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Abstract: ECC processor is implemented for point multiplication on FPGA based applications. High-precision segmented multiplier is 

used to reduce the latency and to avoid data dependency problem by modifying Lopez-Dahab Montgomery Point Multiplication 

algorithm.ECC processor using three multiplier, reduces the number of clock cycles required .In this paper ECC processor is 

implemented on Xilinx families’ virtex-4 virtex-5 virtex-7.high performance can be achieved and number of clock cycles is reduced by 

using three multiplier ECC processor. 
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1. Introduction to Elliptic Curves 
 

In cryptography these elliptic curves are used for high 

security purpose, an elliptic curve is a plane curve, it may 

have discontinuous values defined as the y
2
 + xy = x

3
 + ax

2 
+ 

b. 

An elliptic curve is a plane curve, it may have discontinuous 

values. It has so many properties which allow us the elliptic 

curves in cryptography. 

 

 

 

 
Figure 1: Elliptic Curves 

 

1.1 Scalar Multiplication 

 

The main operation in ECC is scalar pm, q = kp, where k is a 

private key, q is a public key, and p is a base point on an 

elliptic curve, e. the public key q is computed by k times 

point addition operation q = kp = p +・ ・・+ p + p. The 

private k is difficult to retrieve from knowledge of q and p.  

 

An elliptic curve over GF (2m) E can be defined as y
2 
+ xy = 

x
3
 + ax

2
 + b    

Where a, b   are constants, and a point at infinity is θ such 

that Pi+θ = P1, where Pi = (x1, y1) and (x1, y1) GF (2
m
).  

 

The PM is achieved with scalar PM algorithms utilizing 

point addition and point doubling depending on the i
th

 value 

of K, Ki. Scalar PM can be affine coordinates based or 

projective coordinates based. Because of the expensive 

inversion operation involved in affine coordinates-based 

algorithms, projective coordinates-based PM is a more 

common choice for ECC hardware implementation. In this 

paper, the Lopez–Dahab (LD) Montgomery PM is 

considered. This algorithm requires six field multiplications, 

five field squaring operations, and four addition operations. 

The LD algorithm is generally faster to implement, and leads 

to improved parallelism and resistance to side channel power 

attack  

1.2 Field Arithmetic GF 

 

Field multiplication, field squaring, field addition, and field 

inversion operations are involved in a point operation. 

Addition and subtraction are equivalent over GF (2
m
), which 

are very simple bitwise XOR operations. Field inversion is 

very costly in terms of hardware and delay. In projective 

coordinates, an inversion operation is used for the projective 

to affine coordinates’ conversion that can be achieved with 

multiplicative inversion. The Itoh–Tsujii algorithm is 

selected as it requires only log2(m) multiplications and 

(m−1) repeated squaring operations. In projective 

coordinates-based implementations, the overall performance 

depends on the performance of the field multipliers. 

 

1.3 Elliptic Curve Properties 

 

PM can be considered as the combination of PM addition 

and PM doubling. 

 

If a line intersects two points on the curve then line 

intersects another point and its reflection gives original 

point. 

 Line which is tangent to the curve intersects another point 

and its reflection at that point gives original point. 
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Figure 2: PM Addition 

 

 Adding two points on the curve, P and Q are added to 

obtain P+Q which is a reflection of R along the X-axis. 

 A tangent at P is extended to cut the curve at a point; its 

reflection is 2P 

Adding P and 2P gives 3P and so on. 

 Similarly, such operations can be performed as many 

times as desired to obtain Q = KP  

 

 
Figure 3: PM Doubling 

 

Let us assume that p is the initial point and q is the final 

point  

q=p1+p2+p3+p4+p5+p6+p7+p8+p9+… 

q=p1+(p1+p1)+(p2+p1)+(p3+p1)+(p4+p1)+(p5+p1)+(p6+p

1)+… 

q=p1+(2p1)+(2p1+p1)+(2(2p1))+(2(2(p1))+p1)+(2(2p1))+2

p1)+ 

 

To implement PM we need so many addition operations, 

squaring operations and inverse operations 

For example 

q=12p1 

q=2(2p1) +2(2p1) +2(2p1) 

To get q value, we need three additions, three 

multiplications and three doublings. 

 

Table 1: Comparison with various technologies 
Symmetric Encryption 

(Key size in bits) 

RSA and Diffie- Hellman 

(modulus size in bits) 

ECC Key 

size in bits 

56 512 112 

80 1024 160 

112 2048 224 

128 3072 256 

192 7680 384 

256 15360 512 

 

 

 

 

 

 

 

 

1.4 Elliptic Curve points 
 

For a given elliptic curve we will find the curve points based 

on prime number or Galois field implementation. It is easy 

to calculate mod of prime values. 

For example 

 

 

1.5 ECC Advantages and Disadvantages 

 

Equivalent ECC key size is 160 bits as compared to 1024 bit 

size of RSA.ECC does not require prime numbers and 

exponential processing for encryption. ECC offers 

considerable bandwidth savings when being used to 

transform short messages having very fast key generation 

.Moderately fast encryption and decryption ,it is widely used 

providing good protocols for authenticated key exchange.As 

binary curves are really fast in hardware,they can less 

storage and smaller chips are used  with compact 

software.However ECC is mathematically more difficult to 

explain to client and complicated and tricky to implement 

securely. 

