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Abstract: Remote sensing and GIS can also be used very effectively in land use / land cover analysis as well as damage assessment 

because of drought, floods and other extreme weather events. Information on meteorology and vegetation are the two major important 

inputs into agricultural meteorology Applications of remote sensing technologies are important and effective method to identify pest- 

infested and disease. It is one of the effective tools for assessing and monitoring the water resources.This article provides an overview of 

some ofthe recent research in agriculture involving remotesensing and GIS. Attention focuses on application ofremote sensing and GIS 

specially in agriculture includinggeography, land surveying, most Earth Sciencedisciplines, parent child relationship, unique 

identification, attributes, technical parameters, 2D/3Dview and any other requirement customized. Theseadvances have been made over 

recent years andfoundations for future research established and can beefficiently used in Agriculture for better results. 
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1. Introduction 
 

Agriculture plays a vital role in every nation economy. It 

represents a substantial trading industry for an economically 

strong country. Production of food in a cost-effective 

manner is the essential goal of every farmer, large-scale 

farm manager and regional agricultural agency. Remote 

sensing and Geographic information system used to analyze 

and visualize agricultural environments has proved to be 

very beneficial to farming community as well as industry. It 

plays great role in agriculture throughout the world by 

helping farmers in increasing production, reducing costs and 

managing their land more efficiently. Geographic 

information systems (GIS) has been widely applied and been 

recognized as effective and powerful tool in detecting land 

cover and land use change [1]. Using remote sensing and 

GIS are important to understand the health of crop, extent of 

infestation, potential yield and soil conditions. It applied to 

explore agricultural applications such as crop identification, 

area estimation, crop condition assessment, soil moisture 

estimation, yield estimation, agriculture water management, 

agro meteorological etc. 

 

Applications of remote sensing in agriculture including 

major important things such as; biomass and yield 

estimation, vegetation vigor and drought stress monitoring, 

assessment of crop phenological development, crop acreage 

estimation and cropland mapping, mapping of disturbances 

and land use land cover changes in addition to precision 

agriculture and irrigation management [2]. GIS based 

mapping application can help to identify location of crops 

growing across the country and to adapt different variables, 

monitor the health of individual crops, estimate yields from 

a given field, and maximize crop production. By using land-

use and primary food crop statistics, along with data 

collected by different tools including mobile devices able to 

identify areas in need and underlying causes of food 

insecurity, GIS is an instrumental in the efforts to end global 

hunger and it is an integral part of automated field 

operations. 

Using data collected from remote sensors, and from sensors 

mounted directly on farm machinery, farmers have improved 

decision-making capabilities for planning their cultivation to 

maximize yields. Previous crop yields, terrain specifics, 

organic matter content, pH, moisture, and nutrient levels of 

the soil all aid in proper preparation for precise farming. 

Combine harvesters equipped with GPS tracking units can 

measure crop yields along with crop quality values like plant 

water content and chlorophyll levels in real time and at the 

exact location in the field from which they are harvested. 

Rapidly emergingremote sensing and geospatial technology 

can play vital role for crop growth monitoring, identification 

and management of different types of stresses, regional yield 

estimations, to sustain the natural resources and agricultural 

productivity [3].  

 

2. Study Region 
 

Nalgonda is situated in the central stretch of the eastern 

seaboard of the Indian Peninsula., Nalgonda district is a 

district in the Telangana state of India. The district was 

situated between 78° 40' and 80° 05'E, of the eastern 

longitudes and 16° 25' and 17° 60'N, of northern latitudes. It 

has a Area (km2) 2449.79, population of 1631399 and 31 

mandals. The district shares boundaries with Suryapet 

district, Rangareddy, Yadadri, Nagarkurnool districts and 

with State Boundary. The rivers Krishna, Musi River, Aleru, 

Peddavagu, and Dindiflow through the Nalgonda district. 
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Figure 1: Location Map of Study area Nalgonda district 

 

Telangana borders Andhra Pradesh to the northwest, and 

until 2014. Today it is the eleventh largest Indian state 

(112,077 sq km). Situated on the Deccan Plateau in central-

south India, its climate is semi-arid and drier than that of 

Nalgonda, with district average annual precipitation more 

variable from 500 mm to 1200 mm and temperatures from 

15 °C to 45 ∘C. Forty-three percent of the state is cropped, 

and 24% is forest [40]; cotton, rice, and maize are major 

kharif crops, while rice, maize, and peanut comprise the 

major rabi crops [9]. The average operational holding size in 

Telangana was 1.00 ha in 2015–2016 [28]. 

 

3. Datasets 
 

3.1 Plantix User Submissions 

 

Plantix is a free Android application created by Progressive 

Environmental and Agricultural Technologies (PEAT) in 

2015 to help farmers identify pests, diseases, and nutrient 

deficiencies using a mobile phone camera and image 

recognition software. The user—usually a farmer, 

sometimes a hired plant expert—takes a photo of his or her 

crop with a mobile phone and uploads the photo to PEAT 

servers for a diagnosis of plant health. The photo is then run 

through a deep neural network, which returns predicted plant 

ailments. This information, along with corresponding 

treatments, are sent back to the user’s Plantix app. 

 

Between 1 January 2017 and 1 January 2019, the Plantix app 

received 8.6 million geolocated submissions from India, 1.8 

million of which were in Nalgonda and Telangana. When a 

photo was taken via Plantix, the time of capture and the 

location of the phone were recorded. Figure 1 shows that 

most of the submissions were logged between September 

and November, which is during the harvest of the kharif 

season. While submissions were not tagged with a crop type 

by the farmer, crop scientists at PEAT assigned a crop type 

label to a subset of the submissions based on the uploaded 

photos, and a deep convolutional neural network (Plantix-

DNN) was trained on expert labels to predict the crop type 

of all million submissions. 

 

Details of how Plantix submissions were filtered and used to 

construct training, validation, and test sets for crop type 

classification are described in Section 4.1. 

 

3.2 Sentinel-2 Time Series 

 

Sentinel-2 was chosen for its high spatial resolution and 

public availability, and prior work has shown that optical 

features can be used to distinguish crop types [14,18,27,41]. 

Sentinel-2A was first launched by the European Space 

Agency (ESA) in June 2015 as part of the European Union’s 

Copernicus Programme for Earth observation, and captures 

high-resolution (10–60 m) optical imagery to serve a wide 

range of scientific applications on land and in coastal waters. 

