
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 4, April 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Implementation of Elliptic Curve Cryptography

Processor for FPGA Applications

Ch.Venkateswarlu
1
, Nirmala Teegala

2

1Department of Electronics and Communication Engineering, CMR Engineering College, Hyderabad, Telangana State, India

2Department of Computer Science and Engineering, CMR Institute of Technology, Hyderabad, Telangana State, India

Abstract: ECC processor is implemented for point multiplication on FPGA based applications. High-precision segmented multiplier is

used to reduce the latency and to avoid data dependency problem by modifying Lopez-Dahab Montgomery Point Multiplication

algorithm.ECC processor using three multiplier, reduces the number of clock cycles required .In this paper ECC processor is

implemented on Xilinx families’ virtex-4 virtex-5 virtex-7.high performance can be achieved and number of clock cycles is reduced by

using three multiplier ECC processor.

Keywords: ECC (Elliptic Curve Cryptography), Latency, Galois field (GF), Clock Cycle (CC), Point Multiplication (PM), Multiplier

(MUL)

1. Introduction to Elliptic Curves

In cryptography these elliptic curves are used for high

security purpose, an elliptic curve is a plane curve, it may

have discontinuous values defined as the y
2
 + xy = x

3
 + ax

2
+

b.

An elliptic curve is a plane curve, it may have discontinuous

values. It has so many properties which allow us the elliptic

curves in cryptography.

Figure 1: Elliptic Curves

1.1 Scalar Multiplication

The main operation in ECC is scalar pm, q = kp, where k is a

private key, q is a public key, and p is a base point on an

elliptic curve, e. the public key q is computed by k times

point addition operation q = kp = p +・ ・・+ p + p. The

private k is difficult to retrieve from knowledge of q and p.

An elliptic curve over GF (2m) E can be defined as y
2
+ xy =

x
3
 + ax

2
 + b

Where a, b are constants, and a point at infinity is θ such

that Pi+θ = P1, where Pi = (x1, y1) and (x1, y1) GF (2
m
).

The PM is achieved with scalar PM algorithms utilizing

point addition and point doubling depending on the i
th

 value

of K, Ki. Scalar PM can be affine coordinates based or

projective coordinates based. Because of the expensive

inversion operation involved in affine coordinates-based

algorithms, projective coordinates-based PM is a more

common choice for ECC hardware implementation. In this

paper, the Lopez–Dahab (LD) Montgomery PM is

considered. This algorithm requires six field multiplications,

five field squaring operations, and four addition operations.

The LD algorithm is generally faster to implement, and leads

to improved parallelism and resistance to side channel power

attack

1.2 Field Arithmetic GF

Field multiplication, field squaring, field addition, and field

inversion operations are involved in a point operation.

Addition and subtraction are equivalent over GF (2
m
), which

are very simple bitwise XOR operations. Field inversion is

very costly in terms of hardware and delay. In projective

coordinates, an inversion operation is used for the projective

to affine coordinates’ conversion that can be achieved with

multiplicative inversion. The Itoh–Tsujii algorithm is

selected as it requires only log2(m) multiplications and

(m−1) repeated squaring operations. In projective

coordinates-based implementations, the overall performance

depends on the performance of the field multipliers.

1.3 Elliptic Curve Properties

PM can be considered as the combination of PM addition

and PM doubling.

If a line intersects two points on the curve then line

intersects another point and its reflection gives original

point.

 Line which is tangent to the curve intersects another point

and its reflection at that point gives original point.

Paper ID: SR22423155851 DOI: 10.21275/SR22423155851 1295

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 4, April 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 2: PM Addition

 Adding two points on the curve, P and Q are added to

obtain P+Q which is a reflection of R along the X-axis.

 A tangent at P is extended to cut the curve at a point; its

reflection is 2P

Adding P and 2P gives 3P and so on.

 Similarly, such operations can be performed as many

times as desired to obtain Q = KP

Figure 3: PM Doubling

Let us assume that p is the initial point and q is the final

point

q=p1+p2+p3+p4+p5+p6+p7+p8+p9+…

q=p1+(p1+p1)+(p2+p1)+(p3+p1)+(p4+p1)+(p5+p1)+(p6+p

1)+…

q=p1+(2p1)+(2p1+p1)+(2(2p1))+(2(2(p1))+p1)+(2(2p1))+2

p1)+

To implement PM we need so many addition operations,

squaring operations and inverse operations

For example

q=12p1

q=2(2p1) +2(2p1) +2(2p1)

To get q value, we need three additions, three

multiplications and three doublings.

Table 1: Comparison with various technologies
Symmetric Encryption

(Key size in bits)

RSA and Diffie- Hellman

(modulus size in bits)

ECC Key

size in bits

56 512 112

80 1024 160

112 2048 224

128 3072 256

192 7680 384

256 15360 512

1.4 Elliptic Curve points

For a given elliptic curve we will find the curve points based

on prime number or Galois field implementation. It is easy

to calculate mod of prime values.

