
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2021): 7.86

Volume 11 Issue 5, May 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Automating Large-Scale Data Warehouse

Validation with Pytest

Pradeepkumar Palanisamy

Anna University, India

Email: pradeepkumar06.palanisamy[at]gmail.com

Abstract: As modern enterprises increasingly rely on data-driven decisions, ensuring the integrity, accuracy, and reliability of large-

scale data warehouses becomes paramount. Validating complex data pipelines—spanning ingestion, transformation, aggregation, and

reporting—requires a testing framework that is both scalable and expressive. Pytest, a mature and highly extensible Python testing

framework, excels in automating data validation across massive datasets typical in platforms like Snowflake, Amazon Redshift, and IBM

DB2. Pytest’s rich fixture system allows seamless setup and teardown of test states, including connections to cloud or on-premise data

warehouses. Its parameterization feature facilitates efficient testing across hundreds or thousands of data permutations—ideal for

validating transformation logic, schema compliance, row-level calculations, and business rule enforcement at scale. Moreover, Pytest

integrates effortlessly with SQL-based data quality checks, custom ETL frameworks, and metadata-driven validation engines. With native

support for parallel test execution (via pytest-xdist), detailed HTML reporting, and integration with CI/CD pipelines, Pytest enables rapid

feedback loops, early defect detection, and reduced manual testing overhead. This empowers QA and data engineering teams to automate

regression tests, verify backfills, validate nightly ETL jobs, and confidently certify data quality across environments—all while keeping

tests readable, maintainable, and version-controlled. In short, Pytest transforms large-scale data validation from a manual, error-prone

process into a streamlined, scalable, and agile practice.

Keywords: Data Warehouse Testing, Pytest, Data Validation, ETL Testing, Test Automation, Big Data Quality, Snowflake, Amazon

Redshift, IBM DB2, CI/CD for Data, Data Integrity, Python for Data Testing, Scalable Testing

1. Introduction

The proliferation of data and the increasing reliance on data-

driven insights for strategic decision-making have placed data

warehouses at the core of modern business intelligence and

analytics. These complex systems ingest, transform, and store

vast quantities of data from diverse sources, making their

accuracy, consistency, and reliability critical. However,

ensuring the quality of data within these large-scale

environments presents significant challenges. Traditional

manual validation methods are often time-consuming, error-

prone, and inadequate for the sheer volume and velocity of

data processed in platforms like Snowflake, Amazon Redshift,

and IBM DB2.

The complexity of Extract, Transform, Load (ETL) or Extract,

Load, Transform (ELT) pipelines, involving numerous stages

of data manipulation, aggregation, and business rule

application, further necessitates a robust and automated

testing approach. Any error in these pipelines can lead to

flawed analytics, incorrect reporting, and ultimately, poor

business decisions, eroding trust in the data. Therefore, a

systematic and scalable testing framework is indispensable.

Pytest, a popular and mature Python testing framework, offers

a powerful and flexible solution for automating data

warehouse validation. Its Pythonic nature, combined with a

rich ecosystem of plugins, makes it particularly well-suited

for data-centric testing. Pytest's capabilities extend beyond

typical unit testing, providing features like fixtures for

managing database connections and test data,

parameterization for testing numerous data scenarios, and

extensibility for integrating custom validation logic. This

paper explores how Pytest can be leveraged to build a

comprehensive, automated testing strategy for large-scale

data warehouses, addressing challenges from data ingestion

to final reporting, thereby significantly enhancing data quality

and reliability.

2. Challenges in Large-Scale Data Warehouse

Testing:

Validating data in large-scale data warehouses is fraught with

unique challenges that demand specialized testing strategies

and tools.

• Data Volume and Velocity: Modern data warehouses

often handle terabytes or even petabytes of data, with

continuous streams of new data arriving from various

sources. Manually sampling or verifying such massive

datasets is impractical and statistically insignificant.

Automated tests must be designed to efficiently query and

validate data at scale without impacting warehouse

performance.

• Complexity of Transformations: ETL/ELT pipelines

involve intricate data transformations, including cleaning,

joining, aggregating, deriving new fields, and applying

complex business rules. Each transformation step is a

potential point of failure. Testing must ensure that these

transformations are implemented correctly and that data

integrity is maintained throughout the pipeline. This

requires a deep understanding of the expected data outputs

at each stage.

