Analysis in the Effects of Model Design of R. C. C Foot Bridge Construction Considering Cushion Arrangements

Ayush Gandhi¹, Sanjay Bhadke²

¹Research Scholar (M.Tech), Department of Civil Engineering, Tulsiramji Gaikwad-Patil College of Engineering and Technology, Nagpur, Maharashtra, India

ayushhgandhi[at]gmail.com

Assistant Professor, Department of Civil Engineering, Tulsiramji Gaikwad-Patil College of Engineering and Technology, Nagpur, Maharashtra, India sanjay.civil[at]tgpcet.com

Abstract: A Footbridge is a structure that allows water to flow under a road, railroad, trail, or similar obstruction from one side to the other side. Typically embedded so as to be surrounded by soil, a Footbridge may be made from a pipe, reinforced concrete or other material. Foot Bridge is generally used as cross-drains for ditch relief and for passing water under a road at natural drainage to stream crossings. A Foot bridge may be a bridge-like structure designed to allow vehicle or pedestrian traffic to cross over the waterway while allowing adequate passage for theater. The Footbridges are also made to balance the flood water on the both sides of the earth embankment to reduce the flood level on the other side of the road which reduces the water head on corresponding side, thus reducing water menace.

Keywords: Aspect ratio, Bending Moments, IRC, Cushion, Earth pressure, Surcharge loading

1. Introduction

Footbridges come in many sizes and shapes including round, elliptical, flat-bottomed, pear-shaped, and box-like constructions. The Footbridge type and shape selection is based on a number of factors including: requirements for hydraulic performance, limitation on upstream water surface elevation, and road way embankment height viz arch, slab and of box types. Several agencies had recently developed environmentally sensitive design guidelines which combine modern hydraulic criteria and economic construction and maintenance costs, with help of natural stream channel integrity, flood prevention, and habitat issues.

In general, the Footbridge crossing is located on the stream where it will have the least short-and long-term impacts to the stream valley and its habitat. Whenever possible the Footbridge crossing must be located in a section of the stream where the bank full storm event channel geometry can be maintained. The scope of this dissertation work has been restricted to the design of Foot bridge. The design of Footbridge includes consideration of case load and factors i.e. super load, effective wide, dispersal of load through fill, braking forces of braking, coefficient of earth pressure etc. The relevant codes are required to be referred. The structural parts are designed to withstand the maximum bending and shear force. The work provides full discussion on the provisions given in the code and all the aspects of design.

As the Footbridge passes through the earthen embankment, they are subjected to various loads mainly traffic loads. Thus, there is a need to design Foot bridges for such loads. This project mainly deals with design of R.C.C. Foot bridges having cushion and no-cushion. Different parameters such as size, invert level, layout etc. are decided by hydraulic considerations and location conditions. The cushion load depends upon the road profile at the Footbridge location.

2. Brief History of Past Work Done

1] B. N. Sinha and R. P. Sharma, (2009)

This paper deals with Footbridges made of RCC, with and without cushion The size, invert level, layout etc. are decided by hydraulic consideration & site conditions. The cushion depends on road profile at the Foot bridge location. The scope of this paper has been restricted to the structural design of the box. The structural design involves consideration of load cases (box empty, box full, surcharge loads etc.) & factors like live load, effective width, braking force, impact factor, coefficient of earth pressure etc. in reference to Relevant IRC codes. The inferences drawn from the paper were that box for cross drainage works across high embankments has many advantages as compared to a slab Footbridge. The design of box was covered by three load cases in the paper using STAADPro V8i.Braking force is to be considered particularly in case of box without cushion for smaller span Footbridge. When effect of braking force is considered same effective width is applicable for vertical application of live load otherwise the design shall be unsafe.

