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Abstract: In the field of epidemiology, there are two classes of dynamic models. There is the class of temporary models specialized for 

short-lived epidemics and the class of endemic models reserved for epidemics that persist for a long time. In the light of the new 

temporary dynamic model Susceptible, Exposed, Precontaged, Infected (SEPI) (1erclass) that we have proposed and in order to make our 

model more efficient, we will develop the endemic model SEPI (2thclass) and to propose the different studies relating to this model. This 

endemic SEPI model is specialized in epidemics that persist for a long time and in cases where the infection spreads directly: first 

between precontagious individuals (asymptomatic) and susceptible individuals, second between infectious individuals (symptomatic) and 

susceptible individuals. 
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1. Introduction 
 

In 1760, Daniel Bernoulli proposed the first epidemic model. 

In 1906, W. H. Hamer presented the first dynamic 

compartmental model. Since then, researchers have 

continued to improve the various existing models in order to 

arrive at a good model. A good model is one that is close 

enough to reality to provide valid and useful conclusions 

(J.M.M.ONDO (2012)). 

 

In addition, it often happens that the epidemic persists and 

lasts for several periods in a population. This is called an 

endemic. This calls into question the effectiveness of the 

various models because they are developed in the case of 

temporary epidemic phenomena. To remedy the weaknesses 

of the epidemiological models, M. Fan (2001) incorporated 

the parameters immigration, birth and mortality by the 

disease in the Susceptible, Exposed, Infected (SEI) model 

proposed by (L.Q.Gao (1995)) in order to arrive at an 

endemic model. Then, other researchers such as (G. Li and 

al. (2006)) followed their method to apply to other models. 

But nowadays, this model presents weaknesses, because 

today, there are infectious diseases that spread with a very 

rapid speed and are transmitted even between individuals 

who do not yet present symptoms INSPQ (2021), 

Y.WELKER (2020), Alizon and al. (2020). This is what 

(OMS (2019)) and (Z.Hu and al. (2020)) called a new strain 

of corona virus or COVID-19. This is inconsistent with the 

SEI model hypothesis. 

 

In the light of the new dynamic process of infection of 

infectious diseases caused by global warming and in order to 

make our SEPI model into a good model, this paper 

proposes an endemic SEPI model adapted to this new 

behaviour of infectious diseases caused by global warming. 

In what follows, 

Our work is divided into ten sections. Section 2 remember 

the definition of assumptions. Section 3 defines the 

assumptions of the SEPI endemic model. Section 4 presents 

a schematic of the SEPI endemic model. Section 5develops 

the differential equations of the SEPI endemic model. 

Section 6 presents the simulation study of the SEPI model. 

Section 7 studies the equilibrium point of the SEPI endemic 

model. Section 8 determines the basic reproduction number. 

Section 9 proposes the study of the stability of the 

equilibrium point. Section 10 studies the local stability of the 

equilibrium point. Section 11 provides a conclusion. 

 

2. Reminder of the definition of assumptions 
 

According to the work of Masonova et al. (2021): 
 

Definition 1: An individual who has been infected with the 

disease pathogen and can also transmit the disease, but has 

no symptoms, is referred to as a precontagious or 

precontaminated individual. 

 

Definition 2: Precontaged represents a compartment where 

the disease requires a period of pre-contagion. Pre-

contagious individuals are capable of transmitting the 

disease into the population, but they do not yet show 

symptoms of the disease. They are therefore assigned to this 

compartment with the rate k called precontagiousness rate. 

In the following, the letter P will be used to refer to 

individuals who are infected and contagious, but do not yet 

represent symptoms of the disease. 

 

Definition 3: The period of precontagiousness is a period of 

time when an infected individual does not yet show 

symptomatic signs of the disease, but can transmit the 

disease to another individual. 
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Definition 4: The infected compartment represents those 

who are not only already infected and have shown symptoms 

of the disease, but are also capable of transmitting the 

disease back into the population. 

Definition 5: The period of contagiousness is a distinct 

phase of time when the sick individual (person with 

symptoms of the disease and whose health is impaired) 

transmits a disease to the other individual. 

