Total Graph of Z_{n} and It's Adjacency Matrix

Pinku Sarkar ${ }^{1}$, Kuntala Patra ${ }^{2}$
${ }^{1,2}$ Department of Mathematics, Gauhati University, Guwahati, 781014, Assam, India
${ }^{1}$ E-mail: pinkusarkar9822[at]gmail.com
${ }^{2}$ E-mail:kpatra[at]gauhati.ac.in

Abstract

Let G be a simple undirected graph. For a commutative ring $R, Z(R) b e$ the set of zero divisors of R. Total graph of R is denoted by $T(\mathbb{T}(R)$), all elements of R are taken as vertices of the graph.Two distinct vertices a,b are adjacent if and only if $a+b \in$ $Z(R)$. Here we study total graph $T(\mathbb{T}(\mathbb{R}))$ for $R=Z_{n}$. Also discuss degree, planarity, Eulerian property for different n. We also study adjacency matrix of the graph.

Keyword: Total Graph, Planarity, Adjacency matrix

1. Introduction

In [1] D.F. Anderson and A. Badawi introduced the total graph of a commutative ring R. All elements of R considered as vertices of the graph, two distinct vertices connected by a line if and only if $a+b \in Z(R)$, Where $Z(R)$ is set of all zero divisors of the ring R. In this paper we consider the ring $R=Z_{n}$ where, Z_{n} is ring of integer modulo n.T.T. Chelvam and T.Asir [3] worked on total graph of Z_{n}, they discuss connectedness of the graph and discuss planarity for some values of n. In this paper we discuss about degree for different values of n and also their planarity.

The adjacency matrix of a graph G is denoted by $A(G)$, whose (i, j)- entry $A_{i j}$ is given by
$A_{i j}=\{1$
if vertices i, j are adjacent

Adjacency matrix $\mathrm{A}(\mathrm{G})$ is a symmetric matrix of order $n \times n$. Here we find adjacency matrix of $\mathrm{T}(\mathbb{\Gamma}(R))$, where, $R=Z_{p}, R=\mathrm{T}\left(\mathbb{\Gamma}\left(Z_{p^{2}}\right)\right)$ and $R=\mathrm{T}\left(\mathbb{\Gamma}\left(Z_{2^{k}}{ }^{2}\right)\right)$ for any prime p and $k \in \mathbb{N}$. Using eigen values of adjacency matrix we can introduce different properties of graph.

2. Main Results

2.1 Degree, Planarity, Eulerian property of $T\left(\mathbb{T}\left(Z_{p}\right)\right)$, $T\left(\mathbb{C}\left(\boldsymbol{Z}_{\boldsymbol{p}^{2}}\right)\right)$ and $\mathbf{T}\left(\mathbb{\Gamma}\left(\boldsymbol{Z}_{n}\right)\right)$ for $n=\mathbf{2}^{\boldsymbol{n}} \boldsymbol{p}$.

Theorem 2.1: In $\mathrm{T}\left(\mathbb{T}\left(Z_{p}\right)\right)$ degree of any unit vertex is 1 and only zero-divisor $\overline{0}$ is isolated vertex.

Proof: In $T\left(\mathbb{T}\left(Z_{p}\right)\right)$ unit vertices are all non-zero elements Z_{p} and only $\overline{0}$ is zero divisor of Z_{p}. For any unit element \bar{a},
$\bar{a}+(\bar{p}-\bar{a})=\overline{0}$; So, \bar{a} is adjacent only with $(\bar{p}-\bar{a})$. Therefore, degree of any unit element is 1 .
Let if possible $\overline{0}$ is adjacent with \bar{b}
Then, $\overline{0}+\bar{b}=\overline{0}$ (Only zero-divisor in Z_{p})
$\Rightarrow \bar{b}=\overline{0}$
But the graph is simple. Therefore, $\overline{0}$ is not adjacent with any vertex of the graph.
Hence, $\overline{0}$ is isolated vertex.