Since March 2017, with the launch of Sentinel-2B, images 

have been collected on a 5-day cycle. ESA distributes a top 

of atmosphere reflectance product (Level-1C) for Sentinel-2, 

while a higher-level surface reflectance product (Level-2A) 

can be derived using a toolbox provided by ESA [42]. At the 

time of this work, pre-generated Level-2A imagery was not 

available for download from either ESA or Google Earth 

Engine (GEE) over India before December 2018. Since the 

ESA Toolbox was also not available in GEE, one would 

have to compute the Level-2A product and ingest it into 

GEE in order to obtain time series of surface reflectance. 

Such an approach is hugely expensive computationally and 

storage-wise, and does not scale well to a study region as 

large as Nalgonda and Telangana. Furthermore, prior work 

showed that land cover classification using top-of-

atmosphere reflectance is comparable to using surface 

reflectance, since relative spectral differences drive 

classification [43,44]. For these reasons, we used the Level-

1C product, with the recognition that this imperfect input 

will still place some limits on the performance of a crop 

classifier. 

 

Using Google Earth Engine [45], we exported all Sentinel-2 

Level-1C images at each submission coordinate for the 

corresponding crop year, where a crop year is defined to be 

from 1 April of one year to 31 March of the next. For 

example, a Plantix submission from 1 September 2017—

during the kharif season—generates a time series of 

Sentinel-2 readings from 1 April 2017 to 31 March 2018, 

which encompasses the fall 2017 kharif season and winter 

2017–2018 rabi season. 1 April was chosen as the cutoff 

date to avoid truncating early kharif or late rabi satellite data 

that could be relevant for crop type classification. All 

spectral bands were sampled at 10 m ground resolution; the 
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20 m and 60 m bands were resampled using the GEE default 

nearest neighbor algorithm. In addition to the 13 spectral 

bands, we also computed the green chlorophyll vegetation 

index (GCVI=NIR/green−1) [46] as previous work has 

shown GCVI to correlate well with leaf area index [47] and 

be a strong feature for crop type classification [18, 48]. 

Figure 2 visualizes GCVI time series of the 10 crop types 

and shows the high levels of noise due to clouds in Sentinel-

2 imagery. 

 

Across the dataset of Plantix submissions, the median 

number of Sentinel-2 images for the 2017–2018 crop year 

was 42, with minimum and maximum image counts of 36 

and 143. In 2018, the median image count was 71, with 

minimum and maximum of 67 and 143. Of these images, 

many are affected by clouds and cloud shadows, especially 

during the monsoon season; since the Sentinel-2 Level 1-C 

cloud mask has a high omission error at the time of writing 

[49], we describe methods to minimize the impact of clouds 

in Section 4.3.2. Although we will show that it is possible to 

make progress in distinguishing crop types in the presence 

of cloudy imagery, the lack of high-quality cloud mask 

remains a major challenge to mapping crop types in 

smallholder systems, and we expect the improvement of 

such masks to enable better classification performance in the 

future. 

 

3.3 Sentinel-1 Time Series 

 

The Sentinel-1 constellation is composed of two satellites, 

Sentinel-1A and Sentinel-1B, launched April 2014 and April 

2016, respectively. The satellites carry a C-band synthetic-

aperture radar (SAR) instrument that captures 5–40 m 

resolution imagery with a revisit period of 12 days. We used 

the Interferometric Wide swatch mode, which acquires 

images with dual polarization (vertical transmit, vertical 

receive (VV) and vertical transmit, horizontal receive (VH)). 

In addition to using backscatter coefficients as features, we 

computed their ratio and difference 

(RATIO=VH/VV=VHdB−VHdB and DIFF=VV−VH) 

based on previous work that indicated the suitability of such 

transformations for agricultural applications [18,50,51]. 

Unlike optical imagery, radar is not affected by weather 

conditions and can monitor the Earth’s surface through 

clouds, making it a useful complement to optical imagery 

during the wet season. The median number of Sentinel-1 

images available was 30 in both 2017 and 2018, with 

minimum and maximum of 21 and 78. 

 

Sentinel-1 Ground Range Detected (GRD) scenes are 

available in GEE, which processes the imagery using ESA’s 

Sentinel-1 Toolbox to reduce noise and standardize bands at 

10 m spatial resolution. We note that after this processing 

Sentinel-1 imagery still contains speckle-noise, which is 

caused by backscatter interference. While speckle is highly 

disruptive for interpreting individual images taken at one 

point in time [52], its effect on a SAR time series over the 

course of a year is dampened by the feature extraction 

methods described in Section 4.3.2 and Section 4.3.3. We 

used GEE to export Sentinel-1 GRD observations at each 

submission coordinate for the corresponding crop year, 

where a crop year is defined to be from 1 April of one year 

to 31 March of the next (Figure A2). 

 

3.4 DigitalGlobe Static Satellite Imagery 

 

Due to Android phone location inaccuracy and users taking 

photos of crops while not standing in their fields (e.g., from 

the road next to their field or in an urban area with internet 

access), we employed very high-resolution satellite imagery 

to filter for points within a crop field. A single DigitalGlobe 

image was downloaded using the company’s Web Map 

Service application for each submission location, for all 

72,000 kharif season submissions (see Section 4.1 for how 

we arrived at 72,000). Images have 0.3 m ground sample 

distance, are RGB, and span 256 × 256 pixels (76.8 m × 

76.8 m) around the submission location. This ground 

resolution is high enough for humans to visually determine 

whether any pixel in the image belongs to a crop field or not. 

 

Since we used time series of Sentinel imagery for crop type 

classification, we were interested in whether the Sentinel 

pixel covering each submission location is within a crop 

field. We therefore drew a 10 m × 10 m square centered 

within each DigitalGlobe image to approximate the bounds 

of the corresponding Sentinel-2 pixel. 

 

3.5 Sub-National Crop Area Statistics 

 

District-wise, season-wise crop production statistics were 

available from 1997 to 2016 on India’s Crop Production 

Statistics Information System and Open Government Data 

(OGD) Platform [9,53]. We compared the kharif crop area 

data in and 30 districts of Telangana against our aggregated 

crop type predictions. Note that the number of districts in 

Telangana increased from 10 to 33 upon redistricting in 

2016. In the latest government crop statistics (2016–2017), 

data were only available for 30 of the 33 districts. 
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Figure 2: Raw Sentinel-2 time series. For each crop type, the green chlorophyll vegetation index (GCVI) of Sentinel-2 time 

series at 5 randomly sampled submissions are shown from 1 April of the crop year to 31 March of the next year. GCVI is 

defined as NIR/green−1 and measures chlorophyll concentration in vegetation. 