For example

1.5 ECC Advantages and Disadvantages

Equivalent ECC key size is 160 bits as compared to 1024 bit

size of RSA.ECC does not require prime numbers and

exponential processing for encryption. ECC offers

considerable bandwidth savings when being used to

transform short messages having very fast key generation

.Moderately fast encryption and decryption ,it is widely used

providing good protocols for authenticated key exchange.As

binary curves are really fast in hardware,they can less

storage and smaller chips are used with compact

software.However ECC is mathematically more difficult to

explain to client and complicated and tricky to implement

securely.

2. Proposed High-Performance ECC

Processor (HPECC)

ECC processor is implemented with high-precision m-

multiplier with three two pipelining stages, one squaring

circuit, one squad-squaring circuit, and two addition circuits

to accomplish point operations i.e. point addition and point

doubling in six CC’s.

Paper ID: SR22423155851 DOI: 10.21275/SR22423155851 1296

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 4, April 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 4: Hardware control architecture of control unit of ECC processor

Figure 5: HPECC Processor Architecture

To avoid data dependency we combine point addition and

point doubling. In PM method two stages of pipelining are

overlapped with next loop .To obtain six clock cycle

algorithm we will use square operations, double square

operation and both operations in parallel as there is a data

dependency problem as two pipeline stages are overlapping

with next stage loop,

In our proposed architecture, we use register in the

arithmetic data path to achieve a repeated quad-square

operation without loading in to main memory. Proposed

HPECC processor design uses a segmented pipelining –

based full precision multiplier to achieve six CC for each

loop of PM. Critical path delay of ECC processor depends

on critical path delay of multiplier’s and in turn multiplier

critical path delay depend on path delay of GF
2
MUL part or

reduction part depending on the size of segment. Critical

path delay of ECC can be combination of reduction part,

adder, and multiplexer .main focus is on reduction of

number of clock cycles .Our design can manage to take six

CC’s for each loop of PM

The total number of cc’s for PM = 5 CC’s (required for

initialization) + 6*(m − 1) CC’s (for PM in the projective

coordinates) + CC’s (for the final coordinates conversion =

m/2 CC’s for square + #MUL for inversion *3 + 3 CC’s for

inversion + 28 CC’s for others) + 3 CC’s for pipelining. The

others clocks cycles that are independent of curve sizes are

included: ten multiplications, six additions, and one square

operation. For example, the total CC’s for PM over GF with

163 bit = 5 + (6*162) + 139 (= (81 + 27 + 3) + 28) + 3 =

1119 cycles. Similarly, the latency of the HPECC processor

over GF with 571-bit is 3783 CC’s.

3. Proposed Low Latency ECC Processor

(LLECC)

To achieve low latency high-speed ECC processor three full-

precision multiplier are used such that to get six

multiplications can be achieved in two steps for that ECC

processor needs single-clocked field multipliers along with

concurrent square and addition operations.

Paper ID: SR22423155851 DOI: 10.21275/SR22423155851 1297

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 4, April 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 6: LLECC Processor Architecture

In modified PM three full–precision multipliers are used, in

each state of proposed algorithm three multipliers output are

concurrently used for addition ,square ,four-square to

generate required output for the next states such to get three

state multiplications in a single CC. To accomplish two

CC’s based operation, we need to process the multiplier

output in the same CC by cascading the adder and squaring

circuit.

The control unit of LLECC processor is also based on FSM

that controls the two CC’s based point operations and is

simpler than control unit of HPECC processor. The critical

path delay of the LLECC is the path delay of MUL GF 2+

the reduction part + adder + square + 3 * 1.The total number

of CC’s depends on the latency of loop operations of the

PM.

The total number of CC’s for PMs of the LLECC = 5 CC’s

for initialization +4 CC’s to start of the loop + (m − 1)*2

CC’s for loop operations +4 CC’s to exit loop + CC’s for

coordinates’ conversion [= (m/2) for square+ #mulx1) CC’s

for inversion +23 others]. The LLECC architecture

consumes extra CC’s at the start of first loop and at the end

of the final loop operation due to load/unload of variables

to/from the local registers. Again, the latency for inversion

depends on the curve size and defined by [log2 m – 1] + h(m

− 1) − 1, where h(m − 1) is the Hamming weight. The other

CCs, 23 CC’s that are independent of curve size mainly

include ten multiplications, six additions, and one square

operation. For example, the total number of CC’s for GF of

163 bit = 5 + 4 + 162*2 + 4 + 113(= (81 + 9) + 23) = 450

CC’s.

4. Results & Analysis

LLECC processor with three parallel multiplier increases the

speed by decreasing the latency with little more area

requirement.ECC processor with two pipeline stages with

three parallel multipliers improves the speed by reducing the

latency with little area overhead. ECC processor

implementation with two stage pipelining to achieve high

clock frequency achieves the fast is doubled and better area-

time metric.