2] Jerin Jose, Kiran S Chirayath, M. A Muhammed Riswan, Megha Shankar, Rose Mariya George, (2012) This paper deals with the design of Footbridge made of RCC, without cushion using limit state method. The design of RCC Footbridge presented in this paper is as per relevant IRC codes. STADDPro is used of analysis for the design of shear force and bending moment. The structural elements are required to be designed to withstand maximum bending moment and shear force. The paper provides full discussions on the provisions in the codes, considerations and detailing of the Footbridge.

3] D. J. kadbhane and C. D. Modhera (2019)

This paper is to compare the over burden effect (up to 6m) on the structure by using two dimensional analysis in STAAD_Pro_V8i and excel spreadsheet. Study of the effect of an overburden on the axial and shear force, safe bearing capacity sagging and moments and steel requirement.

4] A. D. Patil, A. A. Galatage (2019)

This report devotes to the Footbridges constructed in reinforced concrete having different aspect ratios. The Foot bridges are analyzed for varying cushion and no cushion loading. The main highlight is given to the behaviour of the structure under the types of loading as per IRC codes and their combinations top produce worst effect of loading for safe structure. Collation and conclusion are made on the basis of maximum bending moments shown for different loading cases. 5] Molly Mathew, Snehal Mali (2014)

This paper deals with study of some of the design parameters of Foot bridges like angle of dispersion or effective width of live load, effect of earth pressure and depth of cushion provided on top slab of Foot bridges. Depth of cushion is important item for live loads on box without cushion and with cushion for structural deformations.

6] Indian Road Congress- Standard Specifications and Code of Practice Road Bridge IRC:6-2016, Section: II "Loads and Stresses"

This code provides the different loads acts on Bridges such as Dead Load, Super imposed Load, Live Load, Longitudinal Force, Earth pressure, Earthquake Force, Wind Load, Snow Load, etc. The load combinations for both Working Stress Method and Limit State Method are given in this code.

IRC: 112-2011,"Code of practice for concrete road bridges"

This code consists of parameters required for design of plain and reinforced concrete bridges. For Limit State Design IRC: 112-2011 shall be adopted.

IRC: 78-2000, "standard specification and code of practice for road bridges" section VII foundation and substructure.

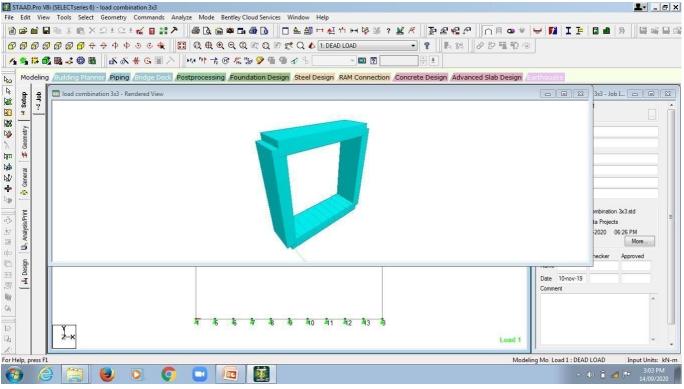
Structural Details

	span2	2x3	span3	x3	span	4x3	span5x3		
Particulars									
1 articulars	Without cushion	With cushion	Without cushion	With cushion	Without	With cushion	Without cushion	With cushion	
	(mm)	(mm)	(mm)	(mm)	cushion (mm)	(mm)	(mm)	(mm)	
Top Slab	300	350	400	400	450	500	500	520	
Side wall	300	350	350	400	400	450	450	500	
Bottom slab	300	350	400	400	450	500	500	550	

Material Density and Safe Bearing Capacity of Soil

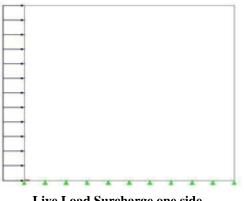
Unit weight of concrete= 25kN/m3Unit weight of earth=20kN/m3

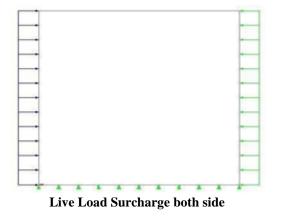
Unit weight of wearing coat = 25 kN/m3Safe bearing capacity of soil = 150 kN/m2