 

4. Methods 
 

For a graphical overview of the methods presented in this paper, please see Figure 3. 

 

 
Figure 3: Explanatory diagram of the methods presented in this paper. Raw datasets are shown on the left; the data are 

cleaned and input to feature extraction and machine learning models, and the methods output crop type predictions that are 

validated against both a hold-out set of ground labels and government statistics on crop area 

 

4.1 Measuring and Reducing Noise in Crowdsourced 

Data 

 

4.1.1 Initial Filtering by PEAT 

To extract usable data and minimize noise, our collaborators 

at PEAT applied several filtering steps to the original 1.8 

million submissions. First, photos had to show a crop (1.3 

million samples) and be labeled by an expert or with a 

Plantix-DNN prediction consistent with disease prediction 

(1.0 million samples). Second, the predicted crop type had to 

be one of a pre-selected list of crops: rice, cotton, peanut, 

pepper, tomato, eggplant, maize, gram, millet, and sorghum 

(620,000 samples), which account for about 70% of the 

region’s kharif crops (Table 1). Third, Android location 
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accuracy had to be available and within 200 m (213,000 

samples). Lastly, only one image of each crop type was 

permitted per user (102,000 samples). This minimized the 

overrepresentation of very active users and submissions 

from the same field. 

 

Table 1. Kharif season crop type distribution. Submission 

counts are shown for the filtered Plantix dataset and 

compared to government crop area statistics for Andhra 

Pradesh and Telangana in 2016–2017. For comparison, 

Indian state agriculture departments collected 11,469 points 

nationally in both kharif and rabi seasons in 2017–2018 [33]. 

 

Since there are two growing seasons in southeast India, we 

chose to focus on kharif crops to simplify the classification 

task. We defined kharif samples as those submitted between 

1 June and 1 December, which filtered the dataset further to 

72,000 samples. A geographic and temporal distribution of 

Plantix submissions in our study region is shown in Figure 

1, and a quantitative summary by crop type, with 

comparisons to government statistics, can be found in Table 

1. Rice is by far the most highly represented crop type in 

Plantix submissions with over 32,000 points, followed by 

cotton with over 10,000. All other crop types have below 

10,000 submissions. It is worthwhile to note that, between 

the selection bias of submission through the Plantix app and 

filtering for usable samples, this dataset is likely to contain 

biases; we discuss these in more detail in Section 6. 

 

The dataset of 72,000 kharif samples, though filtered, still 

included many noisy submissions. Below, we describe 

methods to further filter the dataset on Android location 

accuracy, how much of the Sentinel-2 pixel is within a crop 

field, whether crop type was assigned by a human expert or 

by the Plantix-DNN, and spatial uniformity across the study 

region. 

 

4.1.2. Android Location Accuracy 

Information on the location accuracy of submissions was 

available via the Android platform. The Android Location 

API supplied the horizontal accuracy of a location as the 

radius of 68% confidence. In general, higher accuracy in 

location required higher battery drain, so preservation of 

battery life compromised location accuracy and therefore the 

majority of submissions’ usefulness for crop type mapping. 

Filtering for submissions with accurate locations is a crucial 

step in de-noising crowdsourced data. 

 

A histogram of submission location accuracy across a 

random sample of the 1.8 million dataset is shown in Figure 

4a. The distribution is bimodal, with one small peak at 5 m 

and a second, much larger one at 3000 m. In comparison, the 

average operational holding size in AP and Telangana is 

0.94 ha and 1.00 ha, respectively [28], and we observed 

individual fields as small as 10×10 m in DigitalGlobe 

imagery. This implies that a location accurate to 200 m is 

unlikely to still be inside the field of the submitted photo. 

We filtered for location accuracies at the 10 m, 20 m, and 50 

m level in our sensitivity analyses; submissions with 

accuracies >50 m was discarded. Note that, since the 

Android location service seeks to preserve battery at the 

expense of accuracy, the ≤50 m criterion alone removes 61% 

of all submissions. 

 

 

 
Figure 4: Sources of error in crowdsourced locations and crop type labels. (a) Android location accuracy varies from 1 m 

to 10 km depending on battery life preservation. Histogram shows accuracy distribution with 50 m as cutoff for inclusion in 

our analyses. (b) Sentinel-2 pixel (denoted by 10×10 m white box) may range from entirely inside to entirely not inside a crop 

field. (c) Plantix photo-based deep convolutional neural network (DNN) crop type prediction is imperfect and varies by crop 

type. (d) Clustered submissions from active locations overrepresent some geographic subregions 

 

4.1.3. Pretrained CNN for In-Field Classification 

A second source of label error is the farmer taking a photo of 

a plant without standing inside their field. They often take 

the photo from a road at the edge of their field, pick off a 

diseased leaf, and photograph it in an urban area (i.e., in a 

place with WiFi), or stand under trees in fields while using 

the app. Though the crop type labels may be correct for the 

submitted photos, the satellite time series at these non-field 

locations do not correspond to those labels. 

 

We used the DigitalGlobe (DG) imagery described in 

Section 3.4 and a 2D CNN to classify each submission into 

one of four classes: ―in field‖, ―more than half‖, ―less than 

half‖, and ―not in field‖ (Figure 4b). The rationale for finer-
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grained labels ―more than half‖ and ―less than half‖ is that 

the spectral reading at a pixel that is mostly in a field may be 

dominated by the crop in that field, whereas pixels mostly 

not in one field are too mixed or contaminated. 

 

Since the DG images are RGB, we classified them using 

well-established network architectures designed for natural 

images. We tried two commonly-used CNN architectures: 

VGG and ResNet [54,55], each with two network depths 

(VGG-11, VGG-19, ResNet-18, and ResNet-50). Their 

weights were initialized by pretraining on the large RGB 

image database ImageNet to boost classification accuracy 

with small training sets [56]. All four pretrained 

initializations were available off-the-shelf in the deep 

learning framework PyTorch [57]. We also tried two 

resolutions of DG imagery: 0.3 m and 0.6 m, the latter of 

which was downsampled from the 0.3 m imagery. At both 

resolutions, images were cropped to 224×224-pixels to fit 

the pretrained models. 