• Data Source Heterogeneity: Data ingested into

warehouses often originates from a multitude of

heterogeneous sources, such as relational databases, APIs,

flat files, streaming platforms, and NoSQL databases.

Each source may have different schemas, data types, and

quality levels, making consistent validation a complex

task.

• Schema Evolution and Drift: Data warehouse schemas

and the schemas of source systems can evolve over time.

Paper ID: SR22505095001 DOI: https://dx.doi.org/10.21275/SR22505095001 2164

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/
mailto:pradeepkumar06.palanisamy@gmail.com

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2021): 7.86

Volume 11 Issue 5, May 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

New columns may be added, data types changed, or

relationships altered. Testing frameworks must be able to

adapt to these changes and validate schema compliance,

detecting unexpected drifts that could break downstream

processes or analytics.

• Historical Data Accuracy: Data warehouses store

historical data that is crucial for trend analysis and

longitudinal reporting. Validating historical data,

especially after schema changes, data migrations, or

backfill operations, can be particularly challenging. Tests

need to ensure that historical records remain accurate and

consistent with current data structures and business rules.

• Performance Impact of Tests: Running extensive

validation queries against a production or production-like

data warehouse can consume significant resources and

potentially impact the performance of ongoing analytical

workloads or ETL processes. Test strategies must be

optimized for performance, possibly utilizing off-peak

hours or dedicated testing environments.

• Dynamic Business Rules: Business rules applied during

data transformation can be complex and subject to change.

The testing framework must be flexible enough to

accommodate these evolving rules and allow for easy

updates to test logic without extensive re-coding.

• Lack of Comprehensive Test Data Environments:

Creating and maintaining representative test data

environments that mirror the scale and complexity of

production can be costly and operationally challenging.

This often leads to testing on subsets of data or in

environments that don't fully reflect production conditions.

Addressing these challenges requires a shift from manual, ad-

hoc testing to a systematic, automated, and scalable validation

approach, for which tools like Pytest are increasingly being

adopted.

3. Leveraging Pytest for Data Warehouse

Validation:

Pytest provides a robust and versatile platform for addressing

the challenges of data warehouse testing, offering several key

features that can be tailored for data-centric validation.

a) Pythonic and Extensible Framework: Being a Python-

based framework, Pytest allows data engineers and QA

teams to write tests in a language widely used in data

processing and analytics. This common language

facilitates collaboration and allows leveraging numerous

Python libraries for database connectivity (e.g.,

sqlalchemy, psycopg2, snowflake-connector-python),

data manipulation (e.g., pandas), and custom validation

logic.

b) Rich Fixture System for Resource Management:

Pytest's fixture system is exceptionally powerful for

managing the setup and teardown of test resources. For

data warehouse testing, fixtures can be used to:

• Establish and manage database connections to

Snowflake, Redshift, DB2, or other data sources.

• Create temporary test tables or views.

• Load pre-defined test datasets or generate synthetic

data for specific scenarios.

• Clean up test data and close connections after tests

complete. Fixtures can be scoped (function, class,

module, session) to optimize resource initialization

and reuse.

c) Powerful Parameterization for Data-Driven Testing:

The @pytest.mark.parametrize decorator allows tests to

be run multiple times with different input values or

conditions. This is invaluable for data warehouse testing,

where the same validation logic might need to be applied

across:

• Multiple tables or views.

• Different columns within a table.

• Various date ranges or data segments.

• Numerous business rules or transformation logic

variations. Parameterization significantly reduces code

duplication and allows for exhaustive testing of data

permutations.

d) Custom Markers and Hooks for Tailored Workflows:

Pytest allows the creation of custom markers to tag tests

(e.g., @pytest.mark.slow, @pytest.mark.staging_only)

and hooks to modify the test collection and execution

lifecycle. This can be used to:

• Selectively run tests based on environment or data

stage.

• Integrate custom reporting or logging mechanisms.

• Implement metadata-driven testing where test cases

are generated dynamically based on schema

information or business rule repositories.

e) Assertions and Rich Comparison: Pytest's assert

statement provides clear and detailed failure messages.

For complex data validation, assertions can be written to

check:

• Row counts and checksums.

• Schema compliance (column names, data types,

constraints).

• Data integrity (null checks, uniqueness, referential

integrity).

• Accuracy of calculations and aggregations.