Grade of Materials: Concrete grade =M30 Steel grade=Fe500

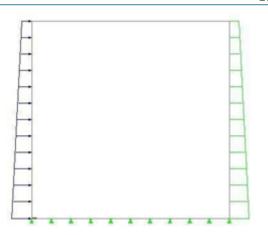
3. Methodology

Foot bridge is modeled as line diagram and analysed in STAAD Pro software and 1 m strip of the box is considered for modeling. Bottom slab is divided into equal parts and Spring support is provide database of slab and soil spring stiffness.


Ks=40xSFxqo


STAAD Model

Load calculations (IRC:6 -2016)



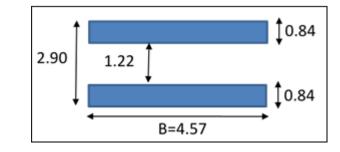
Earth Pressure

Equivalent Height of earth due to live load surcharge=1.2mCoefficient of Earth Pressure at Rest, K0= 0.5 Intensity of live load surcharge K0x Ysxh.

Live Load (IRC:6-2016,cl.204)

Live Load Surcharge one side

For analysis of structure 1 m strip of box is consider in modeling. As for 1 m strip axle load with total width of vehicles more than 1 m are not possible to be placed on 1 m strip, therefore wheels loads are taken for analysis. Maximum bending moments occurring from vehicle loads without impact (STAAD Output)

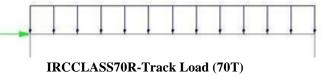

Live Load with Impact

Class 70R track

Length of dispersion of load=B+2(D+t)Where, B = Tyre contact length D = Top slab thickness t=Fill over slab including wearing coat

4. Results with Summary of Analysis

Summary of results from Staad pro. (span 2mx3m)



Load Combination

Max, Bending moment and Shear force

- ULS (Basic combination)
- SLS (Rare combination)
- SLS (Quasi Permanent combination)

minary or	results inc	nn Staad pro. (?	span Zhixoni)					
		ULS combinat	tion (kN.m)	Rare combinat	tion (kN.m)	Quasi combina	tion (kN.m)	Shear for	rce (kN)
Parti	iculars	Without	With	Without	With	Without	With	Without	With
		Cushion	Cushion	Cushion	Cushion	Cushion	Cushion	Cushion	Cushion
Top	Mid	76.92	86.57	52.35	61.90	2.82	17.06	317.48	357.37
Slab	Support	119.43	156.61	79.88	105.88	11.66	40.34	517.40	557.57
Side	Mid	13.92	24.70	9.80	14.73	9.37	23.84	124.10	204.23
Wall	Support	125.26	171.63	84.30	116.46	18.79	48.46	124.10	204.23
Bottom	Mid	101.79	109.34	68.89	77.32	7.21	22.52	227.95	280.86
Slab	Support	106.41	111.23	72.24	78.21	7.66	23.76	221.95	200.00

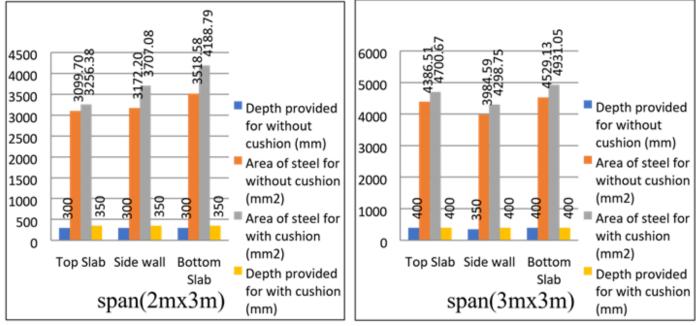
Summary of results from Staad pro. (span 3mx3m)