 

We sampled 3000 submissions from the 72,000 kharif points 

obtained at the end of Section 4.1.1 in a geographically 

uniform manner (Figure A3). Through manual inspection of 

the DG images, which took a total of 4 hours, two human 

labelers generated in-field labels to train the CNNs. Figure 

A4 shows the agreement between the two labelers to give a 

sense of the task difficulty. Of these 3000 DG images, 2000 

were placed in the training set, 500 in the validation set, and 

500 in the test set; each split was constructed so that no 

points in one split were within 200 m of any points in the 

other two splits (to ensure non-overlapping DG images). 

Table 2a summarizes the distribution of labels. 

 

The CNNs were trained to minimize cross entropy loss 

(Equation (2)) with C=4 for the four classes. 

During training, common data augmentation strategies were 

used to increase the diversity of the training set: random 

horizontal flips, vertical flips, rotations, and color jitters. 

The best model was selected via the highest validation set 

accuracy, and test set accuracy was evaluated using this 

model. Details of the network architectures and optimization 

parameters are shown in Table A1, training loss and 

accuracy over epochs are shown in Figure A5, 

and pretrained networks’ validation set accuracies are shown 

in Table A2. 

 

We note that this data cleaning step significantly reduces 

noise found in the Plantix dataset, but remains imperfect. 

CNN misclassifications aside, it is unclear which field a 

submission is from when it is on the boundary between two 

fields, but the submission may still be considered ―more than 

half‖ in a field. Geolocation errors of Sentinel-2 images 

(especially Sentinel-2B prior to mid-2018), which we did 

not correct, may also add noise to the time series of 

submissions near field boundaries [58]. We therefore tested 

different in-field thresholds for inclusion in the training set 

and report their effect on performance in the results. 

 

4.1.4 Expert vs. Plantix-DNN Labeling 

Since the vast majority of crop type labels were assigned by 

Plantix’s deep neural network (DNN) trained on expert 

labels, the use of these imperfect labels introduces another 

source of noise. Figure 4c shows the DNN accuracy by crop 

type, evaluated on the expert labels. The overall accuracy is 

97%, while crop-specific recalls range from 48% for gram to 

99% for peanut. Accuracies for rice and cotton are 97% and 

93%, respectively. In the sensitivity analyses, we compared 

the performance of models trained on expert-labeled 

submissions to those trained on DNN-labeled submissions. 

 

4.1.5 Spatial Distribution of Submissions 

The geographic distribution of submissions is heavily 

concentrated around urban areas (e.g., Hyberadad) and 

locations of highly-active users (Figure 1), likely due to 

differences in smartphone ownership, internet access, 

and knowledge of the Plantix app. One field may generate 

multiple submissions when its farmer is an active user. We 

introduced another filtering step in which submissions 

within 20 m of another were considered duplicates and 

removed (Figure 4d). 

 

4.2 Constructing Training, Validation, and Test Sets 

 

Identifying a good crop type classifier and providing an 

unbiased out-of-sample estimate of classification 

performance requires validation and test sets that (1) have 

high label accuracy and (2) are representative samples of the 

region. To generate cleaned validation and test sets, we first 

filtered for the set of points that satisfied the 

following criteria. 

1) The location accuracy is deemed to be ≤10 m by the 

Android platform. 

2) The Sentinel-2 pixel at the submission location has been 

classified as either ―in field‖ or ―more than half‖ inside 

a field. 

3) A crop scientist, not the DNN, assigned the crop type 

label based on the submission photo. 

 

The resulting dataset was heavily skewed toward the eastern 

part of the study region (Figure A8a), undermining the 

ability of the validation set to select a good model for the 

entire region and of the test set metrics to represent the 

entire region. To achieve greater spatial uniformity, we 

started with an empty set, randomly sampled coordinates 

within the study region, and added the ―clean‖ submission 

closest to the sampled coordinate until the validation and test 

sets each reached 400 samples (Figure A8b). 

 

In these cleaned validation and test sets, the median location 

accuracy was 4.6 m and 4.1 m, respectively. This means that 

the sample has on average a 68% chance of being within 4.6 

m (or 4.1 m) and a 95% chance of being within 9.2 m (or 8.2 

m) of the submission location. Forty-one percent of the 

validation set were classified as completely inside a field, 

while 43% of the test set were completely in-field. 

 

To see how much validation set noise affects the ability to 

choose good training data and models, we also constructed a 

noisy validation set comprised of 400 points sampled at 

random from the original dataset. It therefore includes 

submissions with GPS accuracy from 10–50 m, submissions 

not taken inside a crop field, and submissions labeled by the 

Plantix-DNN. Note that, to avoid overfitting and inflated 

metrics, no samples in the validation or test sets were within 

500 m of samples in the other two sets. 
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The training set was derived from the remaining points in 

the dataset not in the validation and test sets (Figure A8c). 

Training points were filtered to be at least 500 m from all 

points in the validation and test sets (45,000 samples), 

to have Sentinel-2 pixels in field or more than half in a field 

(21,000 samples), and to not contain points within 20 m of 

each other. The final training set used to train the classifiers 

contained 9079 samples, a very large reduction from the 1.8 

million raw submissions. 

 

4.9 Crop Type Classification 

 

As a result that smallholder systems are highly 

heterogeneous and simple rules to separate crop types are 

not immediately apparent (Figure 2), we tested the 

performance of three machine learning algorithms for 

feature extraction and crop type classification (Figure 5). 

The first is a random forest using features derived from 

harmonic regressions on satellite time series, an algorithm 

that has performed well at crop type classification in 

previous studies [18,36]. The second is a 1D CNN with 

kernels convolving over the temporal dimension of the time 

series. The advantage of a CNN is that features are learned, 

not prescribed, and can take useful forms that the harmonic 

coefficients cannot. The third model is a 3D CNN with 

kernels convolving over two spatial and one temporal 

dimension of the time series for an entire image tile. The 3D 

CNN can see a broad spatial context that the previous two 

methods cannot, but it contains more parameters, is much 

more computationally intensive to train, and is more prone 

to overfitting on small datasets. A comparison of the data 

storage and computational runtime required for each model 

is provided in Table A3. 