• Conformity to business rules. Libraries like deepdiff

can be integrated for comparing complex data

structures or JSON outputs from API-exposed data.

f) Integration with SQL and Data Libraries: Tests can

directly embed or call SQL queries for data validation,

leveraging the expressive power of SQL for complex

checks. Results from these queries can then be asserted

within Pytest. Integration with pandas allows for fetching

data into DataFrames and performing sophisticated

comparisons, statistical checks, or data quality profiling as

part of the tests.

g) Plugin Ecosystem for Enhanced Capabilities: Pytest

has a vibrant plugin ecosystem. Key plugins relevant for

data warehouse testing include:

• pytest-xdist: For parallel test execution, significantly

speeding up large test suites by distributing tests across

multiple CPUs or machines.

• pytest-html: For generating detailed HTML reports of

test results, useful for sharing and analysis.

• pytest-cov: For measuring code coverage (though

more relevant if testing Python-based ETL logic rather

than pure SQL transformations).

Paper ID: SR22505095001 DOI: https://dx.doi.org/10.21275/SR22505095001 2165

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2021): 7.86

Volume 11 Issue 5, May 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

• Custom plugins can be developed to integrate with

specific data warehouse tools, ETL frameworks, or

data quality platforms.

By combining these features, teams can build a

comprehensive and maintainable automated testing suite that

addresses the intricacies of large-scale data warehouse

validation.

4. Implementing Common Data Warehouse

Test Scenarios with Pytest:

Pytest's flexibility allows for the implementation of a wide

array of common data warehouse test scenarios. Here are

some examples:

1) Schema Validation:

a) Objective: Ensure that table structures, column names,

data types, and constraints (e.g., NOT NULL,

UNIQUE) match the expected design.

b) Pytest Implementation:

• Use fixtures to connect to the data warehouse.

• Write parameterized tests that take table names and

expected schema definitions (e.g., from a

configuration file or a metadata database) as input.

• Query the database's information schema or system

catalog (e.g.,

INFORMATION_SCHEMA.COLUMNS,

pg_catalog.pg_attribute) to retrieve the actual

schema.

• Assert that the actual schema matches the expected

schema for each column's data type, nullability,

default values, etc.

2) Data Integrity Checks:

a) Objective: Verify relationships between tables,

uniqueness of keys, and absence of orphaned records.

b) Pytest Implementation:

• Referential Integrity: Write tests that execute

SQL queries to find records in a child table that do

not have a corresponding record in the parent table

(e.g., SELECT child.fk FROM child_table child

LEFT JOIN parent_table parent ON child.fk =

parent.pk WHERE parent.pk IS NULL). Assert that

the count of such records is zero.

• Uniqueness: For columns expected to be unique

(primary keys, candidate keys), run SQL queries

like SELECT column_name, COUNT(*) FROM

table_name GROUP BY column_name HAVING

COUNT(*) > 1. Assert that the query returns no

rows.

• Null Value Checks: For columns constrained as

NOT NULL, query for null values (e.g., SELECT

COUNT(*) FROM table_name WHERE

critical_column IS NULL). Assert the count is zero.

3) Transformation Logic Validation:

a) Objective: Ensure that data transformations

(calculations, derivations, mappings, aggregations) are

performed correctly according to business rules.

b) Pytest Implementation:

• Prepare source test data (either loaded into

temporary tables via fixtures or using existing small,

well-understood datasets).

• Execute the ETL/ELT process or the specific

transformation logic being tested.

• Define expected output data based on the

transformation rules.

• Query the transformed data from the target table.

• Compare the actual transformed data with the

expected output data row by row, or by comparing

aggregates and checksums. pandas DataFrames can

be very useful for this comparison.

• Parameterize tests to cover various input data

scenarios and edge cases for the transformation

logic.

4) Business Rule Validation:

a) Objective: Confirm that data conforms to defined

business rules (e.g., an order total must equal the sum

of line item totals; a discount percentage must be

within a valid range).

b) Pytest Implementation:

• Translate business rules into SQL queries or Python

functions that identify non-compliant data.

• For example, to validate an order total: SELECT

order_id FROM orders o WHERE o.total <>

(SELECT SUM(li.price * li.quantity) FROM

line_items li WHERE li.order_id = o.order_id).

• Assert that such queries return no records,

indicating all data complies with the rules.

• Parameterize tests to check different facets of

complex business rules.

5) Data Reconciliation (Source to Target):

a) Objective: Verify that data loaded into the data

warehouse matches the source data after extraction and

loading, or after transformations if applicable.

b) Pytest Implementation:

• Row Count Comparison: Compare row counts

between source and target tables (adjusting for any

expected filtering or aggregation).