		ULS combinat	tion (kN.m)	Rare combinat	tion (kN.m)	Quasi combina	tion (kN.m)	Shear for	rce (kN)
Partic	culars	Without	With	Without	With	Without	With	Without	With
		Cushion	Cushion	Cushion	Cushion	Cushion	Cushion	Cushion	Cushion
Тор	Mid	133.06	168.30	91.19	120.29	16.63	59.66	376.27	402.71
Slab	Support	145.90	208.28	97.93	142.66	17.39	62.30	570.27	402.71
Side	Mid	33.53	32.95	23.44	26.19	4.09	4.98	103.89	207.70
Wall	Support	147.033	220.13	99.54	151.45	27.96	72.41	105.89	207.70
Bottom	Mid	157.82	175.97	108.23	126.00	24.98	65.77	278.63	347.70
Slab	Support	160.83	181.81	109.93	129.57	25.90	68.05	278.05	547.70

Volume 11 Issue 5, May 2022 <u>www.ijsr.net</u> Licensed Under Creative Commons Attribution CC BY

DOI: 10.21275/SR22513223453

Summary of results from Staad pro. (span 4mx3m)


		ULS combinat	tion (kN.m)	Rare combinat	tion (kN.m)	Quasi combina	tion (kN.m)	Shear for	rce (kN)
Partic	culars	Without Cushion	With Cushion	Without Cushion	With Cushion	Without Cushion	With Cushion	Without	With
		without Cusilion	with Cushion	without Cusilion	with Cushion	without Cusilion	with Cushion	Cushion	Cushion
Top Slab	Mid	286.54	377.63	195.18	266.20	34.65	121.67	387.37	460.31
Top Stab	Support	267.20	351.66	179.70	240.96	26.65	93.09	567.57	400.51
Side	Mid	111.84	122.57	76.77	88.74	5.04	22.66	132.66	216.54
Wall	Support	272.72	356.93	184.71	245.58	41.44	105.35	152.00	210.34
Bottom	Mid	291.25	378.24	199.09	267.23	46.51	128.99	301.43	416.61
Slab	Support	300.65	384.60	205.61	270.93	48.02	132.80	501.45	410.01

Summary of results from Staad pro. (span 5mx3m)

		ULS combinat	tion (kN.m)	Rare combinat	ion (kN.m)	Quasi combina	tion (kN.m)	Shear for	rce (kN)
Partic	culars	Without Cushion	With Cushion	Without Cushion	With Cushion	Without Cushion	With Cushion	Without Cushion	With Cushion
-	Mid	358.080	482.319	244.950	341.316	57.440	180.593	Cusilion	Cusilion
Top Slab	Ivita	538.080	482.319	244.930	541.510	37.440	180.393	448.082	658.93
Top Slab	Support	354.570	478.602	226.020	331.481	41.530	149.408	440.002	050.75
Side	Mid	173.370	227.661	119.420	164.078	20.460	72.061	154.57	230.06
Wall	Support	336.460	478.602	229.100	331.481	60.630	152.220	154.57	230.00
Bottom	Mid	354.940	498.604	244.210	353.641	71.350	195.576	416.76	583.05
Slab	Support	362.220	500.320	248.800	354.260	73.540	201.056	410.70	383.05

				2x3		2x3				
Particu	lora	Stress in steel 6 _{sc}	Check	Stress in concrete 6 _{sc}	Check	Stress in steel 6 _{sc}	Check	Stress in concrete 6 _{sc}	Check	
Faitict	iiais	(N/mm^2)		(N/mm^2)		(N/mm^2)		(N/mm^2)		
	6sc<400 N/ mm ²		m^2	6c< 14.40 N/ mm ²		6sc<400 N/ m	m^2	6c< 14.40 N/ mm	2	
Top Slab	Mid	290.52	Safe	9.72	Safe	238.00	Safe	8.30	Safe	
Top Stab	Support	288.95	Safe	12.35	Safe	244.42	Safe	11.44	Safe	
Side Wall	Mid	56.68	Safe	1.94	Safe	56.61	Safe	1.97	Safe	
Side wall	Support	249.27	Safe	14.31	Safe	238.07	Safe	13.44	Safe	
Bottom	Mid	257.98	Safe	12.99	Safe	188.36	Safe	9.57	Safe	
Slab	Support	270.49	Safe	13.62	Safe	190.53	Safe	9.68	Safe	