 

 

 
Figure 5: Feature extraction methods for Sentinel-2 time series. For the same example rice submission, (a) third-order 

harmonic regression with six recursive fits, (b) 1D convolutional neural network (CNN) time series input, and (c) 3D CNN 

time series schematic for an entire tile surrounding the submission are shown for the green chlorophyll vegetation index 

(GCVI) band. In (b,c), days without a Sentinel-2 image are filled in with the most recent previous image. In (c), the yellow 

box encircles the labeled submission pixel; all other pixels are unlabeled 

 

4.3.1 Choosing Crop Types to Predict 

The Plantix dataset contains ten crop types, whose 

distribution is shown in Table 1. Ideally, a classifier would 

achieve high precision and recall on all ten crops; in reality, 

the minor crop types do not have enough label quantity or 

signal in their time series for accurate classification. We first 

show results for 10-crop classification to demonstrate the 

difficulty of mapping minor crops over large geographic 

extents with only small label quantities. We then simplify 

the classification to a 3-class problem of distinguishing rice 

and cotton from all other crops (lumped into one ―other‖ 

class). Rice and cotton were chosen because they are the two 

major kharif crops in and Nalgonda (Table 1), had label 

accuracy exceeding 90% from the Plantix DNN (Figure 4c), 

and had high precision and recall in the 10-crop 

classification task (Figure A13). 

 

4.3.2. Random Forest with Harmonic Features 

In order to use the phase and amplitude of plant phenology 

to differentiate crop types, a method is needed to transform 

variable-length discrete time series into features that can be 

input into machine learning algorithms. One such method 

whose features have been successfully used to classify crop 

types is the harmonic regression, or regression using a 

Fourier basis [18,34,35,36]. The harmonic regression 

decomposes a function of time into its frequencies, yielding 

a compact representation of the time series at each satellite 

band or vegetation index (VI). Mathematically, it is 

equivalent to performing a discrete Fourier transform [59]. 

 

We viewed each satellite band or VI as a time-dependent 

function f(t) and performed the harmonic regression 

f(t)=c+∑k=1n[akcos(2πkt)+bksin(2πkt)] 

(1) for each band/VI independently, where ak are cosine 

coefficients, bk are sine coefficients, c is the intercept term, 

and n is the order of the harmonic series. The independent 

variable t represents the time an image is taken within a crop 

year expressed as a fraction between 0 (1 April) and 1 (next 

31 March). 

 

Due to the presence of clouds, the harmonic regression fit 

naively to a Sentinel-2 time series does not capture crop 

phenology well. In the absence of an accurate cloud mask, 

we followed a recursive curve fitting procedure similar to 

that implemented in the TIMESAT program [60], which has 

been shown to reduce the bias introduced by clouds. The 

algorithm recursively fits the harmonic regression to the 

time series, and then imputes the cloud-free values of the 

time series by taking the maximum (or minimum) of the 

band/VI and the regression fit if clouds appear as low (or 

high) values for that band/VI. For example, since clouds 

appear as low GCVI values, one iteration of the recursive 

algorithm would regress the raw GCVI values on the 

harmonic terms, then take the maximum of the fitted curve 
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and the raw GCVI values. This can be repeated for a total of 

r recursive fits (Figure 5a). 

 

The values of n and r are hyperparameters that must be 

tuned via cross-validation for a given dataset and task. A 

larger n (more cosine and sine terms) increases model 

flexibility but risks the model overfitting to spurious 

patterns. Meanwhile, r should minimize the influence of 

clouds on the coefficients without obscuring real 

phenological signal. We picked n=3 and r=2 by minimizing 

crop type classification error on a hold-out set (Table A4). 

 

After performing this regression recursively, we extracted 

coefficients a1,a2,a3,b1,b2,b3, and c for each of the 18 

bands and VIs, giving us a total of 126 features on which to 

classify crop types. Since the model has seven parameters to 

fit, it requires at least seven cloud-free observations at a 

pixel to extract meaningful coefficients, a criteria that is met 

at all Sentinel-1 and Sentinel-2 pixels (Section 3.2). An 

example regression is shown in Figure 5a for GCVI on a rice 

submission time series. 

 

Finally, to perform crop type classification, we trained 

random forest models with the harmonic coefficients as 

input and Plantix-labeled crop type as output. Random forest 

is an ensemble machine learning method comprised of many 

decision trees in aggregate [37], and has frequently been 

used in the field of remote sensing to perform land cover 

classification and crop type mapping [61,62]. It often yields 

higher accuracy than maximum likelihood classifiers, 

support vector machines, and other methods for crop type 

mapping [14,34,63,64]. We used the default parameters of 

Python’s scikit-learn [65] package Random Forest Classifier 

with the exception of increasing n_estimators (the number of 

decision trees in the random forest) from 10 to 500 to reduce 

model variance. Error bars on classification metrics were 

obtained by fitting the classifier on multiple bootstrapped 

training sets (sampled with replacement). 

 

4.3.3. 1D Convolutional Neural Network 

While random forests are commonly used for crop type 

mapping in the literature [14,18,36], obtaining features for 

the model still require the user to assume a functional form 

to summarize time series data. In contrast, neural networks 

learn both the feature representations from the raw data as 

well as how to use them to perform classification. If 

harmonic coefficients fail to capture some information that 

is helpful for classifying crop types, or random forests are 

not well-suited to learn the types of nonlinearities that 

characterize decision boundaries, a neural network has the 

potential to perform better. 

 

To classify satellite time series, we constructed a 1D 

convolutional neural network. The time series for each 

sample was represented as an 18row×365column matrix, 

where each row is a band/VI and each column is a day of the 

year. The first 14 rows are Sentinel-2 bands and GCVI, and 

the last 4 rows are Sentinel-1 VV, VH, RATIO, and DIFF. 