In the figure (1), we illustrate the context in which this event 

takes place: This schematic presentation shows the different 

phases (disease states). 

 
Figure 1: Representation of the contagion process 

 

3. Assumptions of the endemic SEPI model 
 

In this type of model, we consider that the disease persists 

and continues to spread during a time interval [t, t + ∆t] 

(equivalent to a month or a quarter).This leads us to take into 

account, over time, the birth rate, the natural mortality of the 

population and the loss of infectivity of the disease in the 

population. Furthermore, we consider that emigration is 

balanced with immigration of inhabitants. 

 

In order to develop the endemic model of SEPI, we make the 

following assumptions: 

 A1: The size of the population is equal to N, assumed 

fixed. 

 A2: The time variable t is of discrete type, such that t 

 Tor T is the total duration. 

 A3: The period of time ∆t = dt represents hours or days 

or weeks. 

 A4: At each time t, the population N is subdivided into 

four compartments: S(t): set of susceptible individuals, 

E(t): set of exposed individuals, P(t): set of precontaged 

individuals, I(t): set of infected individuals with S(0) = 

S0>0, P (0) = P0>0and/or I(0) = I0>0. 

 A5: We admit that each susceptible individual in a period 

∆t is exposed, precontaged then infected. 

 A6: The transmission of the infection is done through a 

direct contact between: firstly, susceptible Sand one or 

more precontaged P with a factor βp proportionality (also 

called rate of precontagion or rate of transmission or rate 

of transmission from the susceptible to the infected), 

secondly, susceptible S and one or more infected I with a 

factor βi of proportionality (also called rate of infection) 

and it is admitted that a factor β is the rate of total 

transmission or of exposure such as 

β= βp+ βi. 

 A7: An infected individual remains and remains 

contagious until the end of his life in the rate λ. 

 A8: Compartment D is used to store individuals who 

have died as a result of the disease at a rate λ in the time 

interval [t,  t + ∆t]. Here, with respect to the 

aggressiveness of the micro-organism, it is difficult to 

determine the cause of death of each individual in the 

Exposed and Precontaged compartments if it is unnatural 

or not by the disease. Therefore, we consider here the 

deaths in these two compartments are already counted 

and included in the rate of λ. 

 A9: During the time interval [t; t+∆t], we admit that the 

population studied increases (birth of children)with the 

birth rate δ; it also undergoes natural death with the 

mortality rate µand it suffers in addition the loss of 

infectiousness of the disease only for the sick individuals 

(infected) with the mortality rate λ. 

 A10: We consider that the disease studied does not 

transmit vertically (vertical transmission is from mother 

to child or genetically). 

 A11: We consider that a constant average number of 

contacts cannot apply to all diseases: we can generalise a 

little by putting the proportionality coefficients βp and  βi 

which depend on N. 

 

4. Scheme of the endemic model of SEPI 
 

We admit that an infected individual and a precontaminated 

individual meet on average β(S/N) individuals susceptible to 

be exposed per unit of time, with β= βp+ βi. We note: β>0: 

the rate of exposure (or of transmission from the susceptible 

to the exposed), k >0: the rate of precontagiousness (or of 

transmission from the exposed to the precontaged), ν>0: the 
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rate of contagiousness (or of transmission from the 

precontaged to the infected), λ>0: the rate of infected to die, 

µ >0: the rate of natural mortality, δ>0: the rate of birth. 