Summary of design results ULS Basic combination

As per CL. 12.2.1, IRC: 112-2011, the maximum compressive stress in concrete under rare combinations of loads shall be limited to 0.48 fck

Volume 11 Issue 5, May 2022 <u>www.ijsr.net</u> Licensed Under Creative Commons Attribution CC BY

Check for Serviceability

As per CL.12.2.2, IRC: 112-2011, the maximum tensile stress in concrete under rare combinations of loads shall be limited to 0.80 fy

			2x3 wit	hout cushion			2x3 w	ith cushion	
Particu	1000	Stress in steel 6 _{sc}	Check	Stress in concrete 6 _{sc}	Check	Stress in steel 6 _{sc}	Check	Stress in concrete 6_{sc}	Check
Partici	liars	(N/mm^2)		(N/mm^2)		(N/mm^2)		(N/mm^2)	
		6sc<400 N/ mm ²		6c< 14.40 N/ mm ²		6sc<400 N/ mm ²		6c< 14.40 N/ mm ²	
Top Slab	Mid	290.52	Safe	9.72	Safe	238.00	Safe	8.30	Safe
Top Stab	Support	288.95	Safe	12.35	Safe	244.42	Safe	11.44	Safe
Side Wall	Mid	56.68	Safe	1.94	Safe	56.61	Safe	1.97	Safe
Side wall	Support	249.27	Safe	14.31	Safe	238.07	Safe	13.44	Safe
Bottom	Mid	257.98	Safe	12.99	Safe	188.36	Safe	9.57	Safe
Slab	Support	270.49	Safe	13.62	Safe	190.53	Safe	9.68	Safe

Check for Serviceability

			3x3 wit	hout cushion			3x3 w	ith cushion	
Particu	1000	Stress in steel 6 _{sc}	Check	Stress in concrete 6 _{sc}	Check	Stress in steel 6 _{sc}	Check	Stress in concrete 6 _{sc}	Check
Partici	liars	(N/ mm ²)		(N/ mm ²)		(N/ mm ²)		(N/ mm ²)	
		6sc<400 N/ m	m^2	6c< 14.40 N/ mm ²		6sc<400 N/ mm ²		6c< 14.40 N/ mm	2
Top Slab	Mid	242.65	Safe	8.44	Safe	259.93	Safe	10.53	Safe
Top Slab	Support	179.11	Safe	7.79	Safe	268.80	Safe	11.88	Safe
Side Wall	Mid	75.50	Safe	2.91	Safe	71.77	Safe	2.54	Safe
Side wall	Support	242.49	Safe	12.32	Safe	261.65	Safe	13.30	Safe
Bottom	Mid	220.62	Safe	10.18	Safe	256.84	Safe	11.85	Safe
Slab	Support	224.08	Safe	10.34	Safe	264.12	Safe	12.18	Safe

As per CL.12.2.1, IRC: 112-2011, the maximum compressive stress in concrete under Quasi combinations of loads shall be limited to 0.36 fck

			4x3 wit	hout cushion			4x3 w	ith cushion	
Particu	lora	Stress in steel 6 _{sc}	Check	Stress in concrete 6 _{sc}	Check	Stress in steel 6 _{sc}	Check	Stress in concrete 6 _{sc}	Check
Faitict	nais	(N/mm^2)		(N/mm^2)		(N/mm^2)		(N/mm^2)	
		6sc<400 N/ m	m ²	6c< 14.40 N/ mm ²		6sc<400 N/ mm ²		6c< 14.40 N/ mm	2
Top Slab	Mid	252.05	Safe	11.42	Safe	271.60	Safe	12.73	Safe
Top Slab	Support	286.56	Safe	11.56	Safe	284.16	Safe	12.24	Safe
Side Wall	Mid	210.37	Safe	7.44	Safe	252.51	Safe	7.51	Safe
Side wall	Support	229.42	Safe	14.23	Safe	235.05	Safe	14.29	Safe
Bottom	Mid	226.97	Safe	12.41	Safe	266.73	Safe	13.56	Safe
Slab	Support	251.84	Safe	13.19	Safe	290.62	Safe	14.15	Safe

