1   for 𝜆2 = 0.7,0.9 the 

two probabilities are calculated and are given in Table 6.1 

and Table 6.2. The results shows that the idle probability 

decreases for increasing value of 𝜆1.  The same type of 

behaviour is attained if we interchange  𝜆1  and 𝜆2 and the 

results are shown in Table 6.2. 
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Table 6.1: The Probabilities PI and PB 

λ1 α = 0.6, λ2 =0.7 α = 0.6, λ2 =0.9 

PI PB PI PB 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

0.91 

0.89 

0.87 

0.85 

0.83 

0.81 

0.79 

0.77 

0.75 

0.73 

0.09 

0.11 

0.13 

0.15 

0.17 

0.19 

0.21 

0.23 

0.25 

0.27 

0.89 

0.87 

0.85 

0.83 

0.81 

0.79 

0.77 

0.75 

0.73 

0.71 

0.11 

0.13 

0.15 

0.17 

0.19 

0.21 

0.23 

0.25 

0.27 

0.29 

 

Table 6.2: The Probabilities PI and PB 

λ2 α = 0.6, λ1 =0.7 α = 0.6, λ1 =0.9 

PI PB PI PB 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

0.85 

0.84 

0.83 

0.82 

0.81 

0.80 

0.79 

0.78 

0.77 

0.76 

0.15 

0.16 

0.17 

0.18 

0.19 

0.20 

0.21 

0.22 

0.23 

0.24 

0.81 

0.80 

0.79 

0.78 

0.77 

0.76 

0.75 

0.74 

0.73 

0.72 

0.19 

0.20 

0.21 

0.22 

0.23 

0.24 

0.25 

0.26 

0.27 

0.28 

 

7. Real  life example 
 

In a wireless sensor system, the sensor transmits information 

to the central processing unit after getting information’s. 

Assume that there are two types of information’s, called 

primary important information and secondary non-important 

routine information. The information may have a one line 

information or cluster of information’s. The information are 

processed one by one and a decision is taken by the central 

processing unit. The system always gives importance to 

primary information compare to routine information. 

Sometimes the primary information may be again processed 

after some times, but now it becomes secondary information. 

We assume that the primary information are pooled in a 

place, the system always gives first preference to this place. 

The secondary information are pooled in a place, this part is 

processed only if no primary information are available 

(Fraden (1997)). We can model this situation using our 

model analysed in this article. 

 

8. Conclusion 
 
In the foregoing analysis, an M/G/1 queue with retrial 

customers and system with two types of batch arrivals has 

considered. In addition, unsatisfied customers enter into the 

orbit as a feedback customer for additional service. The 

queue length distribution and mean queue length are 

derived. Extensive numerical works are carried out to 

observe the trends of the operating characters of the system.  

The model can be generalised by taking retrial time as 

general distribution. Also the model is extended by 

incorporating the concept of MAP, BMAP, etc. 
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