The endemic model can be schematised as in the figure (2) 

below: 

 
Figure 2: Scheme of the endemic model of SEPI 

 

5. Differential equation representation of the 

SEPI endemic model 
 

According to the hypothesis (A7) in section (3) above, we 

consider that during the time interval dt, the 

Susceptible comparison has increased in number δN of new 

born. But at the same time, it loses the number
 

 
          

of individuals exposed by the disease and the number µS of 

individuals who died naturally. According to the hypothesis 

(A6), we consider the new cases reached by the infection 

during the time interval dt which are equal to
  

 
  . And the 

new cases reached by the precontagion during the interval of 

time dt which are equal to 
  

 
  . We obtain the new cases 

exposed to the disease during the time interval dt which will 

be equal to 
  

 
   

  

 
   

 

 
         . According to 

hypothesis (A5), we consider that during the time interval dt 

the compartment Precontaged by the disease has increased in 

number kE of individuals and at the same time, it loses the 

number νP of sick or infected individuals. According to the 

hypothesis (A5) and (A7), we consider that during the time 

interval dt the compartment Infected has increased in 

number νP of precontaged individuals, and, at the same 

time, it loses the number λI of the epidemic death. It 

represents in the form of the following system of differential 

equations (1): 

 
 
 
 
 
 

 
 
 
 
 
     

  
            

 

 
               

     

   
 
 

 
                      

     

  
                

     

  
             

     

  
      

  

There is a unique solution for the model (1), under the initial 

conditions: S(0)=S0, E(0)=E0, P(0)=P0, I(0) =I0in particular, 

in the region Ω =                        which is 

positively invariantfor the system (a set G is said to be 

positively invariant if  x0 G, the trajectory passing through 

x0is contained in G after x0: if x is the solution of the system 

       (with F of class  ) verifying x(0) = x0, then t ≥ 

0, x(t) G). 

 

6. Simulation of the SEPI endemic model 
 

The different curves, obtained with Scilab, already give us 

an idea of the evolution of the epidemic. For the simulation, 

we consider here to have an individual precontaged at time t 

= 0 with N=1000, δ= 0.3, βp= 0.2,βi= 0.1, k=0.4, ν= 0.2, µ = 

0.2 et λ=0.3. We consider a period t depends on the unit of 

transmission rates, and it is equivalent to day or week or 

month. By doing the simulation, we obtain the following 

curves:  
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Figure 3: Curves of S(t) coloured in red and E(t) in blue 

 

 

Interpretation: 

From figure (3), we have noted that even with low 

precontagion and infection rates, the epidemic is spreading 

with a phenomenal and very rapid speed. Even with a birth 

rate ( δ= 0.3) that we consider to be the average population 

rate, any susceptible population is already exposed after only 

2
e
time period t 

 

 
Figure 4: Curve of E(t) during a phase of the epidemic 

 

Interpretation: 

According to figure (4), after the phenomenal evolution of 

the epidemic, the curve of the Exposure decreases, and 

stablilises and becomes endemic after the 7
e
period of time t 

of the epidemic. 
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Figure 5: Curves of I(t) coloured in red and P(t) in blue 

 

Interpretation: 

From Figure (5), it appears that even after the 7
e
period of 

time t, the curves for the Precontaged and the Infected are 

still increasing and are signs of a pandemic. 

 

 
Figure 6: Curves of I(t) coloured in red and D(t) in blue 

 

Interpretation 
According to figure (6), parallel to the situation of the 

infected, the curve of D(t) also increases and we record the 

death of 450 individuals related to this disease in 7
e
time 

period t only. 

 

7. Study of the equilibrium point of the SEPI 

endemic model 
 

According to the work of Lyapunov in (J.M.M.ONDO 

(2012)), we define the equilibrium point as follows: 

 

Définition 1: Consider U; a non empty open of Rn 

containing 0, and I a non empty interval of R, not bounded 

on the right. Let the two equations below (2) and (3): 

 

                                                 

                                               
 

where the functions f: U Rn 
for the system (2) and f: I × 

U Rn
for the system (3) sare assumed to becontinuous. 

A point "a" is an equilibrium point or equilibrium state or 

singular point of the system (2) (resp. (3)), if f(a) = 0(resp. 

if, for all t  I,  f(t,a) = 0). 

 

From the definition (1) of the equilibrium point above, we 

obtain the following proposition: 

 

Proposition 1. Let N>0. Then, the system (1), with the 

condition S(0) = S0, E(0) = E0, P (0) = P0, I(0) =I0and Ω = 
                          , admits a unique 

solution (S,E,P,I) defined on[0,+ [. 

