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Abstract: The continued emergence of new SARS-CoV-2 variants has significantly increased the complexity of forecasting and 

preventing subsequent COVID-19 waves. Nationwide pharmacy testing data, collected through extensive pharmacy networks, offers a 

novel and effective approach for real-time population testing, facilitating the rapid identification of emerging outbreaks. This study aims 

to evaluate the extent to which large-scale testing data can inform predictive models capable of anticipating increases in COVID-19 

infections in response to the appearance of new viral variants. Specifically, the study incorporates test positivity rates, geographic spread, 

and demographic information, analyzed using machine learning and time series methods, to enhance outbreak forecasting. Results 

indicate that integrating external datasets—such as vaccination coverage and population mobility data—further improves model accuracy, 

thereby supporting more informed decision-making by public health authorities. Among the modeling approaches assessed, deep learning 

models—particularly Long Short-Term Memory (LSTM) networks—demonstrated superior performance in capturing long-term trends 

compared to traditional methods like ARIMA. Findings suggest that insights derived from pharmacy testing data can play a critical role 

in enabling policymakers to respond proactively to the emergence of new COVID-19 variants. The proposed framework offers a scalable 

alternative for epidemic prediction architectures within broader public health ecosystems. Future research should explore the integration 

of genomic surveillance data and consider the applicability of this predictive framework to other infectious diseases beyond COVID-19. 
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1. Introduction 
 

1.1 Background and Motivation 

 

The recent emergence of the COVID-19 pandemic has further 

emphasized the critical role of surveillance and risk modeling 

in outbreak management. The continual evolution of SARS-

CoV-2 variants necessitates persistent monitoring of infection 

dynamics and presents significant challenges in the timely 

identification and effective management of outbreaks within 

populations. Conventional epidemiological models exhibit 

several limitations in this context, particularly due to their 

static assumptions; consequently, there is an urgent need for 

more adaptive and responsive modeling approaches that can 

accommodate the virus's ongoing mutations [1–3]. 

 

A growing body of literature highlights the importance of 

large-scale COVID-19 testing data to evaluate the efficacy of 

testing strategies, identify disproportionately affected 

subpopulations, and inform future disease prevention efforts. 

This study leverages datasets derived from pharmacy 

networks situated in high-incidence regions across the United 

States to support enhanced predictive modeling of infection 

surges. Such modeling aims to facilitate more informed 

containment strategies and to address the inherent challenges 

posed by heterogeneous and often unpredictable public 

behavioral responses. 

 

1.2 Importance of Predictive Modeling during COVID-19 

Surges 

 

Predictive modeling plays a crucial role in the early detection 

of outbreaks, resource allocation, and the strategic planning 

of public health interventions. During COVID-19 surges, 

accurate forecasting of infection trends enables governments 

and healthcare systems to implement timely measures such as 

mobility restrictions, targeted vaccination campaigns, and 

increased diagnostic testing. 

 

Artificial intelligence (AI) and time series analysis have 

emerged as effective tools for interpreting the growing 

volume of COVID-19 testing data, offering more precise 

forecasts than traditional epidemiological models. 

Nevertheless, the reliability of these models is highly 

dependent on the availability and timeliness of data inputs. 

 

This study addresses this challenge by leveraging pharmacy 

testing data to identify optimal parameters for forecasting 

future waves of infection. The goal is to enable timely 

interventions that consider social determinants of health, 

ultimately strengthening the responsiveness and equity of 

public health systems in mitigating the impact of COVID-19. 

 

1.3 Role of National Pharmacy Testing Networks in Data 

Collection  

 

Pharmacies have played a pivotal role in COVID-19 testing 

by facilitating widespread and accessible testing across 

diverse regions of the United States. Unlike hospital-based 

testing, which primarily targets symptomatic or confirmed 

cases, pharmacy testing networks encompass a broader cross-

section of the population, including asymptomatic 

individuals. This inclusive approach enhances their utility for 

population-level surveillance. Furthermore, pharmacy-based 

testing offers consistent, high-quality, and timely data 
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collection, which is essential for real-time analytics and 

predictive modeling. 

 

By utilizing data from pharmacy testing systems nationwide, 

this study monitors the geographic and temporal spread of 

COVID-19, identifies early indicators of potential surges 

associated with emerging variants, and contributes to the 

refinement of forecasting models for improved public health 

response. 

 

1.4 Research Objectives and Contributions 

 

The primary objective of this study is to develop a predictive 

modeling framework utilizing insights derived from low-cost, 

large-scale testing conducted through a nationwide pharmacy 

network. This approach aims to accurately forecast infection 

surges during the emergence of new SARS-CoV-2 variants. 