 

2. Proposed High-Performance ECC 

Processor (HPECC) 
 

ECC processor is implemented with high-precision m-

multiplier with three two pipelining stages, one squaring 

circuit, one squad-squaring circuit, and two addition circuits 

to accomplish point operations i.e. point addition and point 

doubling in six CC’s. 
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Figure 4: Hardware control architecture of control unit of ECC processor 

 

 
Figure 5: HPECC Processor Architecture 

 

To avoid data dependency we combine point addition and 

point doubling. In PM method two stages  of pipelining are 

overlapped with next loop .To obtain six clock cycle  

algorithm we will use square operations, double square 

operation and both operations in parallel as there is a data 

dependency problem as two pipeline stages are overlapping 

with next stage loop,  

 

In our proposed architecture, we use register in the 

arithmetic data path to achieve a repeated quad-square 

operation without loading in to main memory. Proposed 

HPECC processor design uses a segmented pipelining –

based full precision multiplier to achieve six CC for each 

loop of PM. Critical path delay of ECC processor depends 

on critical path delay of multiplier’s and in turn multiplier 

critical path delay depend on path delay of GF
2
MUL part or 

reduction part depending on the size of segment. Critical 

path delay of ECC can be combination of reduction part, 

adder, and multiplexer .main focus is on reduction of 

number of clock cycles .Our design can manage to take six 

CC’s for each loop of PM 

 

The total number of cc’s for PM = 5 CC’s (required for 

initialization) + 6*(m − 1) CC’s (for PM in the projective 

coordinates) + CC’s (for the final coordinates conversion = 

m/2 CC’s for square + #MUL for inversion *3 + 3 CC’s for 

inversion + 28 CC’s for others) + 3 CC’s for pipelining.  The 

others clocks cycles that are independent of curve sizes are 

included: ten multiplications, six additions, and one square 

operation. For example, the total CC’s for PM over GF with 

163 bit = 5 + (6*162) + 139 (= (81 + 27 + 3) + 28) + 3 = 

1119 cycles. Similarly, the latency of the HPECC processor 

over GF with 571-bit is 3783 CC’s. 

 

3. Proposed Low Latency ECC Processor 

(LLECC) 
 

To achieve low latency high-speed ECC processor three full-

precision multiplier are used such that to get six 

multiplications can be achieved in two steps for that ECC 

processor needs single-clocked field  multipliers along with 

concurrent square and addition operations. 
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Figure 6: LLECC Processor Architecture 

 

In modified PM three full–precision multipliers are used, in 

each state of proposed algorithm three multipliers output are 

concurrently used for addition ,square ,four-square to 

generate required output for the next states such to get three 

state multiplications in a single CC. To accomplish two 

CC’s based operation, we need to process the multiplier 

output in the same CC by cascading the adder and squaring 

circuit.  

 

The control unit of LLECC processor is also based on FSM 

that controls the two CC’s based point operations and is 

simpler than control unit of HPECC processor. The critical 

path delay of the LLECC is the path delay of MUL GF 2+ 

the reduction part + adder + square + 3 * 1.The total number 

of CC’s depends on the latency of loop operations of the 

PM. 

 

The total number of CC’s for PMs of the LLECC = 5 CC’s 

for initialization +4 CC’s to start of the loop + (m − 1)*2 

CC’s for loop operations +4 CC’s to exit loop + CC’s for 

coordinates’ conversion [= (m/2) for square+ #mulx1) CC’s 

for inversion +23 others]. The LLECC architecture 

consumes extra CC’s at the start of first loop and at the end 

of the final loop operation due to load/unload of variables 

to/from the local registers. Again, the latency for inversion 

depends on the curve size and defined by [log2 m – 1] + h(m 

− 1) − 1, where h(m − 1) is the Hamming weight. The other 

CCs, 23 CC’s that are independent of curve size mainly 

include ten multiplications, six additions, and one square 

operation. For example, the total number of CC’s for GF of 

163 bit = 5 + 4 + 162*2 + 4 + 113(= (81 + 9) + 23) = 450 

CC’s.  

 

4. Results & Analysis 
 

LLECC processor with three parallel multiplier increases the 

speed by decreasing the latency with little more area 

requirement.ECC processor with two pipeline stages with 

three parallel multipliers improves the speed by reducing the 

latency with little area overhead. ECC processor 

implementation with two stage pipelining to achieve high 

clock frequency achieves the fast is doubled and better area-

time metric. 

 

Proposed high-performance one-multiplier based 

architecture takes six cycles for a loop of Montgomery PM 

without pipelining delay, whereas our three-multiplier based 

processor takes only clock cycles. The proposed ECC 

processor is implemented on Xilinx FPGA families i.e. 

virtex-4, vitrtex-5, virtex-7 FPGA families resulted in fastest 

performance of the processor is obtained. On virtex-7 FPGA 

based processor implementation best area, time and fastest 

performance. Our parallel multiplier-based ECC design is 

the full-precision parallel architecture for the GF with 163-

bit with lowest latency on FPGA environment. 

 

Table 2: Comparison between various FPGA Technologies 

Reference Freq (MHZ) Clock Cycles FPGA Resource MUX 

HPECC_1M 210 1119 Vitex4 163bit 

HPECC_1M 228 1119 Virtex5 163bit 

LLECC_3M 113 450 Virtex5 3X163bit 

HPECC_1M 352 1119 Virtex7 163bit 

LLECC_3M 159 450 Virtex7 3X163bit 

HPECC_1M 111 3783 Virtex7 571bit 
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