 

Proof: 
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We calculate the equilibrium points in the absence of 

infection and/or precontagion. The equilibrium point ofthe 

model (1) satisfies: 

 
  
 

  
         

 

 
                                                   

 

 
                                                                  

                                                

                                                     
                                                            

  

In the absence of the infection I=0 and the pre-contagion 

P=0, we obtain the following proposition: 

 

Proposition 2:  Let N>0, in the absence of the infection I=0 

and the pre-contagion P=0, then the system (1)admits the 

equilibrium point:   =  
   

 
       

 

  

 

Proof: 
By replacing I=0 and P=0 in the first, second and third 

equations in the system (4), we obtain the first equilibrium 

point:   = (           ): 

  =  
   

 
       

 

                           

 

In the presence of the precontagion P 0 and in the absence 

of the infection I = 0, we obtain the following proposition: 

 

Proposition 3. Let N>0, in the absence of the infection I=0 

and in the presence of the precontagion P 0,then: 

  the system (1) admits the following equilibrium point 

  
   

  

  
    

   

 
 

   

   
 
   

 
 

  

  
   

 

  

 moreover, for all t>0 we have δβp>νµ. 

 

Proof: 

By replacing I=0 in the third equation of the system (4), 

implies:   =
  

 
. 

By replacing   in the first equation of (4) with P 0, we 

obtain:   =
  

  
. 

Replacing   in the first equation of (4), we obtain    
   

 
 

  

  
  

By replacing   in   , we then have the equilibrium point 

  
               as follows: 

  
   

  

  
    

   

 
 

   

   
 
   

 
 

  

  
   

 

                              (6) 

Note that   >  :
   

 
 

  

  
                                                    (7) 

From (7), we deduce that:   
   

 
 

   

   
               (8) 

And            
   

 
 

  

  
                                              (9) 

According to (7),(8),(9), we then have δ  >νµ. 

 

In the presence of the precontagion P 0and the infection 

I 0, we obtain the following proposition: 

 

Proposition 4. Let N>0, in the presence of the precontagion 

P 0 and the infection I 0, then: 

 the system (1) admits the following endemic equilibrium 

point 

  
   

   

       
    

  

 
 

    

          
    

  

 
 

   

       
    

  

 
 

   

       
 
 
; 

 moreover, for all t>0 we have δ(λβp+ βiν) > µνλ. 

 

Proof: 

 

If P 0and I 0, the system (4) becomes: 

 
  
 

  
         

 

 
                                         

 

 
                                                       

                                        
                                                
                                                      

  

 

The third and fourth equations of the system (10), 

imply:  =
  

 
and    

  

 
  

 

By replacing   and   in the second equation of the system 

(10), we obtain: 

   
   

       
                                                         (11) 

 

By replacing   and   in the first equation of the system (10), 

we obtain: 

   
                

          
 

  

 
 

   

       
          (12) 

 

Replacing   in   and     we then have the endemic 

equilibrium point   
                as follows: 

  
   

   

       
    

  

 
 

    

          
    

  

 
 

   

       
    

  

 
 

µ     +    (13) 

Note that      :
   

 
 

   

       
                       (14) 

So, we have: δ(       ) > µνλ.              (15) 

  
From (15), we deduce that:   >0,  >0and      
 

 

 

8. The basic reproduction number R0of the 

SEPI endemic model 
 

To find the   of the SEPI endemic model, we apply the 

study condition in the work (L.Chahrazed (2002))on   : 

 If   <1, the equilibrium point E0is locally asymptotically 

stable ; 

 If   >1, the equilibrium point E0is unstable. 