The key contributions of this research are as follows: 

• Development of an outbreak detection system based on 

machine learning and time series analysis to enhance 

traditional epidemiological surveillance methods. 

• Exploration of real-time pharmacy testing data as a 

reliable and timely source for the early identification of 

COVID-19 surges. 

• Assessment of exogenous factors—such as population 

mobility, vaccination coverage, and socio-demographic 

variables—and their influence on the effectiveness of 

predictive strategies throughout different stages of 

infection spread. 

• Cross-validation of predictive techniques, comparing 

statistical models (e.g., ARIMA) with deep learning 

models (e.g., LSTM), to determine the most effective 

approach for forecasting COVID-19 surges. 

• Policy implications and strategic recommendations, 

emphasizing the utility of pharmacy-based testing data in 

strengthening national and global pandemic preparedness 

frameworks. 

 

To achieve these aims, the study sets forth the following 

objectives: 

1) To propose a novel index for real-time risk assessment of 

infectious disease outbreaks. 

2) To model the probability distribution of various infectious 

diseases using real-world testing data. 

3) To develop a dynamic framework capable of updating 

predictive models as new data become available. 

4) To provide a generalizable framework for the early 

prediction of COVID-19 outbreaks and similar infectious 

diseases, thereby supporting evidence-based decision-

making and enhancing crisis management during and 

beyond the current pandemic. 

 

2. Related Work 
 

2.1 Review of Existing COVID-19 Predictive Models 

 

In response to the COVID-19 pandemic, numerous predictive 

models have been developed to forecast new infection rates, 

estimate hospitalizations, and assess the effectiveness of 

public health interventions. Traditional models such as the 

Susceptible-Infected-Recovered (SIR) and the Susceptible-

Exposed-Infected-Recovered (SEIR) frameworks have been 

widely employed [4–7]. However, these compartmental 

models are based on fixed assumptions about transmission 

dynamics and population behavior, which may not adequately 

capture the behavioral and epidemiological shifts that occur 

during the emergence of new viral variants. 

 

To enhance forecasting reliability, researchers have 

increasingly emphasized the integration of real-time 

surveillance data into model development. For example, the 

CDC’s COVID-19 Forecast Hub aggregates multiple models 

to generate probabilistic forecasts of case numbers. Similarly, 

platforms like the Johns Hopkins COVID-19 Dashboard and 

Google’s COVID-19 Mobility Reports utilize diverse 

datasets—including mobility patterns and testing rates—to 

improve outbreak predictions. Despite these advances, many 

existing models face limitations related to incomplete data 

and sampling biases, particularly in testing coverage. 

 

To address these challenges, the present study leverages 

population-level testing data obtained from nationwide 

pharmacy networks. By training advanced analytical models 

on this robust and real-time dataset, the study aims to mitigate 

the limitations of previous models and offer more accurate 

and scalable forecasting solutions. 

 

2.2 Population-Level Testing Studies 

 

Community-based testing plays a critical role in monitoring 

the spread of infectious diseases and informing public health 

policy, particularly in the context of influenza and COVID-

19. Evidence suggests that widespread community testing 

provides a more comprehensive understanding of infection 

prevalence compared to testing conducted solely in clinical or 

hospital settings, as individuals are more likely to seek testing 

in accessible, non-clinical environments such as pharmacies. 

Studies have demonstrated that population-level testing, 

when coupled with appropriate isolation measures, can 

significantly mitigate viral transmission. Additionally, rapid 

antigen testing has proven effective in identifying both 

symptomatic and asymptomatic individuals, thereby 

supporting early intervention and outbreak prevention. 

 

Pharmacy-based testing networks offer several advantages 

over traditional testing strategies. These networks enable 

point-of-care testing and capture data from individuals across 

a broad age spectrum, including those with and without 

symptoms. Unlike self-reported testing data, pharmacy-

collected data are objective, reliable, and readily verifiable. 

While some prior research has explored the role of retail 

pharmacy networks in disease surveillance, few studies have 

investigated their utility in predictive modeling. 

 

This study aims to address this gap by demonstrating how 

pharmacy-based testing data can be leveraged to enhance 

early detection and forecasting of COVID-19 variant-driven 

surges. By incorporating this data into predictive models, the 

study contributes to more timely and effective public health 

responses. 