Theorem 2.2: In $T\left(\mathbb{T}\left(Z_{p^{2}}\right)\right)$ degree of any unit vertex is p.
Proof: In $T\left(\mathbb{\Gamma}\left(Z_{p^{2}}\right)\right)$ unit vertices are unit elements of $Z_{p^{2}}$. Let \bar{u} be any unit element of $Z_{p^{2}}$. In $Z_{p^{2}}$ zero divisors are $\overline{0}$, $\bar{p}, \overline{2 p}, \overline{3 p}, \cdots \overline{p(p-1)}$. There are p number of zero divisor. If $\bar{u} \sim \bar{a}$ then $\bar{u}+\bar{a}=\overline{p k}$ (zero divisor) where $k \in \mathbb{N}$.
So, $\bar{a}=\overline{p k}-\bar{u}$
Since, there are p number of $\overline{p k}$ in $Z_{p^{2}}$
Therefore, there are p number of $\overline{p k}-\bar{u}$ in $Z_{p^{2}}$.
Hence, degree of any unit vertex is p.
Theorem 2.3: In $T\left(\mathbb{T}\left(Z_{p^{2}}\right)\right)$ degree of any zero divisor is $p-1$.

Proof: In $\mathrm{T}\left(\mathbb{\Gamma}\left(Z_{p^{2}}\right)\right)$ every element of $Z_{p^{2}}$ are taken as
 There are p number of zero divisor. Let \bar{z} be any zero divisor of $Z_{p^{2}}$.
$\bar{z} . \bar{a} \equiv \overline{0}\left(\bmod p^{2}\right)$ if \bar{a} is multiple of p
So, \bar{a} is of the form $\overline{p k}$ which is zero divisor.
Therefore, any two distinct (graph is simple) zero divisors are adjacent.
There are p number of zero divisor.
Hence degree of any zero divisor is $p-1$.
Theorem 2.4: The graph $T\left(\mathbb{T}\left(Z_{p^{2}}\right)\right)$ is planar if and only if $p<5$.

Proof: In $\mathrm{T}\left(\mathbb{\Gamma}\left(Z_{p^{2}}\right)\right)$ every element of $Z_{p^{2}}$ are taken as vertices.In $Z_{p^{2}}$ zero divisors are $\overline{0}, \bar{p}, \overline{2 p}, \overline{3 p}, \cdots \overline{p(p-1)}$. There are p number of zero divisor. Any two distinct zero divisors are adjacent. So, zero divisors of $Z_{p^{2}}$ form a complete graph. If $p=5$ there will be five zero-divisors and they form a complete graph K_{5} which is not planar. For $p>5$, in the graph $\mathrm{T}\left(\mathbb{\Gamma}\left(Z_{p^{2}}\right)\right)$ always a subgraph K_{5}. We know that a graph is planar if the graph has a subgraph which is homeomorphic to K_{5} or $K_{3,3}$. Therefore, the graph $\mathrm{T}\left(\mathbb{\Gamma}\left(Z_{p^{2}}\right)\right)$ is not planar for $p \geq 5$.

Theorem 2.5: The graph $\mathrm{T}\left(\mathbb{\Gamma}\left(Z_{p^{2}}\right)\right)$ is not Eulerian for any prime p.

Proof: For any odd prime p degree of unit vertex in the graph $\mathrm{T}\left(\mathbb{\Gamma}\left(Z_{p^{2}}\right)\right)$ is p which odd. Therefore, the graph is not Eulerian. Degree of zero divisor is $p-1$ which is odd for $p=2$. Hence the graph is not Eulerian.

Theorem 2.6: If $n=2^{n} p$, then degree of any element of the graph $\mathrm{T}\left(\mathbb{\Gamma}\left(Z_{n}\right)\right)$ is $|Z(R)|-1$.

Proof: In this graph zero divisors are multiples of 2 and multiples of p . let a be any vertex of the graph. For vertex a there are $a+b \in Z(R)$, if there are $|Z(R)|$ number of b such that $\bar{a}+\bar{b} \in Z(R)$. Also, $\bar{a}+\bar{a}$ is multiple of 2 which is zero divisor, therefore number of vertex adjacent with \bar{a} is $|Z(R)|-1$. Since \bar{a} is an arbitrary Hence, degree of any element of the graph $\mathrm{T}\left(\mathbb{\Gamma}\left(Z_{n}\right)\right)$ is $|Z(R)|-1$.