 

First, we calculate the Jacobian matrix of the linearized 

system (1) at the equilibrium point E0 ignoring the death 

compartment and we obtain: 
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(16) 

 

The characteristic equation of the system (1) in the 

neighbourhood of the equilibrium point E0is given by: 

          

 
 
 
 
 
       

   

 
 
    

 

     
   

 

   
 

 
 

 
 

    
 

 
     

 
 
 
 
 

   

 

It comes:  

det(J -θI)=                            

  +        )+       +         = 0(17) 

Then, the first eigenvalue is θ= -µ and it remains to study the 

equation: 

                         
    

 
 

 
     

 
           

                    
We admit that the equation (18) is the characteristic equation 

of the sub-matrix   : 

    
  

   

 

   
 

    
    

                                            

We have the trace (  ) = -[k + ν+ λ] <0, so: 

              
     

 
 
     

 
                 

If det(J1) >0, we get:
   

            
    

According to the Varga and Poincaré-Lyapunov theorem of 

linearization in (G.Sallet (2010)), R0is defined bythe 

expression below: 

   
   

            
 

  
 

 
           

                       

 

9. Study of the stability of the equilibrium 

point E0 
 

9.1 Local stability 

 

L.Chahrazed (2002) defines the local stability of E0as 

follows: 

Definition 2. We say that E0is locally asymptotically stable 

if and only if the trace of the Jacobian matrix in the 

neighbourhood of E0is strictly negative and the determinant 

is strictly positive. 

 

Indeed, according to the equations (19), (20) and (15) above: 

 

                                                                

              
     

 
 
     

 
                               

  

So we see that the conditions in (22) are met. Then the 

equilibrium point E0of the system (1) is unique. And it 

remains locally asymptotically stable. 

 

9.2 Global stability 

 

According to Lyapunov’s method in the works (Richard 

(1969)), (Moulay (1969)) and (Richard (2012)),we obtain 

the definitions below . 

 

We consider that U always designates a non-empty open of 

  (n     ) containing 0 and I a non-empty interval of R, 

not bounded on the right. 

 

Définition 3. Let f: I ×U    be a continuous application 

and a Cauchy-Lipschitz function, we associate the system:     
= f(x, t) (*),  t0>0,  t ≥ t0, we have x    et x(t, t0, x0) 

denotes a solution of the system such that x(t0) = x0. 

An equilibrium point   such that for all t, f(  , t) = 0 is 

(globally) attractive if the function φ (t,t0, x0) tends to 

  when t tends to + . 

 

Définition 4. We say that   is an asymptotically stable 

equilibrium point, if it is a stable equilibrium pointand if the 

domain of attraction of x0is a neighbourhood of x0. 

 

Définition 5. Let   be a non-empty compact of U, we 

consider the system (*). We say that   is a globally 

asymptotically stable equilibrium point for the system (*) if: 

1)   is stable on the system (*) 

2)  for all t0 I, and x0 U, x(t, t0, x0) is defined for all t ≥ t0 

and                            
Lemme 1: The number of Suspects S in the model (1) admits 

that: 

   
    

        
  

 
                    

Proof: 

According to the model (1), we have the equation    

         
    

 
 

    

 
, avec S(0) = S0. And it is obvious 

that: 

               
Suppose that: 

                                                             
With the initial condition Z(0) = Z0= S0. 

And we have Z(t), S(t)   [0,+ ], Z(0) = Z0= S0>0 

ett [0,+ [. 

Solving the equation (24) which is a first order linear 

ordinary differential equation in time t >0with Z(0) =Z0, we 

obtain: 

        
    

  

 
          

By determining the limit of Z(t)when t goes to infinity, we 

obtain: 

   
    

     
  

 
  

Therefore 

   
    

           
    

     
  

 
  

Theorem 1:  If
   

            
  then the equilibrium point 

E0of the system (1) is globally asymptotically stable. 
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Proof: 

Using (23) for η>0then there exists T1>0such that      
  

 
  ,  for t > T1. According to the system(1), we obtain: 

      
  

 
 
  

 
         

  
 
 
  

 
                 

                                                                            
                                                                             

Then for t > T1, we pose: 

         
 

 
  

 

 
          

 

 
  

 

 
               

                                                                                 

                                                                               
We obtain the matrix D defined in the following way: 

   
     

 

 
  

 

 
    

 

 
  

 

 
 

    
    

                

We have the trace(D)               
And for the determinant, we have:              

      
 

 
  

 

 
        

 

 
  

 

 
   

If 
   

            
  and η<<<0, then det(D) >0implies 

           
 

 
  

 

 
        

 

 
  

 

 
   . 