 

2.3 Impact of COVID-19 Variants on Testing Strategies 

 

The emergence of SARS-CoV-2 variants such as Delta and 

Omicron introduced substantial complexities in the overall 

management of the COVID-19 pandemic. These variants 
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exhibit significant genetic differences, particularly in their 

transmissibility, immune evasion capabilities, and potential to 

cause severe illness. Such differences necessitate adjustments 

in testing strategies to accurately identify circulating variants 

and prevent widespread outbreaks. Notably, variations in RT-

PCR test positivity rates across different variant waves 

underscore the need for dynamic testing protocols and 

resource allocation. For example, the Alpha variant 

demonstrated higher transmissibility, leading to increased 

testing demand, while the Omicron variant was associated 

with elevated infection rates regardless of vaccination status, 

prompting changes in testing guidelines. 

 

In response to these evolving challenges, adaptive testing 

strategies have been recommended. Some researchers 

advocate for adjusting testing thresholds based on real-time 

positivity rates, while others propose prioritizing testing 

among high-risk or vulnerable populations during variant-

driven surges. However, most existing studies have relied 

primarily on data from clinical or hospital-based testing, with 

limited exploration of data derived from community-level 

pharmacy testing networks. 

 

This study addresses this gap by integrating pharmacy-based 

testing data into predictive models, offering more granular 

insights into how variant-induced fluctuations in test demand 

and positivity rates influence outbreak forecasting. By 

capturing real-time testing dynamics across diverse 

population segments, this approach enhances the accuracy 

and responsiveness of predictive modeling in the context of 

evolving viral variants. 

 

2.4 Machine Learning and Statistical Approaches in 

Epidemiological Modeling 

 

Epidemiological forecasting using machine learning (ML) 

and statistical modeling has gained substantial importance 

due to its flexibility and adaptability compared to traditional 

compartmental models. In recent studies, ML techniques such 

as supervised learning algorithms—including Random 

Forest, Gradient Boosting, and Neural Networks—as well as 

time series forecasting methods like Autoregressive 

Integrated Moving Average (ARIMA) and Long Short-Term 

Memory (LSTM) networks, have been widely applied to 

predict COVID-19 case counts, hospitalization rates, and 

mortality trends. Preliminary research indicates that ML 

models often outperform compartmental models in short-term 

forecasting by effectively capturing nonlinear infection 

patterns. 

 

Among time series models, ARIMA and LSTM have shown 

promising results. However, ARIMA, being a linear model, 

lacks the capacity to account for abrupt shifts in transmission 

dynamics, such as those caused by the emergence of new viral 

variants. In contrast, LSTM—a type of recurrent neural 

network (RNN)—is well-suited for capturing long-term 

dependencies in sequential data, making it more effective for 

pandemic forecasting. Recent research has also explored 

hybrid approaches that integrate statistical and ML techniques 

to enhance forecasting precision. These mixed models, when 

combined with traditional epidemiological frameworks, can 

significantly improve both accuracy and responsiveness in 

modeling COVID-19 dynamics. 

Despite these advancements, a notable gap remains in the 

incorporation of high-frequency testing data, particularly 

from community-level sources such as pharmacies. Much of 

the existing literature relies on delayed metrics such as 

confirmed case numbers and hospitalization data, which may 

not accurately reflect real-time transmission trends. This 

study seeks to bridge this gap by leveraging pharmacy-based 

testing data to improve the timeliness and accuracy of 

predictive models. The goal is to support more effective 

public health interventions through earlier detection and more 

precise forecasting of infection surges. 

 

3. Data Collection and Preprocessing 
 

Accurate prediction of COVID-19 trends requires the 

integration of testing data from networks that are efficient, up-

to-date, and representative of the broader population [8–11]. 

This study utilizes RT-PCR testing data collected from 

customers at various branches of a national pharmacy testing 

network. Unlike previous studies that primarily rely on 

hospital-based data, this dataset includes a more diverse 

segment of the population, encompassing both symptomatic 

and asymptomatic individuals, as well as those undergoing 

routine screening. 

 

The inclusion of community-based, pharmacy-derived data 

provides a more comprehensive view of infection dynamics 

across different demographics. To ensure data quality and 

suitability for predictive modeling, the raw dataset underwent 

a thorough preprocessing pipeline aimed at enhancing 

accuracy, consistency, and relevance. This section outlines 

the data collection process, the methods applied for data 

cleaning, and the unique characteristics of the dataset that 

support the development of a robust predictive modeling 

framework. 

 

3.1 Data Sources 

 

The primary data source for this study was a nationwide 

pharmacy-based COVID-19 testing platform, which plays a 

significant role in decentralized disease surveillance. Unlike 

hospital-based testing, which predominantly captures 

individuals with moderate to severe symptoms, pharmacy 

testing networks encompass a broader and more diverse 

population—including individuals undergoing testing for 

travel, workplace requirements, or routine health checks. This 

makes pharmacy data particularly valuable for monitoring 

asymptomatic and pre-symptomatic cases within the 

community. 