• Checksum/Hash Comparison: For critical

columns or concatenated rows, calculate

checksums or hashes on both the source and target

data (after applying necessary transformations to

the source data for comparison) and assert they

match.

• Minus Queries: Use SQL MINUS or EXCEPT

queries to find records present in the source but not

in the target, and vice-versa. Assert these queries

return an empty set.

6) Historical Data Validation and Backfill Verification:

a) Objective: Ensure that historical data remains accurate

and that backfill processes correctly populate or update

historical records.

b) Pytest Implementation:

• Write tests that compare snapshots of data before

and after a backfill or historical load, focusing on

key metrics and dimensions.

• Validate that data aggregated over historical

periods matches expectations or independent

calculations.

Paper ID: SR22505095001 DOI: https://dx.doi.org/10.21275/SR22505095001 2166

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2021): 7.86

Volume 11 Issue 5, May 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

• Check for consistency in slowly changing

dimensions (SCDs) handling.

These scenarios can be combined and adapted into a

comprehensive Pytest suite, providing robust and automated

coverage for the data warehouse.

5. Integrating Pytest Data Warehouse Tests

into CI/CD Pipelines

Integrating automated data warehouse tests into Continuous

Integration/Continuous Deployment (CI/CD) pipelines is

crucial for achieving agile data development and ensuring

ongoing data quality.

1) Benefits of CI/CD Integration:

• Early Defect Detection: Running tests automatically on

every code change (e.g., ETL script updates, schema

modifications) helps detect issues early in the

development lifecycle, reducing the cost and effort of

fixing them.

• Rapid Feedback Loops: Developers and data engineers

receive immediate feedback on the impact of their

changes on data quality and pipeline integrity.

• Automated Regression Testing: Ensures that new

changes do not break existing data functionalities or

reintroduce previously fixed bugs.

• Increased Confidence in Deployments: Automated

validation provides greater confidence when deploying

changes to ETL processes or data warehouse structures.

• Improved Collaboration: CI/CD pipelines provide a

centralized platform for viewing test results and

collaborating on quality issues.

2) Key Steps for Integration:

a) Version Control for Tests and Infrastructure:

Store Pytest test scripts, SQL validation queries, and any

related configuration files in a version control system

(e.g., Git) alongside the ETL/ELT code and

Infrastructure as Code (IaC) for the data warehouse

environment.

b) Dedicated Test Environments:

Provision isolated test environments for running data

warehouse tests. These environments should ideally

mirror production in terms of structure and have

representative (though possibly scaled-down or

anonymized) data. IaC can be used to spin up and tear

down these environments on demand.

c) Pipeline Trigger Configuration:

• Configure CI/CD triggers to automatically execute

the Pytest suite when changes are pushed to relevant

branches (e.g., feature branches, develop, main) or

when pull requests are created.

• Schedule nightly or regular runs of more extensive

test suites against staging or QA environments that

simulate production data loads.

d) Secure Credential Management:

Use secure mechanisms provided by the CI/CD platform

(e.g., Jenkins Credentials, GitLab CI/CD variables,

GitHub Secrets, HashiCorp Vault) to manage database

connection strings, API keys, and other sensitive

credentials required by the tests. Avoid hardcoding

credentials in test scripts.

e) Dependency Management:

Define Python dependencies (including Pytest and any

data-related libraries) in a requirements.txt or

pyproject.toml file to ensure a consistent testing

environment in the CI/CD runners.

f) Test Execution Command:

• In the CI/CD pipeline script, include commands to

install dependencies and run Pytest (e.g., pip install -

r requirements.txt, pytest -m "smoke_tests" --

html=report.html).

• Utilize Pytest markers to run specific subsets of tests

at different pipeline stages (e.g., quick smoke tests on

commit, full regression suite nightly).

g) Reporting and Artifacts:

• Configure the pipeline to capture and archive test

reports (e.g., HTML reports generated by pytest-html)

and any logs or artifacts produced during the test run.

• Integrate test results with the CI/CD dashboard for

easy visibility.

h) Notifications and Alerting:

Set up notifications (e.g., via email, Slack, Microsoft

Teams) to alert relevant team members about test failures

or significant data quality issues detected by the pipeline.

i) Parallelization for Speed:

For large test suites, leverage pytest-xdist within the

CI/CD pipeline to run tests in parallel, significantly

Paper ID: SR22505095001 DOI: https://dx.doi.org/10.21275/SR22505095001 2167

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2021): 7.86

Volume 11 Issue 5, May 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

reducing the overall execution time and speeding up the

feedback loop.