It comes:
    

                    
  . 

So  

               , in comparison with the system 

(1)               ; 

               , in comparison with the system 

(1)               ; 

               , in comparison with the system 

(1)                 

As      
  

 
  , fort > T1.  

And if               
  

 
, then                and 

               , for all θ>0and σ>0, there 

exists T2>0such that: P (t) <θ and I(t) <σ, fort > T2. 

Let   , = max(   ,   ), fort >  , we obtain: 

                        
  

 
                              

It comes:            
  

 
 
  

 
     

  

 
 
  

 
      

Thus                
  

 
 
  

 
     

  

 
 
  

 
      

We consider: 

                     
 

 
  

 

 
  

    
 

 
  

 

 
                  

                                                                      
Solving this first-order linear differential equation, we 

obtain: 

          
        

 
 

 
       

 

 
  

 

 
  

    
 

 
  

 

 
                      

     

We pose        
 

 
  

 

 
      

 

 
  

 

 
    

It comes:            
         

     

 
               

Therefore                  
     

 
   

AsS(t),V (t)   ([0,+ ])and S(  ) = V (  ), it comes: S(t) 

≥ V (t), for t >    

This means that               
     

 
             

From (26)and (27)if we choose  , θand σvery small and 

t>  >  , then we get: 
  

 
 

  

 
      

  

 
 

  

 
.    

Passing to the limit:            
  

 
  

Hence the equilibrium point E0of the system (1)is globally 

asymptotically stable. 

 

10. Local stability of the equilibrium    
 

By studying the local stability of   , we obtain the following 

theorem: 

 

Theorem 2: If R0>1, then the endemic equilibrium   of the 

system (1) is locally asymptotically stable. 

 

Proof: 

According to the proposition in the works of L.Chahrazed 

(2002) and CHABOUR (2000), we characterize the local 

stability of   , as follows: 

 

Proposition 5. The epidemic is locally asymptotically stable 

if and only if all the eigen values of the Jacobian matrix J 

have a negative real part. 

 

Indeed, J is defined by: 

              

 

 
 
 
 
 
     

   
 

 
 
   

 

 
  

   
 

 
 
   

 

 
   

 

 
 
   

 

 
  

   
 

 

   
 

 
 
 

 
 

   
    

 
 
 
 
 

 

 

The eigen values can be determined by solving the equation 

det(J - θI): 

           

 

 
 
 
 
 
     

   
 

 
 
   

 

 
    

   
 

 
 
   

 

 
   

 

 
 
   

 

 
    

   
 

 

   
 

 
 
 

 
 

     
      

 
 
 
 
 

 

 

So the characteristic function is written with the coefficients 

defined below as follows: 

                 . 

 

The coefficients are: 

A = µ + ν+ λ+ k +
 

 
    

     
      

B = (ν+ λ+ k)     
 

 
    

     
   + k(ν+ λ) + νλ; 
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C = kνλ+                    
 

 
    

     
    

    
 

  
    

     
   ; 

D = kνλ     
 

 
    

     
   + 

   

  
    

     
       

   . 

We have A >0 et B, C, D >0. 

 

Using the Routh-Hurwitz criterion in the work of 

(J.M.M.ONDO (2012)), we have: AB - C >0. 

 

We calculate AB - C, we then obtain: 

 

                                  
 

 
    

     
    

                                

  
 

 
    

     
                

                   

 
 

 
    

      
       

                      

                                 
 

 
      

   
 

  
     

     
     

Therefore   is locally asymptotically stable. 

 

11. Conclusion 
 

We were first interested in the formulation of an endemic 

model describing the dynamic behaviour of the transmission 

of mutant microorganisms on the population. The study 

proposed in this model, as well as the different numerical 

simulations, allow us to know the moment when control 

efforts must be applied, as well as their intensity in the face 

of emerging infectious diseases. The SEPI endemic model 

described above is a deterministic model. 
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