 

The dataset, titled Test Results of COVID-19 Test, includes 

data from multiple waves of the pandemic and contains 

variables such as test outcome (positive/negative), test type 

(PCR or antigen), timestamp of the test, age range and gender 

of individuals, geographic identifiers (state, county, and rural 

or urban classification), and vaccination status when 

available. This comprehensive dataset supports the 

development of accurate and generalizable predictive models, 

reducing the need for extensive field-based testing in specific 

regions or demographic groups. 

 

Test records were acquired via the APIs of various pharmacy 

chains, allowing for the extraction of real-time data while 
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ensuring patient anonymity and data privacy. In addition, 

historical batch processing was employed to capture longer-

term trends. The database was standardized according to 

guidelines recommended by the Centers for Disease Control 

and Prevention (CDC) and the World Health Organization 

(WHO), enabling interoperability and comparison across 

different pharmacy networks. This integration of real-time 

and near real-time data facilitates the construction of high-

temporal-resolution models capable of accurately forecasting 

localized COVID-19 outbreaks. 

 

3.2 Data Cleaning and Processing 

 

Testing data often contains missing values, inaccuracies, and 

biases that can adversely affect the reliability of predictive 

modeling. To address these challenges, systematic data 

cleaning procedures were applied during the data 

preprocessing stage. Features with critical inconsistencies—

such as missing or unreliable test results and test dates—were 

excluded to prevent the introduction of biased or misleading 

information. For the remaining demographic variables, 

missing values were imputed using appropriate techniques: 

mode imputation was employed for categorical variables, 

while k-nearest neighbors (KNN) imputation was used for 

continuous variables. 

 

Duplicate or suspicious records were identified and removed. 

These included entries with duplicated or nearly identical test 

identifiers and records with timestamps that were unnaturally 

close, suggesting potential redundancies or data entry errors. 

 

To ensure consistency across data collected from different 

geographic centers and time periods, normalization 

techniques were applied. Min-max scaling was used for test 

positivity rates, given that these values are inherently 

bounded between 0 and 1. Other numerical features, such as 

daily test counts and regional case numbers, were 

standardized using Z-score normalization to ensure 

comparability. Additionally, categorical variables such as test 

type were encoded using one-hot encoding, while geographic 

locations were encoded ordinally to make them suitable for 

inclusion in machine learning models. 

 

These data preprocessing steps were essential for improving 

data quality, reducing heterogeneity, and enhancing the 

overall performance and interpretability of the predictive 

models. 

 

3.3 Data Characteristics 

 

The dataset provided a unique perspective on the evolution of 

COVID-19 testing trends over time, as well as across different 

demographic and geographic segments of the U.S. 

population. Testing volumes exhibited significant 

fluctuations throughout the pandemic, with pronounced 

spikes during major variant-driven waves such as Delta and 

Omicron. Temporal patterns also revealed increased testing 

activity during the winter months and immediately following 

major holidays—periods typically associated with higher 

rates of respiratory illnesses, including influenza. 

 

Geographic and demographic variables further revealed 

disparities in testing access and positivity rates. Urban areas 

reported a higher volume of tests, likely due to better 

accessibility and employer-mandated testing requirements, 

particularly for occupational settings. In contrast, rural areas 

exhibited lower testing volumes but higher positivity rates, 

suggesting potential underreporting and reduced access to 

testing services. 

 

Age-specific trends showed that individuals under 30 were 

more likely to undergo routine screening, while positivity 

rates were significantly higher among individuals over 60, 

highlighting the latter group’s increased vulnerability to 

severe illness. Gender-based analysis revealed that females 

had a slightly higher testing frequency than males, likely 

influenced by their representation in high-contact professions 

such as healthcare and education. 

 

These findings underscore the importance of incorporating 

demographic and geographic characteristics into predictive 

modeling to ensure models reflect real-world disparities and 

support more targeted and equitable public health 

interventions. 

 

3.4. Machine Learning and Deep Learning for COVID-19 

Severity Prediction Using Electronic Health Records 

(EHR) 
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Figure 1: Machine Learning and Deep Learning for COVID-19 Severity Prediction Using Electronic Health Records (EHR)  

 

This figure is a workflow diagram that shows the process of 

applying machine learning and deep learning models to 

analyze Electronic Health Records (EHR) to predict the 

severity of COVID-19 cases. [12-14] It is separated into four 

large sections: data collection and filtering, feature 

processing, model development and evaluation, and result 

analysis. The workflow gives information about how hospital 

data is processed and utilized for training predictive models. 

 

3.4.1. Data Collection and Filtering 

The initial stage of the framework involves the collection of 

electronic health record (EHR) data from multiple sources, 

including hospital databases and publicly available 

repositories such as the MIMIC-III and eICU databases. 