Corollary: If $n=2^{n} p$, the graph $\mathrm{T}\left(\mathbb{\Gamma}\left(\boldsymbol{Z}_{\boldsymbol{n}}\right)\right)$ is r regular; where, $r=|Z(R)|-1$

2.2 Adjacency matrix of $T\left(\mathbb{T}\left(Z_{p}\right)\right)$ andT $\left(\mathbb{}\left(\boldsymbol{Z}_{\boldsymbol{p}^{2}}\right)\right)$

Theorem 3.1: Adjacency matrix of the graph $G=$ $\mathrm{T}\left(\mathbb{\Gamma}\left(Z_{p}\right)\right)$ is $A(G)$, whose (i, j) - entry is

$$
A_{i j}=\left\{\begin{array}{c}
1 \quad \text { if } v_{i}=\bar{a} \text { and } v_{j}=\bar{p}-\bar{a} \\
\text { or } \\
v_{i}=\bar{p}-\bar{a} \bar{a} \text { and } v_{j}=\bar{a} \\
0 \quad \text { otherwise }
\end{array}\right.
$$

Proof: In the graph $\mathrm{T}\left(\mathbb{\Gamma}\left(Z_{p}\right)\right.$)zero vertex is isolated. And any non-zero vertex \bar{a} is adjacent only with $\bar{p}-\bar{a}$.

Because, $\bar{a}+(\bar{p}-\bar{a})=\overline{0}$ which is zero-divisor. Then by definition of adjacency matrix

$$
A_{i j}=\left\{\begin{array}{c}
1 \quad \text { if } v_{i}=\bar{a} \text { and } v_{j}=\bar{p}-\bar{a} \\
v_{i}=\bar{p}-\bar{a} \bar{a} \text { and } v_{j}=\bar{a} \\
0 \quad \text { otherwise }
\end{array}\right.
$$

Theorem 3.2: Adjacency matrix of the graph $G=$ $\mathrm{T}\left(\mathbb{T}\left(Z_{p^{2}}\right)\right)$ is $A(G)$, whose (i, j) - entry is

$$
A_{i j}=\left\{\begin{array}{c}
1 \quad \text { if } v_{i}=\bar{a} \text { and } v_{j}=\overline{p^{2}}-\bar{a} \\
\text { or } \\
v_{i}=\overline{p^{2}}-\bar{a} \text { and } v_{j}=\bar{a} \\
\text { or } \\
v_{i}=\bar{a} \text { and } v_{j}=\overline{p k}-\bar{a} \\
v_{i}=\overline{p k}-\bar{a} \text { and } v_{j}=\bar{a} \\
\text { or } \\
v_{i} \text { and } v_{j} \text { both multiple of } p \\
0
\end{array}\right.
$$

Where, p is any prime and $k \in \mathbb{N}$
Proof: In the graph $\mathrm{T}\left(\mathbb{\Gamma}\left(Z_{p}\right)\right)$ zero divisors are multiple of p. Set of zero-divisors form a complete graph. So, by definition of adjacency matrix, if v_{i} and v_{j} are zero divisors (i.e multiple of p) then (i, j) - entry is 1 . For any unit element \bar{a},

$$
\bar{a}+\overline{p^{2}}-\bar{a} \equiv \overline{0}\left(\bmod p^{2}\right)
$$

$$
\therefore \bar{a} \sim\left(\overline{p^{2}}-\bar{a}\right)
$$

And $\bar{a}+(\overline{p k}-\bar{a})=\overline{p k}$ is zero divisor
So, $\bar{a} \sim(\overline{p k}-\bar{a})$
Therefore, by definition of adjacency matrix $A(G)$, whose (i, j) - entry is

$$
A_{i j}=\left\{\begin{array}{c}
1 \\
\begin{array}{c}
\text { if } v_{i}=\bar{a} \text { and } v_{j}=\overline{p^{2}}-\bar{a} \\
\\
\\
v_{i}=\overline{p^{2}}-\bar{a} \text { and } v_{j}=\bar{a} \\
\text { or } \\
v_{i}=\bar{a} \text { and } v_{j}=\overline{p k}-\bar{a} \\
\text { or } \\
v_{i}=\overline{p k}-\bar{a} \text { and } v_{j}=\bar{a} \\
\text { or }
\end{array} \\
\text { v. and v. hoth multinle of } n
\end{array}\right.
$$

v_{i} and v_{j} both multiple of p

Where, p is any prime and $k \in \mathbb{N}$.
Theorem 3.3: Adjacency matrix of the graph $G=\mathrm{T}\left(\mathbb{\Gamma}\left(Z_{n}\right)\right)$ for $n=2^{k} p$ is $A(G)$, whose ($\left.i, j\right)$ - entry is