			5x3 with	hout cushion			5x3 w	ith cushion	
Particu	1000	Stress in steel 6 _{sc}	Check	Stress in concrete 6 _{sc}	Check	Stress in steel 6 _{sc}	Check	Stress in concrete 6 _{sc}	Check
Partici	liars	(N/mm^2)		(N/mm^2)		(N/mm^2)		(N/mm^2)	
		6sc<400 N/ mm ²		6c< 14.40 N/ mm ²		6sc<400 N/ mm ²		6c< 14.40 N/ mm	2
Top Slab	Mid	257.75	Safe	11.49	Safe	290.65	Safe	14.38	Safe
Top Stab	Support	207.52	Safe	10.07	Safe	297.47	Safe	14.27	Safe
Side Wall	Mid	284.56	Safe	9.35	Safe	198.86	Safe	8.43	Safe
Side wall	Support	259.71	Safe	14.16	Safe	216.75	Safe	14.32	Safe
Bottom	Mid	243.76 Safe		12.39	Safe	273.95	Safe	14.15	Safe
Slab	Support	248.34	Safe	12.63	Safe	266.29	Safe	14.00	Safe

As per CL.12.2.2, IRC: 112-2011, the maximum tensile stress in concrete under Quasi combinations of loads shall be limited to 0.80 fy

DOI: 10.21275/SR22513223453

			2x3 wit	hout cushion			2x3 w	ith cushion	
Particu	1000	Stress in steel 6 _{sc}	Check	Stress in concrete 6_{sc}	Check	Stress in steel 6 _{sc}	Check	Stress in concrete 6_{sc}	Check
Partici	liars	(N/ mm ²)		(N/mm^2)		(N/mm^2)		(N/mm^2)	
	6sc<400 N/ m		$c < 400 \text{ N/ mm}^2$ $6c < 10.80 \text{ N/ mm}^2$			6sc<400 N/ mm ²		6c< 10.80 N/ mm	2
Ton Slab	Mid	16.98	Safe	0.21	Safe	71.40	Safe	0.94	Safe
Top Slab	Support	46.71	Safe	0.75	Safe	103.97	Safe	1.84	Safe
Side Wall	Mid	58.94	Safe	0.76	Safe	99.75	Safe	1.31	Safe
Side wall	Support	63.41	Safe	1.37	Safe	112.81	Safe	2.40	Safe
Bottom	Mid	30.39	Safe	0.57	Safe	61.76	Safe	1.18	Safe
Slab	Support	32.28	Safe	0.61	Safe	65.14	Safe	1.25	Safe

			3x3 wit	hout cushion			3x3 w	ith cushion	
Particu	1000	Stress in steel 6 _{sc}	Check	Stress in concrete 6_{sc}	Check	Stress in steel 6 _{sc}	Check	Stress in concrete 6_{sc}	Check
Partici	liars	(N/mm^2)		(N/mm^2)		(N/mm^2)		(N/mm^2)	
		6sc<400 N/ mm ²		6c< 10.80 N/ mm ²		6sc<400 N/ mm ²		6c< 10.80 N/ mm	2
Top Slab	Mid	48.14	Safe	0.63	Safe	142.02	Safe	2.18	Safe
Top Slab	Support	35.26	Safe	0.58	Safe	130.33	Safe	2.18	Safe
Side Wall	Mid	17.61	Safe	0.26	Safe	12.22	Safe	0.16	Safe
Side wall	Support	76.67	Safe	147	Safe	140.79	Safe	2.71	Safe
Bottom	Mid	56.75	Safe	0.99	Safe	149.44	Safe	2.61	Safe
Slab	Support	58.84	Safe	1.03	Safe	154.61	Safe	2.70	Safe