These datasets contain detailed clinical records of patients 

diagnosed with COVID-19 as well as those with other forms 

of pneumonia. A filtering step is employed to isolate relevant 

patient records, ensuring that only data pertinent to the 

research objectives are retained for further processing. This 

filtration process enhances the reliability and specificity of the 

predictive models by clearly distinguishing between different 

respiratory conditions, thereby reducing the risk of diagnostic 

overlap, and improving model accuracy. 

 

3.4.2. Feature Processing 

Following the acquisition of raw data, a feature engineering 

phase is conducted to extract clinically meaningful 

information. The features are categorized into vital signs and 

laboratory measurements (e.g., systolic blood pressure [SBP], 

white blood cell count [WBC]) and pharmacological 

interventions (e.g., Aspirin, Linezolid). These clinical 

indicators are critical for assessing disease progression and 

predicting patient outcomes. The careful selection and 

preprocessing of relevant features not only improve model 

performance but also ensure that predictions are grounded in 

medically significant variables, thereby enhancing the 

interpretability and clinical relevance of the results. 

 

3.4.3. Development, Training, and Model Evaluation 

Here, predictive models are trained using the preprocessed 

data. The figure indicates two significant approaches: 

• Machine Learning Models: Here, Logistic Regression 

(LR), Random Forest (RF), and XGBoost fall under this 

category, which is employed for statistical analysis and 

classification. These models are aptly suited for structured 

medical data and yield interpretable results. 

• Deep Learning Models: Bi-LSTM (Bidirectional Long 

Short-Term Memory) and Bi-LSTM with Attention 

Mechanism (Bi_LSTM_Attn) belong to this category, 

capable of identifying intricate patterns in time-series 

EHR data. These models enhance prediction through 

learning interdependencies among several clinical 

variables over time. 

 

Machine and deep learning models are tested using the 

relevant validation methods to warrant high accuracy and 

reliability. 

 

3.4.4. Result Analysis 

Post training and testing, the performance of the models is 

studied in three principal manners: 

• Classification Results: The patients are divided into 

groups based on the model predictions: Death/Severe and 

Survival/Non-severe. 

• Performance Evaluation: A graph shows the models' 

performance for various time intervals and examines 
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important measurements such as accuracy, sensitivity, 

specificity, and AUC-ROC. 

• Feature Importance: A bar chart shows the importance of 

various clinical features in predicting patient outcomes. 

This assists in comprehending which medical factors are 

most responsible for disease severity. 

 

This process emphasizes using EHR data, feature selection, 

and predictive modeling to effectively predict COVID-19 

severity. Combining machine learning and deep learning, 

healthcare professionals can acquire data-driven information 

to enhance patient care and refine treatment plans. The 

systematic approach provides precise risk assessment and 

aids in personalized medicine for improved health outcomes. 

 

4. Methodology 
 

4.1 Predictive Modeling Approach 

 

To forecast future variant-driven surges in COVID-19 cases, 

this study employs a combination of machine learning and 

statistical analysis techniques. To capture temporal 

dependencies in COVID-19 test positivity rates, time series 

forecasting methods such as Autoregressive Integrated 

Moving Average (ARIMA) and Long Short-Term Memory 

(LSTM) networks are utilized. ARIMA models are well-

suited for short-term forecasting but have limitations in 

handling non-stationary patterns, which frequently emerge 

following the onset of new outbreaks [15–18]. In contrast, 

LSTM—a deep learning architecture—effectively models 

complex temporal relationships, making it more appropriate 

for capturing long-term dependencies in pandemic trends. 

 

In addition to time series models, ensemble learning methods 

such as Random Forest and Extreme Gradient Boosting 

(XGBoost) are employed to assess variable importance and to 

estimate the probability of infection based on demographic 

and geographic factors. The integration of multiple modeling 

approaches enables the development of a more robust and 

adaptive predictive framework, capable of responding to the 

dynamic and evolving conditions characteristic of pandemic 

scenarios. 

 

4.2 Model Training and Validation 

 

The dataset is partitioned into training, validation, and testing 

sets in an 8:1:1 ratio, allowing the models to be trained on 

historical data and subsequently evaluated on real-world 

scenarios. To prevent data leakage and enhance model 

generalizability, time-based cross-validation is employed, 

which respects the temporal ordering of the data and better 

reflects the sequential nature of pandemic trends. 