3) Considerations:

• Execution Time: Data warehouse tests can be time-

consuming. Strategize which tests run at which stage (e.g.,

faster unit-like tests on commit, longer integration/E2E

tests nightly).

• Resource Consumption: Be mindful of the resources

consumed by tests in the data warehouse. Optimize

queries and consider dedicated test windows.

• Test Data Management: Ensure that the CI/CD pipeline

has access to appropriate test data or mechanisms to

generate/load it before tests run.

By thoughtfully integrating Pytest data warehouse validation

into CI/CD pipelines, organizations can foster a culture of

continuous quality and significantly improve the reliability of

their data assets.

6. Best Practices and Advanced Techniques:

To maximize the effectiveness of Pytest for large-scale data

warehouse validation, consider these best practices and

advanced techniques:

1) Modular and Reusable Test Code:

• Organize tests into logical modules based on data domains,

ETL stages, or types of validation.

• Create reusable helper functions or classes for common

tasks like executing SQL queries, fetching data,

comparing datasets, or generating test data.

• Leverage Pytest's conftest.py files to define shared

fixtures and hooks, promoting cleaner and more

maintainable test code.

2) Metadata-Driven Testing:

• Instead of hardcoding table names, column names, and

business rules in tests, drive tests from metadata. This

metadata can be stored in configuration files (YAML,

JSON), a dedicated metadata database, or derived directly

from the data warehouse's information schema or a data

catalog.

• Pytest's parameterization or test generation capabilities

can be used to dynamically create test cases based on this

metadata, making the suite highly adaptable to schema

changes and new business rules.

3) Test Data Management Strategy:

• Develop a clear strategy for managing test data. This

might involve:

▪ Using a small, static, version-controlled set of seed

data for unit-like transformation tests.

▪ Generating synthetic data that covers various edge

cases and business rule conditions.

▪ Sampling and anonymizing production data (with

appropriate governance) for more realistic

performance and volume testing in non-production

environments.

▪ Using fixtures to create and tear down test-specific

data within transactions to ensure test isolation.

4) Incremental and Delta Validation:

• For very large tables or frequently updated data,

implement tests that validate only the incremental changes

(deltas) since the last successful ETL run, rather than re-

validating the entire dataset each time. This can

significantly reduce test execution time.

• Checksums or record versioning can help identify changed

data.

5) Performance Testing of ETL Jobs and Queries:

• While Pytest itself is not a dedicated performance testing

tool, it can be used to execute specific ETL job steps or

analytical queries and assert that their execution time

remains within acceptable thresholds. This can help detect

performance regressions.

• Fixtures can be used to measure execution times.

6) Idempotency Testing for ETL Processes:

• Ensure that ETL jobs are idempotent, meaning running

them multiple times with the same source data results in

the same final state in the data warehouse without creating

duplicates or errors. Tests can be designed to run an ETL

job twice and verify the outcome.

7) Comprehensive Error Handling and Logging in Tests:

• Write tests that not only check for correct data but also

validate how the ETL process handles errors, such as

malformed input data, unavailable source systems, or

constraint violations.

• Implement robust logging within your test framework and

ETL jobs to aid in diagnosing test failures. Pytest captures

stdout and stderr and includes them in reports.

8) Collaboration between Data Engineers, QA, and

Business Analysts:

• Foster close collaboration between different teams

involved in the data lifecycle. Business analysts can help

define correct business rules and expected outcomes, data

engineers understand the ETL logic, and QA engineers

bring testing expertise.

• Shared understanding and ownership of data quality are

crucial. Pytest tests, being Python code, can be more

accessible to data engineers than some specialized QA

tools.

9) Regular Review and Refinement of Tests:

• Periodically review and refactor the test suite to ensure it

remains relevant, efficient, and maintainable as the data

warehouse and business requirements evolve.

• Remove redundant tests and add new tests to cover new

features or identified gaps.

10) Balancing Test Coverage with Execution Time:

• Strive for comprehensive test coverage but be mindful of

the total execution time of the test suite, especially within

CI/CD pipelines. Use Pytest markers and parallel

execution strategies to manage this balance effectively.