		4x3 without cushion				4x3 with cushion			
Particu	1000	Stress in steel 6 _{sc}	Check	Stress in concrete 6 _{sc}	Check	Stress in steel 6 _{sc}	Check	Stress in concrete 6 _{sc}	Check
Partici	liars	(N/mm^2)		(N/mm^2)		(N/mm^2)		(N/mm^2)	
		6sc<400 N/ mm ²		6c< 10.80 N/ mm ²		6sc<400 N/ mm ²		6c< 10.80 N/ mm ²	
Top Slab	Mid	50.20	Safe	0.87	Safe	138.50	Safe	2.48	Safe
Top Slab	Support	46.78	Safe	0.72	Safe	121.52	Safe	2.00	Safe
Side Wall	Mid	15.03	Safe	0.20	Safe	69.34	Safe	0.78	Safe
Side wall	Support	59.23	Safe	1.39	Safe	115.70	Safe	2.68	Safe
Bottom	Mid	60.11	Safe	1.25	Safe	144.81	Safe	2.81	Safe
Slab	Support	66.37	Safe	1.32	Safe	159.52	Safe	2.97	Safe

			hout cushion	5x3 with cushion					
Particu	lore	Stress in steel 6 _{sc}	Check	Stress in concrete 6 _{sc}	Check	Stress in steel 6 _{sc}	Check	Stress in concrete 6_{sc}	Check
Partici	nars	(N/mm^2)		(N/mm^2)		(N/mm^2)		(N/ mm ²)	
		6sc<400 N/ mm ²		6c< 10.80 N/ mm ²		6sc<400 N/ mm ²		6c< 10.80 N/ mm ²	
Ton Clab	Mid	67.11	Safe	1.14	Safe	172.48	Safe	3.26	Safe
Top Slab	Support	42.69	Safe	0.79	Safe	149.92	Safe	2.75	Safe
Side Wall	Mid	52.81	Safe	0.66	Safe	96.54	Safe	1.56	Safe
Side wall	Support	77.89	Safe	1.62	Safe	115.31	Safe	2.91	Safe
Bottom	Mid	80.10	Safe	1.56	Safe	170.64	Safe	3.37	Safe
Slab	Support	82.56	Safe	1.60	Safe	170.55	Safe	3.43	Safe

Check for Crack Width

		2x3 without cush	ion	2x3 with cushion		
Particul	Particulars		Check	Crack Width $(w_k) < 0.3 mm$	Check	
			(mm)		(mm)	
Top Slab	Mid	0.02	Safe	0.07	Safe	
Top Slab	Support	0.03	Safe	0.07	Safe	
Side Wall	Mid	0.07	Safe	0.11	Safe	
Side wall	Support	0.06	Safe	0.11	Safe	
Bottom	Mid	0.03	Safe	0.07	Safe	
Slab	Support	0.04	Safe	0.07	Safe	

Volume 11 Issue 5, May 2022 www.ijsr.net Licensed Under Creative Commons Attribution CC BY

Particulars		3x3 without cu	shion	3x3 with cushion		
		Crack Width (w _k) <0.3mm	Check		Check	
		(mm)		(mm)		
Ton Slob	Mid	0.04	Safe	0.12	Safe	
Top Slab	Support	0.03	Safe	0.12	Safe	
Side Wall	Mid	0.02	Safe	0.01	Safe	
Side wall	Support	0.08	Safe	0.15	Safe	
Bottom	Mid	0.07	Safe	0.17	Safe	
Slab	Support	0.07	Safe	0.18	Safe	