 

Several evaluation metrics are utilized to comprehensively 

assess model performance. Root Mean Square Error (RMSE) 

is used to quantify forecasting accuracy, while the Area Under 

the Receiver Operating Characteristic Curve (AUC-ROC) is 

applied to evaluate the classification capability of models in 

identifying infection patterns. Additionally, sensitivity and 

specificity are measured to determine the model's ability to 

accurately detect outbreak trends and minimize false 

negatives and false positives, respectively. 

 

The use of diverse performance metrics ensures a well-

rounded evaluation of the models, providing reliable 

indicators of their practical applicability for real-world 

deployment in public health decision-making. 

 

4.3 Feature Engineering 

 

It is important to emphasize that feature engineering plays a 

critical role in improving model performance, particularly in 

identifying factors associated with the emergence of COVID-

19 spikes. Among these, test positivity rates serve as a 

primary predictive variable, offering a direct and timely 

indicator of infection prevalence within the population. 

Additional features, such as population mobility—derived 

from anonymized smartphone tracking data—are 

incorporated to reflect movement patterns that significantly 

influence the dynamics of disease transmission. 

 

Maternal and acquired immunity levels, represented through 

vaccination data, are also included to account for the varying 

immune status across different geographic regions. 

Demographic covariates such as age, sex, and location are 

considered to capture population-specific infection risks. 

Furthermore, environmental factors—including seasonal 

climate variations—are introduced, given their documented 

influence on viral behavior and transmission rates. 

 

By carefully selecting and engineering these features, the 

predictive models are better equipped to capture the 

complexity and temporal variability of COVID-19 outbreaks. 

This tailored feature design contributes to improved 

predictive accuracy and enhances the ability of the models to 

generate location- and population-specific forecasts, 

ultimately supporting more responsive and data-driven public 

health strategies. 

 

4.4 Handling Variant Surges 

 

The challenge of modeling the spread of COVID-19 is 

addressed in this study by estimating changes in infection 

rates in conjunction with the emergence of new viral variants. 

The models are designed to be dynamic, incorporating variant 

prevalence data sourced from genomic sequencing reports. To 

maintain accuracy, minor adjustments—or mini-

corrections—are applied based on current trends in test 

positivity rates, hospitalization patterns, and immune evasion 

characteristics. These updates allow the models to adapt in 

near real-time as new evidence emerges. 

 

Additionally, the modeling framework supports the 

development of multiple models in parallel, with predictive 

factors ranked according to variant severity and 

transmissibility. This variant-specific parameter tuning 

enhances the responsiveness of the forecasts and allows for 

more nuanced projections of outbreak trajectories. 

 

By implementing this adaptive, variant-driven modeling 

strategy, the study demonstrates how predictive accuracy can 

be significantly improved. This approach offers substantial 

value for public health agencies by enabling earlier and more 

informed decision-making, even before widespread clinical 

impacts of new variants become apparent. 
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4.5. Leveraging Population-Level COVID-19 Testing Data for Predictive Modeling During Variant Surges 

 

 
Figure 2: Leveraging Population-Level COVID-19 Testing Data for Predictive Modeling During Variant Surges  

 

5. Experimental Results and Analysis 
 

5.1 Model Performance Evaluation 

 

The predictive performance of the proposed models was 

optimized by comparing a range of machine learning and 

statistical techniques for forecasting COVID-19 surges. 

Initially, traditional time series models such as ARIMA were 

evaluated; however, their performance was limited in 

capturing abrupt shifts in trends associated with the 

emergence of new variants. In contrast, deep learning 

models—particularly Long Short-Term Memory (LSTM) 

networks—demonstrated superior performance on temporal 

datasets due to their ability to model long-term dependencies 

and nonlinear temporal relationships. 

 

In addition to time series forecasting, ensemble learning 

algorithms such as XGBoost and Random Forest were 

employed to assess the relative importance of key features, 

including test positivity rates, mobility patterns, and 

vaccination coverage, in predicting future infection trends. 

Evaluation metrics such as Root Mean Square Error (RMSE) 

and Mean Absolute Percentage Error (MAPE) indicated that 

LSTM-based models achieved significantly better forecasting 

accuracy, particularly in multi-step-ahead predictions. 

Furthermore, AUC-ROC scores obtained from classification 

tasks—used to distinguish between high-risk and low-risk 

periods for COVID-19 surges—reinforced the reliability of 

machine learning approaches in serving as early warning 

systems. 

 

Table 1 presents descriptive statistics that offer foundational 

insights into the COVID-19 testing data used in this study. 

The table summarizes key variables, including daily test 

volume, positivity rates, age distribution of test subjects, and 

vaccination coverage. 