This encoding was chosen to standardize Sentinel-1 and 

Sentinel-2 time series with different observation dates to the 

same neural network input size. If a satellite took an 

observation on day D, then column D in the matrix will be 

filled with that satellite’s band values (Figure 5b). Since the 

revisit times of Sentinel-1 and Sentinel-2 are 6 and 5 days, 

respectively, the values on days with no observation were 

imputed with values from the previous observation (known 

as ―forward imputation‖ [66]). Lacking a high-quality cloud 

mask for Sentinel-2, we again were not able to remove 

cloudy observations. As a result, that neural networks can 

learn which parts of an input are relevant to the task at hand 

[67,68,69] and have previously been shown capable of 

ignoring cloudy observations [70], we did not further 

process the time series to reduce the influence of clouds, as 

we did for the random forest classifier. An occlusion 

sensitivity analysis, shown in Figure A15, shows that the 1D 

CNN indeed learns to rely largely on clear observations for 

classification. 

 

In image classification, convolutions are 2D and are 

performed across the two spatial dimensions of the image. 

Here, each submission is comprised of one pixel and there 

are no spatial dimensions; the CNN instead convolves over 

the temporal dimension with kernels of size 3. The 1D CNN 

architecture is comprised of multiple convolutional blocks, 

each of which is a stack of 1D convolution, batch 

normalization, rectified linear unit (ReLU), and 1D max 

pooling layers (Figure A11). The final prediction is output 

by a few fully connected layers. 

 

Training was performed by minimizing the cross-entropy 

loss, defined as a function of the ith input sample as 

ℓ(θ,x,y)=−∑c=1Cyclogyˆc 

(2)for model parameters θ, number of classes C, the input 

time series x, crop type probabilities yˆ=fθ(x), and one-hot 

ground truth label y. The notation yc denotes the cth element 

of the vector y, which is equal to 1 if the sample belongs to 

class c and 0 otherwise. The element yˆc is the predicted 

probability that the sample belongs to class c. Minimizing 

cross entropy incentivizes the network to maximize the 

value of yˆc for the correct class c. Figure A12 shows a 

typical training curve for the 1D CNN. 

 

Hyperparameters, such as the number of convolutional 

blocks and the number of filters per layer, were chosen to 

maximize prediction performance on a validation set and are 

shown in Table A6. The model that performed the best on 

the validation set was a CNN with 4 layers, 64 filters in the 

first layer, a learning rate of 0.001, and a batch size of 16. 

Other implementation details can be found in Table A5. 

 

4.3.4. 3D Convolutional Neural Network 

A limit of the 1D CNN is that it is only able to use temporal 

information to classify crop types; it does not ―see‖ the 

spatial context that includes clues like field size and shape, 

surrounding vegetation, and proximity to buildings and 

roads. To see whether spatial information can improve crop 

type classification, we built a 3D U-Net, modeled after the 

popular 2D U-Net for image segmentation [71]. 

 

A 21 × 21-pixel tile of each Sentinel-2 image was exported 

around each submission coordinate to allow spatial features 

to inform crop type classification. We did not export 

Sentinel-1 tiles, as the additional storage and computational 

runtime (Table A3) was high compared to the marginal 

benefit SAR brought to CNNs in this setting (Table A7). 

The input to the 3D U-Net is therefore a 4D tensor of size 
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14×365×21×21, where days with no Sentinel-2 observation 

are imputed with the previous observation. Thus, the 

network sees not only the labeled pixel’s time series, but 

also the time series of pixels up to 200 m away (Figure 5c). 

The tensor is first down sampled (encoded) via blocks of 3D 

convolution, batch normalization, ReLU, and 3D max 

pooling operations in the first half of the network, then 

upsampled (decoded) back to its original resolution in the 

second half. A diagram of the network is shown in Figure 

A16. 

 

The output of the network is a 21×21-pixel segmented 

prediction in which every pixel is assigned a crop type label. 

Since we only observed the label at one pixel in the image 

(Figure 5c), we only computed the loss and performance 

metrics at that pixel. Like the 1D CNN, the 3D U-Net was 

trained using a cross entropy loss with C classes (Equation 

(2)). Figure A17 shows a typical training curve for the 3D 

CNN. 

 

4.4. Feature Importance via Permutation 

 

We performed experiments to determine the relative 

importance of features to crop classification by permuting 

each feature across all samples, as suggested in [37]. The 

algorithm is as follows. 

1) Fit a classifier to the training set (e.g., harmonic 

coefficients and random forest, 1D CNN). 

2) Record the baseline predictive performance of the model 

on the validation set (i.e., accuracy). 

3) For each feature j, randomly permute feature j in the 

validation set, thereby breaking the association between 

feature j and the label y. Apply the model to this 

modified validation set, and record the model 

performance. 

4) The feature importance is the difference between the 

baseline performance and the permuted performance. 

 

We applied this algorithm to the 126 harmonic coefficient 

features with the random forest classifier to see which bands 

and Fourier frequencies decrease classification accuracy the 

most when permuted. With the 1D CNN, the spectral and 

temporal dimensions were permuted independently to study 

which bands and times of year are most important to 

distinguishing crops. Band b was permuted across all time 

steps with the same band from another sample, or, for each 

time step t, all bands were permuted with those of another 

sample from 1 April to date t. 

 

Note that a feature’s importance via permutation is not the 

same as how much worse a model would perform if trained 

without that feature, due to correlations between features. 

That is, a model trained without a particular feature can rely 

more on other correlated features to compensate. For a 

correlation matrix of the harmonic coefficients, see Figure 

A9. 

 

4.5 Assessing the Additional Value of Sentinel-1 

 

As a result that the use of Sentinel-1 for crop type mapping 

is relatively recent and its utility is not fully known, we 

performed experiments in which we classified crop types 

using only Sentinel-2 time series and compared performance 

to using both Sentinel-2 and Sentinel-1. We compared 

results for both the harmonics/random forest model and the 

1D CNN. 

 

4.6 Validation against District-Wise Production Data 

 

We sampled ten thousand points uniformly at random from 

the study region in areas classified as cropland by the Global 

Food Security-support Analysis Data (GFSAD) Cropland 

Extent 30 m map [72] and exported all images taken at these 

points by Sentinel-2 and Sentinel-1 in the period 1 April 

2018–31 March 2019. We then used the highest-performing 

1D CNN trained on Plantix labels to classify the unlabeled 

samples into 3 classes (rice, cotton, and other), where rice 

and cotton had the highest precision and recall among all 10 

crops. We compared the percent of samples classified as 

each crop to the percent of cropland devoted to each crop in 

2016–2017 district-level statistics. At the time of writing, 

statistics were not yet available for 2017–2019, so they 

predate our classified samples by two years. We exported 

samples for the 2018–2019 kharif season instead of 2017–

2018 because the former has more frequent Sentinel 

imagery. 

