Total Graph of Z_n and It's Adjacency Matrix

Pinku Sarkar¹, Kuntala Patra²

^{1, 2}Department of Mathematics, Gauhati University, Guwahati, 781014, Assam, India ¹E-mail: *pinkusarkar9822[at]gmail.com* ²E-mail:*kpatra[at]gauhati.ac.in*

Abstract: Let G be a simple undirected graph. For a commutative ring R, Z(R) be the set of zero divisors of R. Total graph of R is denoted by $T(\mathbb{T}(R))$, all elements of R are taken as vertices of the graph. Two distinct vertices a, b are adjacent if and only if $a + b \in Z(R)$. Here we study total graph $T(\mathbb{T}(R))$ for $R = Z_n$. Also discuss degree, planarity, Eulerian property for different n. We also study adjacency matrix of the graph.

Keyword: Total Graph, Planarity, Adjacency matrix

1. Introduction

In [1] D.F. Anderson and A. Badawi introduced the total graph of a commutative ring R. All elements of R considered as vertices of the graph, two distinct vertices connected by a line if and only if $a + b \in Z(R)$, Where Z(R) is set of all zero divisors of the ring R. In this paper we consider the ring $R = Z_n$ where, Z_n is ring of integer modulo n.T.T. Chelvam and T.Asir [3] worked on total graph of Z_n , they discuss connectedness of the graph and discuss planarity for some values of n. In this paper we discuss about degree for different values of n and also their planarity.

The adjacency matrix of a graph G is denoted by A(G), whose (i, j)- entry A_{ij} is given by

 $A_{ij} = \begin{cases} 1 & if vertices i, j are adjacent \\ 0 & 0 \end{cases}$

Adjacency matrix A(G) is a symmetric matrix of order $n \times n$. Here we find adjacency matrix of T($\mathbb{T}(R)$), where, $R = Z_p$, $R = T(\mathbb{T}(Z_{p^2}))$ and $R = T(\mathbb{T}(Z_{2^k p}))$ for any prime p and $k \in \mathbb{N}$. Using eigen values of adjacency matrix we can introduce different properties of graph.

2. Main Results

2.1 Degree, Planarity, Eulerian property of $T(\mathbb{T}(Z_p))$, $T(\mathbb{T}(Z_{p^2}))$ and $T(\mathbb{T}(Z_n))$ for $n = 2^n p$.

Theorem 2.1: In $T(\mathbb{T}(Z_p))$ degree of any unit vertex is 1 and only zero-divisor $\overline{0}$ is isolated vertex.

Proof: In $T(\mathbb{T}(Z_p))$ unit vertices are all non-zero elements Z_p and only $\overline{0}$ is zero divisor of Z_p . For any unit element \overline{a} , $\overline{a} + (\overline{p} - \overline{a}) = \overline{0}$; So, \overline{a} is adjacent only with $(\overline{p} - \overline{a})$. Therefore, degree of any unit element is 1.

Let if possible $\overline{0}$ is adjacent with \overline{b}

Then, $\overline{0} + \overline{b} = \overline{0}$ (Only zero-divisor in Z_p) $\Rightarrow \overline{b} = \overline{0}$

But the graph is simple. Therefore, $\overline{0}$ is not adjacent with any vertex of the graph. Hence, $\overline{0}$ is isolated vertex. **Theorem 2.2:** In $T(\mathbb{T}(\mathbb{Z}_{p^2}))$ degree of any unit vertex is p.

Proof: In T($\mathbb{T}(Z_{p^2})$) unit vertices are unit elements of Z_{p^2} . Let \overline{u} be any unit element of Z_{p^2} . In Z_{p^2} zero divisors are $\overline{0}$, $\overline{p}, \overline{2p}, \overline{3p}, \cdots \overline{p(p-1)}$. There are p number of zero divisor. If $\overline{u} \sim \overline{a}$ then $\overline{u} + \overline{a} = \overline{pk}$ (zero divisor) where $k \in \mathbb{N}$. So, $\overline{a} = \overline{pk} - \overline{u}$

Since, there are p number of \overline{pk} in Z_{p^2} Therefore, there are p number of $\overline{pk} - \overline{u}$ in Z_{p^2} .

Hence, degree of any unit vertex is p.

Theorem 2.3: In $T(\mathbb{T}(\mathbb{Z}_{p^2}))$ degree of any zero divisor is p-1.