 

Table 1: Summary Statistics of Testing Data 

Variable Mean 
Standard  

Deviation 
Min Max 

Daily Tests Conducted 15,234 3,542 2,500 32,000 

Positivity Rate (%) 6.8 2.1 1.2 15.5 

Age of Test Subjects 42.5 15.3 18 85 

Percentage Vaccinated 67.4 5.9 50.2 81.3 

 

As shown in Table 1, the average number of COVID-19 tests 

conducted daily was 15,234, with a range from 2,500 to 

32,000, indicating fluctuations likely influenced by outbreaks 

and policy changes. The positivity rate averaged 6.8%, with a 

peak of 15.5%, suggesting potential surges during specific 
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time periods. The test population ranged in age from 18 to 85 

years, with a mean age of 42.5 years, representing a broad 

demographic sample. Vaccination rates averaged 67.4%, 

varying by region and over time. These descriptive statistics 

provide essential context for understanding the underlying 

data patterns and serve as a foundation for developing robust 

predictive models to inform public health strategies. 

 

5.2. Predictive Insights from Population-Level Testing 

Data 

 

Pharmacy-based testing data provided critical insights into 

the temporal dynamics of COVID-19 variant waves, offering 

a granular understanding of test positivity trends and testing 

demand across populations. Large-scale testing conducted by 

national pharmacy chains enabled the timely monitoring of 

virus activity, particularly during the Delta and Omicron 

variant surges. These case studies revealed distinct 

differences in the progression of test positivity rates. The 

Delta wave was characterized by a gradual increase in 

positivity over several weeks, which allowed for more 

accurate anticipation of rising case counts. In contrast, the 

Omicron variant exhibited a rapid spike in positivity rates, 

reflective of its higher transmissibility and shorter incubation 

period. 

 

Predictive models developed using real-time pharmacy-based 

data successfully forecasted these positivity rate trends one to 

two weeks in advance of official case count increases. This 

forecasting advantage underscores the utility of decentralized 

and large-scale testing networks as effective early warning 

systems for impending surges. Moreover, geographic, and 

demographic analyses revealed that although the number of 

tests conducted in rural areas was lower than in urban centers, 

the positivity rates in rural regions were marginally higher 

during major variant-driven waves. These findings highlight 

disparities in access and underscore the importance of 

targeted testing strategies in rural settings to improve 

outbreak response. 

 

5.3 Error Analysis and Limitations 

 

Despite the substantial predictive performance achieved by 

the proposed models, several limitations were identified that 

may affect their generalizability and accuracy. One key 

limitation is the presence of data bias arising from variability 

in testing behavior across regions and population groups. 

Urban facilities exhibited higher testing frequencies due to 

easier access to pharmacy-based testing, whereas rural areas 

reported lower test volumes, potentially leading to skewed 

representations of infection patterns. 

 

Additionally, some deep learning models showed tendencies 

toward overfitting, particularly when trained on short-term 

surges. This overfitting compromises the model's ability to 

generalize to future outbreaks. To address this issue, 

regularization techniques such as the use of dropout layers 

were considered to improve model robustness. 

 

Another limitation lies in the reliance on test positivity rates 

as a primary predictive feature. While useful, these rates may 

not accurately reflect true infection prevalence, as they are 

influenced by individuals’ willingness and ability to seek 

testing. Furthermore, changes in public health policy—such 

as shifts in testing guidelines or movement restrictions—

introduced inconsistencies in the data over time, posing 

additional challenges for model stability and adaptability. 

 

To enhance model performance and resilience, future 

research should explore the integration of genomic 

surveillance data and the advancement of adaptive learning 

algorithms. Such improvements would support more accurate 

and responsive modeling in the context of the continuously 

evolving dynamics of the COVID-19 pandemic. 

 

6. Discussion 
 

6.1 Implications for Public Health Policy 

 

The integration of predictive modeling and large-scale, 

population-level testing holds significant potential for 

enhancing decision-making within the public health sector. 

Leveraging real-time data from pharmacy-based testing 

networks enables health officials to detect early signals of 

variant-driven surges and allocate resources more effectively. 

As noted by Daly, such predictive insights can be 

instrumental in refining preventive strategies—such as 

targeting vaccination efforts toward vulnerable 

subpopulations, scaling up testing in high-risk regions, and 

ensuring timely communication of public health information 

to the general population. 

 

For instance, early detection of rising positivity rates during 

the initial stages of the Omicron wave could have facilitated 

the implementation of stricter control measures, potentially 

alleviating the strain on healthcare systems. Moreover, 

predictive models can inform adaptive testing strategies, such 

as initiating or expanding testing programs in regions 

exhibiting rapidly increasing positivity rates. 

 

The incorporation of predictive analytics into public health 

workflows supports proactive rather than reactive responses 

to disease outbreaks. This data-driven approach enables 

timely interventions, more strategic planning, and a reduction 

in reliance on the "wait and see" method traditionally 

associated with outbreak management. 