 

4.7 Study Region-Wide Crop Type Map 

 

Using Google Earth Engine, we computed harmonic features 

on Sentinel-1 and Sentinel-2 bands (Section 4.3.2) across 

Nalgonda and Telangana for the crop year 1 April 2018 to 1 

April 2019. Ten thousand Plantix points from the 2017–

2019 kharif seasons were sampled as described in Section 

4.2 and used as training points in an Earth Engine random 

forest classifier with 500 trees. The points were labeled with 

one of three kharif crop classes: rice, cotton, and other crops. 

The trained random forest was then applied to all Sentinel 

pixels in the rest of the region to predict among the three 

crop classes. We used the harmonic features and random 

forest for map creation due to their ease of scalability in 

Earth Engine, as the entire study region contains over 2.7 

billion Sentinel pixels. Lastly, we masked out pixels that 

were not deemed to be cropland by the GFSAD cropland 

product [72]. 

 

5. Results 
 

5.1 DigitalGlobe Images for In-Field Classification 

 

Pretrained convolutional neural networks fit to our in-field 

dataset (n=2000) were able to classify whether the center 

boxes are in-field with high accuracy. The best model, a 

pretrained Reset with 18 layers using 0.3 m resolution 

DigitalGlobe imagery (Table A2), distinguished between 

center boxes that are completely, more than half, less than 

half, and not in a field with 74.2% test set accuracy (Table 

2b). Comparison to the baseline accuracy (guessing majority 

class) of 38.4% and human labeler agreement of 82.5% 

(Figure A4) indicates that the Reset performed considerably 

better than the baseline on a task that can often be confusing 

to humans. 

 

When classification errors occurred, they came mostly from 

difficulty telling adjacent classes apart, rather than confusing 

boxes not in a field with those entirely in a field (Figure A6). 
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Grouped together into a binary ―more than half‖ versus ―less 

than half‖ classification, the corresponding test set accuracy 

was 89.0%. Examples of correctly and incorrectly classified 

images are displayed in Figure A7. We see that boxes in 

urban areas and boxes entirely in rectangular fields were 

easy to identify as ―not in field‖ and ―in field‖, respectively, 

while irregularly-shaped fields, lone trees, and dirt roads 

occasionally confused the classifier. 

We applied the trained ResNet-18 model to predict whether 

Sentinel-2 pixels are in a field on the remaining submissions 

without in-field labels, thereby allowing all submissions to 

be filtered on this attribute. Of the unlabeled submissions, 

over 55% had Sentinel-2 pixels more than half in a field. 

These ―more than half‖ in field Sentinel-2 pixels were used 

to train the crop type classification models. 

 

5.2. Crop Type Classification with Multi-Temporal 

Satellite Imagery 

 

Both neural networks and harmonic coefficients with 

random forests were able to distinguish rice and cotton from 

other crops with overall accuracy above 70% (Table 3b); for 

comparison, a baseline model that classifies everything as 

the most common class (rice) would achieve 39% accuracy. 

However, both models struggled to classify minor crops for 

which there is less data. The 1D CNN, with its highly 

flexible feature-learning algorithm, consistently 

outperformed the harmonics and random forest classifier by 

a small but statistically significant amount (3-class test set 

accuracy: 74.2±1.4% CNNversus 71.5±0.7% harmonics/ran

dom forest). On the 10-crop task, however, the recall of non-

rice/cotton crops ranged from 20–50% (maize, peanut, 

pepper, tomato) to 0% (eggplant, gram, millet, and sorghum) 

(Table 4, full confusion matrix in Figure A13). For all 

models, the precision and recall were positively correlated 

with the number of samples available in the training set 

(Figure 6). The 3D CNN, which has a 21×21-pixel 

contextualized view of each sample, achieved accuracy 

lower (3-class task: 72.7%) than the 1D CNN at the cost of 

much greater data storage and computational runtime (Table 

A3), which may be due to the much larger number of 

parameters in the 3D CNN (6.1×106) compared to the 1D 

CNN (2.6×106). 

 
Figure 6: F1 score versus training set size by crop 

type. Precision and recall from Table 4 are summarized as 

one F1 score for each crop type. 

 

Table 3. Summary of crop type classification 

results. Overall accuracy and precision, recall, and F1 

scores (weighted average across classes) are shown for 

models trained on Sentinel-1 and -2 combined features to 

classify (a) all 10 crops and (b) simplified 3-class task of 

rice, cotton, and other crops. 

 

5.3 Combined Sentinel-1 and -2 Imagery Versus 

Sentinel-2 Only 

 

In our comparison of classification accuracy under models 

using both Sentinel-1 and -2 imagery versus only Sentinel-2 

imagery, we found that adding Sentinel-1 improves 

performance, especially when features are harmonic 

coefficients (Table A7). Indeed, on the 3-crop task, adding 

Sentinel-1 improves overall accuracy on the validation set 

from 69.4±0.6% to 75.0±0.8% when using harmonic 

features. Permutation experiments also show a number of 

VV and VH coefficients in the top 30 most important 

harmonic features (Figure A10). However, the additional 

value of Sentinel-1 bands on 1D CNN accuracy is not 

statistically significant relative to the variance introduced by 

bootstrapping the training set. This may be because the 

neural network is able to extract more information from the 

raw Sentinel-2 time series, thereby diminishing the returns 

from adding Sentinel-1 data. Permutation experiments on the 

1D CNN reveal that the neural network relies strongly on the 

red edge bands (especially around 740 nm, RDED2), short 

wave infrared, and the difference of VV and VH 

polarizations (DIFF) to differentiate crop types (Figure 7). 