Proposed high-performance one-multiplier based

architecture takes six cycles for a loop of Montgomery PM

without pipelining delay, whereas our three-multiplier based

processor takes only clock cycles. The proposed ECC

processor is implemented on Xilinx FPGA families i.e.

virtex-4, vitrtex-5, virtex-7 FPGA families resulted in fastest

performance of the processor is obtained. On virtex-7 FPGA

based processor implementation best area, time and fastest

performance. Our parallel multiplier-based ECC design is

the full-precision parallel architecture for the GF with 163-

bit with lowest latency on FPGA environment.

Table 2: Comparison between various FPGA Technologies

Reference Freq (MHZ) Clock Cycles FPGA Resource MUX

HPECC_1M 210 1119 Vitex4 163bit

HPECC_1M 228 1119 Virtex5 163bit

LLECC_3M 113 450 Virtex5 3X163bit

HPECC_1M 352 1119 Virtex7 163bit

LLECC_3M 159 450 Virtex7 3X163bit

HPECC_1M 111 3783 Virtex7 571bit

References

[1] N. Koblitz, “Elliptic curve cryptosystems,” Math.

Comput. vol. 48 no. 177, pp 203–209, Jan. 1987.

[2] V. S. Miller, “Use of elliptic curves in cryptography,”

in Advances in Cryptology. Berlin, Germany:

Springer, 1986, pp. 417–426.

[3] N. Koblitz, A. Menezes, and S. Vanstone, “The state of

elliptic curve cryptography,” Designs, Codes

Cryptogr., vol. 19, nos. 2–3, pp. 173–193, Mar. 2000.

[4] D. Hankerson, A. J. Menezes, and S. Vanstone, Guide

to Elliptic Curve Cryptography. New York, NY, USA:

Springer-Verlag, 2004.

[5] National Institute of Standards and Technology

(NIST), “Recommended elliptic curves for federal

government use,” Jul. 1999. [online]. Available

http://csrc.nist.gov/encryption

[6] J. López and R. Dahab, “Fast multiplication on elliptic

curves over GF(2m) without precomputation,” in Proc.

1st Int. Workshop Cryptogr. Hardw. Embedded Syst.,

1999, pp. 316–327.

[7] S. Kumar, T. Wollinger, and C. Paar, “Optimum digit

serial GF(2m) multipliers for curve-based

cryptography,” IEEE Trans. Comput., vol. 55, no. 10,

pp. 1306–1311, Oct. 2006.

Paper ID: SR22423155851 DOI: 10.21275/SR22423155851 1298

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 4, April 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

[8] Z. U. A. Khan and M. Benaissa, “Low area ECC

implementation on FPGA,” in Proc. IEEE 20th Int.

Conf. Electron., Circuits, Syst., Dec. 2013, pp. 581–

584.

[9] T. Itoh and S. Tsujii, “A fast algorithm for computing

multiplicative inverses in GF(2m) using normal bases,”

Inf. Comput., vol. 78, no. 3, pp. 171–177, Sep. 1988.

[10] B. Ansari and M. A. Hasan, “High-performance

architecture of elliptic curve scalar multiplication,”

IEEE Trans. Comput., vol. 57, no. 11, pp. 1443–1453,

Nov. 2008.

[11] S. S. Roy, C. Rebeiro, and D. Mukhopadhyay,

“Theoretical modeling of elliptic curve scalar

multiplier on LUT-based FPGAs for area and speed,”

IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,

vol. 21, no. 5, pp. 901–909, May 2013.

[12] W. N. Chelton and M. Benaissa, “Fast elliptic curve

cryptography on FPGA, IEEE Trans, Very Large Scale

Integr. (VLSI) Syst., vol. 16, no. 2, pp. 198–205, Feb

2008.

[13] G. D. Sutter, J.-P. Deschamps, and J. L. Imana,

“Efficient elliptic curve point multiplication using

digit-serial binary field operations,” IEEE Trans. Ind.

Electron., vol. 60, no. 1, pp. 217–225, Jan. 2013.

[14] Y. Zhang, D. Chen, Y. Choi, L. Chen, and S.-B. Ko,

“A high performance ECC hardware implementation

with instruction-level parallelism over GF(2163),”

Microprocessors Microsyst., vol. 34, no. 6, pp. 228–

236, Oct. 2010.

Author Profile

Ch.Venkateswarlu Received B-Tech in Electronics

and Communication Engineering from RVR&JC

college of engineering,Guntur.Completed ME in

Microwave &Radar Engineering from Osmania

university, Hyderabad. Currently working as Assistant Professor in

CMR Engineering College, Hyderabad.

Nirmala Teegala Received B-Tech in Computer

Science and Engineering from Sri Venkateshwara

college of Engineering,Suryapet. M-Tech from

Swarna Bharathi Institute of Technology and Science,

khammam. Currently working as Assistant Professor in CMR

institute of Technology, Hyderabad.

Paper ID: SR22423155851 DOI: 10.21275/SR22423155851 1299