		4x3 without cush	ion	4x3 with cushion		
Particul	ars	Crack Width (w _k) <0.3mm	Check	Crack Width (w _k) <0.3mm	Check	
		(mm)		(mm)		
Top Clob	Mid	0.03	Safe	0.11	Safe	
Top Slab	Support	0.04	Safe	0.11	Safe	
Side Wall	Mid	0.02	Safe	0.09	Safe	
Side wall	Support	0.05	Safe	0.10	Safe	
Bottom	Mid	0.06	Safe	0.15	Safe	
Slab	Support	0.07	Safe	0.17	Safe	

Particulars		5x3 without cus	hion	5x3 with cushion		
		Crack Width $(w_k) < 0.3 \text{mm}$	Check	Crack Width (w _k) <0.3mm	Check	
		(mm)		(mm)		
Tan Clab	Mid	0.04	Safe	0.14	Safe	
Top Slab	Support	0.03	Safe	0.12	Safe	
C: 1- W-11	Mid	0.06	Safe	0.09	Safe	
Side Wall	Support	0.08	Safe	0.10	Safe	
Bottom	Mid	0.08	Safe	0.18	Safe	
Slab	Support	0.08	Safe	0.17	Safe	

5. Conclusion

In this study it is observed that the bending moment and shear force is greater when cushion considered over the box as compared to box without cushion. Their corresponding results like maximum bending moment, shear force with impact for ULS combination and SLS combination are obtained according to provision given in codes. Area of steel indices is studied for both conditions which are shown by graph in result analysis. The required area of steel is greater for overburden structure so the depth adopted for sections Foot Bridge without cushion is not suitable for box with cushion. Structure can be failed or unsafe to carry the stress in concrete while designing. So the adopted depth of section for overburden Footbridge is more than no cushion condition for safety purpose. All structures are safe within considered safe bearing capacity. The design carried out with safe in moment of resistance, shear resistance, stresses in short term effect, stresses in long term effect. It is also designed to safe in crack width.

References

 Sinha and R. P. Sharma, "RCC Foot bridge – Methodology and designs including compute method", Journal of the Indian Roads Congress,October-December2009

- [2] Komal S. Kattimani, R. Shreedhar, "Parametric studies of Footbridge", International Journal of Research in Engineering and Science, ISSN (Online): 2320-9364, ISSN(Print):2320-9356May.2013.
- [3] NehaKolate, Molly Mathew, Snehal Mali, "Analysis and Design of Footbridge" International Journal of Scientific & Engineering Research, Volume5, Issue12, December 2014, ISSN2229-5518.
- [4] Y.Vinod Kumar, Dr. Chava Srinivas "Analysis and Design of Footbridge by computational method, "International Journal of Engineering & Science Research ISSN2277-2685 July 2015/Vol-5/Issue-7/850-861
- [5] Shivan and Tenagi, R. Shreedhar, "Comparative Study of Slab Culvert Design using IRC112:2011andIRC21:2000", International Journal for Scientific Research & Development Vol.3, Issue05, 2015|ISSN(online):2321-0613
- [6] A.D.Patil, A. A.Galatage, "Analysis of Footbridge under cushion loading", International Journal of advanced engineering Research and scienc e(Vol-3, Issue-6, 2016ISSN:2393
- [7] Siva Rama Krishna, Ch. Hanumantha Rao, "Study of Foot bridge soil interaction", International Journal of Civil Engineering and Technology (IJCIET), Volume8, Issue1, January2017.ISSN Online: 0976-6316.
- [8] Dr. K. Rajasekhar, P. Leela Krishna, "Analysis and Design of Footbridge", IJSTE International Journal of

Volume 11 Issue 5, May 2022

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Science Technology & Engineering Volume 4 Issue 10April2018.

- [9] Jerin Jose, Kiran S Chirayath, M. A Muhammed Riswan, Megha Shankar, Rose Mariya George, "Design of Foot bridge using Limit State Method", Journal of the Indian Roads Congress, ISSNNO.2279-543X., voi 8, Issue6,2019
- [10] D .J. Kadbhane and C. D. Modhera, "Performance of RCC box drain under fluctuating depth of road embankment" Engineering science and technology an international journal, 22(2019) 548.554