This is consistent with prior work showing that red-edge 

bands are sensitive to leaf and canopy structure [73,74,75] 

and SWIR bands are sensitive to leaf and soil water content 

[75,76]. Surprisingly, the VH/VV ratio did not emerge as the 

top SAR feature despite prior evidence suggesting its 

sensitivity to crop growth [50]. Instead, the DIFF feature, 

which is sparsely documented to date, was favored by the 

model. Permutation of times of year also shows that the 

most important months to have satellite data are October and 

November, which correspond to the harvest of kharif crops. 
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Figure 7: CNN feature importance. Importance was computed as the decrease in validation set accuracy when the feature 

was permuted across samples, breaking the association between the feature and the label. For the 1D CNN, permuted features 

were (a) optical and SAR bands and (b) times of year. Error bars were obtained over 10 runs with 10 different bootstrapped 

training sets 

 

5.4 Robustness to Location and Label Noise 

 

Crowd sourced data can contain many sources of error, and 

efforts to reduce noise can be costly. To understand whether 

a noisy Plantix dataset can still be useful for crop type 

mapping and how much investment should be made to clean 

it, we tested the sensitivity of 1D CNN performance to both 

training and validation set quality. Figure 8a shows the 

effect of increasing training set noise along three axes (GPS 

accuracy, label origin, and in-field threshold) on a cleaned 

validation set, while Figure 8b shows the same effects as 

they appear on a noisy validation set. We use overall 

accuracy as the metric, but obtained the same analysis for F1 

scores. 

 

 

 

 

 

 
Figure 8: Sensitivity of classification results to dataset noise 
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The effect of increasing label error is shown along three 

dimensions of noise: GPS accuracy threshold (10 m, 20 m, 

50 m), label source (expert vs. DNN), and in-field threshold 

(in field, more than half, less than half, and not in field) for 

(a) a clean validation set and (b) a noisy validation set. 

 

The conclusions concerning training set quality are similar 

from both validation sets. First, holding training set sizes 

constant, training sets with moderate levels of noise did not 

yield significantly worse validation set accuracies than the 

highest quality training sets. For example, classifiers trained 

on samples with GPS locations accurate to 50 m performed 

as well as those trained on samples with GPS locations 

accurate to 10 m. Second, adding samples whose labels are 

noisy to the training set can still boost classification 

performance. Adding samples labeled by the Plantix-DNN, 

samples with GPS locations accurate to 50 m, and samples 

whose Sentinel-2 pixels are only partially in a crop field all 

increased validation set accuracy (though not to a 

statistically significant extent in the last two examples). 

Lastly, high levels of label noise do decrease classification 

performance, as seen when submissions not in crop fields 

were added to the training set. However, even in this last 

setting, validation accuracy degraded only a few percentage 

points, and the decrease disappeared when all available data 

was used for training instead of a subsample with the same 

training set size. 

 

While the CNN is robust to some training set noise, it 

requires a high quality validation set to yield accurate error 

estimates on unseen data. Accuracies on the noisy validation 

set are consistently 10% lower than those on the clean 

validation set, so that a naive interpretation of results on a 

noisy validation set would underestimate true classifier 

performance. 

 

 

5.5 Comparison to District-Level Data 

 

In addition to validating the classifiers on a hold-out set of 

Plantix submissions, we also compared the 3-class 1D CNN 

predictions on 2018–2019 GFSAD cropland samples (see 

Section 4.6) to the 2016–2017 district-level kharif season 

crop area statistics from the Indian Department of 

Agriculture [9]. Across 43 districts, R2 values between the 

fraction of samples predicted and the fraction of cropped 

area in the official statistics were 0.58, 0.54, and 0.41 for 

rice, cotton, and other crops, respectively (Figure 9). The 

classifier’s aggregated predictions captured broad district-

level characteristics correctly—districts like East Godavari, 

West Godavari, Krishna, and Srikakulam are dominated by 

rice; Adilabad, Nalgonda, and Warangal are dominated by 

cotton, and Anantapur and Chittoor grow mostly peanut 

(groundnut). However, our rice prediction for SPSR Nellore 

was much lower than the official statistic, and our cotton 

prediction for Vikarabad was much higher. These 

discrepancies may be due to a combination of classifier bias, 

error in the district statistics, and mismatch between the year 

of our samples and the year of district statistics. Note that 

comparatively few training samples came from SPSR 

Nalgonda (Figure A8), and historical changes in crop area 

statistics in this district have also been large, suggesting 

statistics could also have changed between 2016–2017 and 

2018–2019 (Figure A18). Meanwhile, cotton dominated 

training samples in Nalgonda and could have biased the 

classifier toward predicting cotton on similar time series. 

While the latitude and longitude of samples were not 

explicitly provided as features to any classifiers, the 1D 

CNN could have learned to associate crop type with, say, the 

satellite image acquisition schedule or regional phenology in 

addition to with meaningful phenological characteristics. 

Without more updated district statistics, it is difficult to 

diagnose the main source of discrepancy between our 

aggregated predictions and the statistics. 

 

 
 

6. Discussion 
 

6.1 Contributions and Shortcomings of This Work 

 

We draw the following lessons from cleaning Plantix 

submissions to supervise crop classification, which are 

applicable to both crop type mapping in smallholder systems 

and land use mapping more generally. 

 

First, crowdsourced data, though very high in noise, can be 

cleaned and used to supervise remote sensing tasks if data 

quality is measured for each sample. In this study, location 

accuracy, whether the submission came from inside a field, 

and whether crop type was labeled by human experts were 

important metadata on which to filter Plantix submissions. 

We discuss the challenges and potential of crowdsourced 

data in detail in the next section. 

 

Second, a high-quality hold-out set is crucial for assessing 

model performance accurately. For the same classifier, our 

results indicate that a higher level of noise in the validation 

set biases the validation accuracy downward, since the noise 
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is random and follows no learnable pattern. Given that our 

cleaned validation and test sets still contain non-zero noise, 

our reported metrics may in fact be underestimates of model 

performance. At the same time, since conclusions drawn 

about training set noise sensitivity were similar for both the 

clean and noisy validation sets, a noisy validation set can 

still be useful for data filtering and model selection. 

 

7. Conclusions 
 

This is the first study to explore the potential of 

crowdsourced data to augment or replace ground surveys for 

land use mapping at a large scale. We derived a large but 

noisy crowdsourced dataset from the Plantix mobile app to 

train and validate a crop type map in southeast India. Two 

million farmer submissions were filtered to 10,000 higher-

quality labels, and three machine learning models trained on 

multi-temporal satellite imagery were able to differentiate 

rice and cotton from other crops with 70+% accuracy. We 

found classification performance to be robust to moderate 

levels of the label and location noise common to 

crowdsourced data. Our 3-crop prediction (rice, cotton, 

other) for the 2018 kharif season was validated against a 

hold-out set of Plantix data and district-level crop area 

statistics from the Indian Department of Agriculture, and is 

available upon request. 
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