 

6.2 Integration with Healthcare and Testing 

Infrastructure 

 

To ensure the effectiveness of predictive modeling, it is 

essential that the proposed solutions align seamlessly with 

existing healthcare and testing system infrastructures. 

Pharmacy networks, due to their widespread distribution and 

accessibility, provide an ideal platform for the real-time 

implementation of AI-driven tools. Integrating predictive 

models into pharmacy data pipelines can enable continuous 

monitoring of testing trends and potential contagion 

outbreaks, allowing for the automatic generation of early 

warning alerts. 

 

Such integration can support the development of more 

proactive and responsive testing policies, including the 

dynamic adjustment of testing frequency and access based on 

real-time risk assessments. Furthermore, predictive insights 

can assist healthcare providers in anticipating surges in 
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hospitalizations, thereby enabling timely preparation in terms 

of resource allocation, staffing, and ICU capacity 

management. 

 

The creation of dynamic, interactive dashboards—accessible 

to both public health agencies and pharmacy networks—

would significantly enhance real-time situational awareness. 

These symmetrical visual tools would facilitate coordinated 

decision-making, improve the dissemination of critical data, 

and ultimately strengthen the collective response to emerging 

public health threats. 

 

6.3. Challenges and Future Research Directions 

 

To further improve predictive modeling approaches, several 

challenges must be addressed. A primary concern is the 

ability of models to adapt to emerging SARS-CoV-2 variants, 

which may exhibit distinct transmission patterns and 

epidemiological behaviors. While some models allow for 

iterative updates with new data, delays in genomic 

sequencing and variant identification can impede timely 

model adaptation. Future efforts should focus on developing 

adaptive learning frameworks capable of dynamically 

incorporating new information and responding flexibly to 

novel variants as they emerge. 

 

Another critical consideration is the ethical and privacy 

implications associated with the use of sensitive testing data. 

Although pharmacy-based testing data offers substantial 

utility for surveillance and modeling, it must be handled with 

stringent safeguards to ensure the privacy and confidentiality 

of individuals. Compliance with data protection regulations, 

including the Health Insurance Portability and Accountability 

Act (HIPAA) and the General Data Protection Regulation 

(GDPR), remains essential to maintaining public trust and 

ethical integrity in data usage. 

 

Additionally, addressing biases present in testing data—such 

as unequal access or representation across demographic 

groups—is vital for ensuring fairness and accuracy in model 

outputs. Ensuring equitable representation and correcting for 

data imbalances will enhance the reliability of predictions 

across diverse populations. 

 

In the long term, the expansion of these predictive modeling 

strategies beyond COVID-19 holds promise for broader 

applications in infectious disease surveillance. The 

methodologies and frameworks developed herein could serve 

as foundational tools for managing future public health threats 

and pandemics with improved speed, accuracy, and ethical 

responsibility. 

 

7. Conclusion 
 

This study demonstrated the effectiveness of leveraging 

national pharmacy-based COVID-19 testing data to develop 

predictive models capable of forecasting variant-driven 

surges. The machine learning and statistical models 

employed—particularly the deep learning-based LSTM 

networks—proved adept at identifying temporal trends, 

outperforming traditional time series models in capturing 

complex, evolving infection patterns. When real-time testing 

data were combined with supplementary variables such as 

mobility and vaccination rates, the models’ precision 

improved further, underscoring the value of incorporating 

diverse data sources for more accurate pandemic modeling. 

 

The findings highlight the critical role that pharmacy 

networks can play not only in early detection of COVID-19 

outbreaks but also in supporting public health decision-

making through timely, community-level surveillance. By 

acting as decentralized data collection hubs, these networks 

contribute meaningfully to proactive outbreak management 

and early warning systems. 

 

Future enhancements in this domain can focus on several key 

areas. First, improving model adaptability by integrating 

genomic and epidemiological data in real time will be 

essential for tracking the emergence of new variants. Second, 

addressing biases in testing data—particularly disparities in 

access across socioeconomic and geographic groups—will be 

crucial for ensuring equitable and reliable predictions. Third, 

the adoption of privacy-preserving machine learning 

techniques will enable the continued use of sensitive health 

data while maintaining compliance with data protection 

regulations. 

 

Beyond COVID-19, the modeling framework developed in 

this study offers potential for broader applications in 

forecasting and managing other infectious diseases. With 

continued optimization and integration into real-time 

healthcare infrastructure, predictive analytics can support a 

shift from reactive crisis response to proactive public health 

preparedness. Such advancements will be instrumental in 

strengthening global resilience against future pandemics. 
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