Prioritize tests based on the risk and impact of potential

data errors.

Adopting these practices will lead to a more robust, efficient,

and valuable automated data warehouse validation

framework using Pytest.

Paper ID: SR22505095001 DOI: https://dx.doi.org/10.21275/SR22505095001 2168

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2021): 7.86

Volume 11 Issue 5, May 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

7. Conclusion

The integrity and reliability of large-scale data warehouses

are fundamental to modern data-driven organizations. As

demonstrated, Pytest offers a versatile, powerful, and Python-

native framework that can significantly enhance the

automation and effectiveness of data warehouse validation

efforts. Its core features—such as fixtures for resource

management, parameterization for extensive data scenario

coverage, and seamless integration with SQL and Python data

libraries—provide the necessary tools to tackle the

complexities of testing massive and intricate data systems like

Snowflake, Amazon Redshift, and IBM DB2.

By implementing strategies for schema validation, data

integrity checks, transformation logic verification, business

rule enforcement, and data reconciliation, teams can build a

comprehensive safety net against data errors. The true power

of Pytest in this domain is amplified when these automated

tests are integrated into CI/CD pipelines, fostering rapid

feedback, enabling early defect detection, and promoting a

culture of continuous data quality. This integration transforms

data validation from a periodic, manual chore into an ongoing,

automated process that supports agile development and data

operations.

While challenges such as data volume, transformation

complexity, and schema evolution persist, leveraging Pytest

along with best practices like metadata-driven testing, robust

test data management, and collaborative development

empowers data engineering and QA teams to confidently

certify the quality of their data assets. Ultimately, the

adoption of Pytest for large-scale data warehouse validation

translates into more trustworthy data, more reliable analytics,

and more informed business decisions, solidifying its role as

an indispensable tool in the modern data stack.

References

[1] R. S. H. G. P. Mohanty, "Data Warehouse Quality:

Challenges and Solutions," in 2015 International

Conference on Advances in Computing,

Communications and Informatics (ICACCI), Aug. 2015,

pp. 2486-2490.

[2] R. B. Chaudhuri and S. R. B. Chaudhuri, "A Review

on Challenges and Trends in ETL Testing," in 2016

International Conference on Computational Techniques

in Information and Communication Technologies

(ICCTICT), March 2016, pp. 119-123.

[3] M. Al-Ghamdi, D. H. Al-Qadasi, and S. Al-Mutairi,

"Automated Testing for ETL Processes in Data

Warehouses: A Survey," Journal of Computer Science,

vol. 14, no. 10, pp. 1381-1393, 2018.

[4] S. K. Khan, A. Gani, and A. Khan, "A Comprehensive

Study on Big Data Quality Dimensions and

Approaches," in 2017 3rd International Conference on

Frontiers of Information Technology (FIT), Dec. 2017,

pp. 1-6.

[5] A. Singh and P. K. Singh, "CI/CD Pipeline for Data

Intensive Applications: Challenges and Solutions," in

2021 International Conference on Advances in

Computing, Communications and Informatics

(ICACCI), Sept. 2021, pp. 1-6.

[6] Golfarelli, M., & Rizzi, S. (2011). Data Warehouse

Testing: A prototype-based methodology.

Information and Software Technology, 53(11), 1183-

1198. (While not strictly ACM, this is a highly cited and

relevant work in the broader field of DW testing).

[7] Kimball, R., & Caserta, J. (2004). The Data

Warehouse ETL Toolkit: Practical Techniques for

Building Scalable Data Warehouses. John Wiley &

Sons. (A classic in the field, widely referenced in data

warehousing literature).

[8] Jarke, M., Jeusfeld, M. A., Quix, C., & Vassiliadis, P.

(1999). Architecture and Quality in Data Warehouses:

An Extended Repository Approach. Information

Systems, 24(3), 229-253.

[9] Breck, E., Cai, S., Long, E., McLanahan, J., Reagen,

M., Sculley, D., ... & Young, J. (2017). The ML Test

Score: A Rubric for ML Production Readiness and

Technical Debt Reduction. arXiv preprint

arXiv:1710.04615.

[10] Schelter, S., Wiewiórka, E., & Spengler, M. (2018).

Monitoring Data Quality in Large-Scale Production

Systems. arXiv preprint arXiv:1803.00318.

Paper ID: SR22505095001 DOI: https://dx.doi.org/10.21275/SR22505095001 2169

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