$$
\left\{\begin{array}{c}
1 \begin{array}{c}
A_{i j}= \\
\text { if } v_{i} \text { is unit element and } v_{j} \text { is any odd element }\left(v_{i} \neq v_{j}\right) \\
\text { or } \\
\text { if } v_{i}+v_{j} \text { is multiple of } p \text { where, } v_{i} \text { is unit } \\
\text { or } \\
\text { if } v_{i} \text { is an odd zero divisor and } v_{j} \text { is any odd element } \\
\text { or } \\
\text { if } v_{i} \text { is an odd zero divisor and } v_{i}+v_{j} \text { is multiple of } p \\
\text { or } \\
\text { if } v_{i} \text { is an even zero divisor and } v_{j} \text { is any even element } \\
\text { or } \\
\text { if } v_{i} \text { is an even and } v_{i}+v_{j} \text { is multiple of } p \\
\end{array} \begin{array}{c}
\text { otherwise }
\end{array}
\end{array}\right.
$$

Where p is prime and $k \in \mathbb{N}$.

Proof: In the graph $\mathrm{T}\left(\mathbb{\Gamma}\left(Z_{2}{ }^{k}\right)\right)$ every even element and multiple of p are zero divisor of $Z_{2^{k} p}$. Sum of two unit element is even because, unit elements are prime to $n=$ $2^{k} p$. Where, $n=2^{k} p$ is even. So, units are odd. Sum of two unit element is even which is zero divisor.

For any unit element v_{i} which is adjacent with any odd element because sum of v_{i} and any odd element is even. Also, for any unit element v_{i}, if sum of v_{i} and v_{j} is multiple of p, which is zero divisor then $v_{i} \sim v_{j}$.

If v_{i} is any odd zero divisor, then sum of v_{i} and any odd element is even, which is zero divisor. Therefore, $v_{i} \sim v_{j}$ if v_{i} is any odd zero divisor and v_{j} is any odd element of $Z_{2^{k} p}$.

If v_{i} is any even zero divisor, then sum of v_{i} and any even element is even, which is zero divisor. Therefore, $v_{i} \sim v_{j}$ if v_{i} is any even zero divisor and v_{j} is any even element of $Z_{2^{k} p}$.

For an even vertex v_{i} if $v_{i}+v_{j}$ is multiple of p then $v_{i}+v_{j}$ will be zero divisor. Therefore, $v_{i} \sim v_{j}$ if $v_{i}+v_{j}$ is multiple of p. Hence by definition of adjacency matrix

$$
A_{i j}=\left\{\begin{array}{c}
\begin{array}{c}
1 \\
\text { if } v_{i} \text { is unit element and } v_{j} \text { is any odd element }\left(v_{i} \neq v_{j}\right) \\
\text { or } \\
\text { if } v_{i}+v_{j} \text { is multiple of } p \text { where, } v_{i} \text { is unit } \\
\text { or } \\
\text { if } v_{i} \text { is an odd zero divisor and } v_{j} \text { is any odd element } \\
\text { or } \\
\text { if } v_{i} \text { is an odd zero divisor and } v_{i}+v_{j} \text { is multiple of } p \\
\text { or } p \\
\text { if } v_{i} \text { is an even zero divisor and } v_{j} \text { is any even element } \\
\text { or } \\
\text { if } v_{i} \text { is an even and } v_{i}+v_{j} \text { is multiple of } p
\end{array} \\
\text { otherwise }
\end{array}\right.
$$

Where p is prime and $k \in \mathbb{N}$.

References

[1] David F. Anderson, Ayman Badawi, The total graph of a commutative ring, Journal of Algebra 320 (2008), 2706-2719.
[2] David F. Anderson, P. S. Livingston, The zero-divisor graph of a commutative ring, Journal of Algebra, 217 (1999), 434-447
[3] T. Asir, T.T Chelvam, A note on total graph of \mathbb{Z}_{n}, Journal of discrete mathematical sciences and cryptography 14(2010), 1-7
[4] David S. Dummit, Richard M. Foote, Abstract Algebra, Second Edition, Wiley Student Edition (2008).
[5] B. Bollaboás, Graph Theory, An Introductory Course, Springer-Verlag, New York, 1979
[6] Irving Kaplansky, Commutative Rings, rev. ed., University of Chicago Press, Chicago (1974).
[7] Gary Chartrand, Ping Zhang, Introduction to Graph Theory, Tata McGraw-Hill Edition (2006).