Proof: In $T(\Gamma(Z_{p^2}))$ every element of Z_{p^2} are taken as vertices. In Z_{p^2} zero divisors are $\overline{0}$, \overline{p} , $\overline{2p}, \overline{3p}, \cdots, \overline{p(p-1)}$. There are p number of zero divisor. Let \overline{z} be any zero divisor of Z_{p^2} .

 $\bar{z}.\bar{a} \equiv \bar{0} \pmod{p^2}$ if \bar{a} is multiple of p

So, \bar{a} is of the form *pk* which is zero divisor.

Therefore, any two distinct (graph is simple) zero divisors are adjacent.

There are *p* number of zero divisor.

Hence degree of any zero divisor is p - 1.

Theorem 2.4: The graph $T(\mathbb{T}(Z_{p^2}))$ is planar if and only if p < 5.

Proof: In $T(\mathbb{T}(Z_{p^2}))$ every element of Z_{p^2} are taken as vertices. In Z_{p^2} zero divisors are $\overline{0}$, \overline{p} , $\overline{2p}, \overline{3p}, \cdots, \overline{p(p-1)}$. There are p number of zero divisor. Any two distinct zero divisors are adjacent. So, zero divisors of Z_{p^2} form a complete graph. If p = 5 there will be five zero-divisors and they form a complete graph K_5 which is not planar. For p > 5, in the graph $T(\mathbb{T}(Z_{p^2}))$ always a subgraph K_5 . We know that a graph is planar if the graph has a subgraph which is homeomorphic to K_5 or $K_{3,3}$. Therefore, the graph $T(\mathbb{T}(Z_{p^2}))$ is not planar for $p \ge 5$.

Theorem 2.5: The graph $T(\mathbb{T}(Z_{p^2}))$ is not Eulerian for any prime p.

Volume 11 Issue 4, April 2022

<u>www.ijsr.net</u>

Licensed Under Creative Commons Attribution CC BY

DOI: 10.21275/SR22421133351

Proof: For any odd prime p degree of unit vertex in the graph $T(\mathbb{T}(Z_{p^2}))$ is p which odd. Therefore, the graph is not Eulerian. Degree of zero divisor is p - 1 which is odd for p = 2. Hence the graph is not Eulerian.

Theorem 2.6: If $n = 2^n p$, then degree of any element of the graph $T(\mathbb{T}(Z_n))$ is |Z(R)| - 1.

Proof: In this graph zero divisors are multiples of 2 and multiples of p. let a be any vertex of the graph. For vertex a there are $a + b \in Z(R)$, if there are |Z(R)| number of bsuch that $\overline{a} + \overline{b} \in Z(R)$. Also, $\overline{a} + \overline{a}$ is multiple of 2 which is zero divisor, therefore number of vertex adjacent with \overline{a} is |Z(R)| - 1. Since \overline{a} is an arbitrary Hence, degree of any element of the graph $T(\Gamma(Z_n))$ is |Z(R)| - 1.

Corollary: If $n = 2^n p$, the graph $T(\mathbb{T}(\mathbb{Z}_n))$ is r regular; where, r = |Z(R)| - 1

2.2 Adjacency matrix of $T(\mathbb{F}(Z_p))$ and $T(\mathbb{F}(Z_{p^2}))$

Theorem 3.1: Adjacency matrix of the graph $G = T(\mathbb{T}(Z_p))$ is A(G), whose (i, j)- entry is

$$A_{ij} = \begin{cases} 1 & if \ v_i = \bar{a} \ and \ v_j = \bar{p} - \bar{a} \\ or \\ v_i = \bar{p} - \bar{a}\bar{a} \ and \ v_j = \bar{a} \\ 0 & otherwise \end{cases}$$

Proof: In the graph $T(\mathbb{T}(Z_p))$ zero vertex is isolated. And any non-zero vertex \bar{a} is adjacent only with $\bar{p} - \bar{a}$.

Because, $\bar{a} + (\bar{p} - \bar{a}) = \bar{0}$ which is zero-divisor. Then by definition of adjacency matrix

$$A_{ij} = \begin{cases} 1 & if \ v_i = \bar{a} \ and \ v_j = \bar{p} - \bar{a} \\ or \\ v_i = \bar{p} - \bar{a}\bar{a} \ and \ v_j = \bar{a} \\ 0 & otherwise \end{cases}$$

Theorem 3.2: Adjacency matrix of the graph $G = T(\mathbb{T}(\mathbb{Z}_{p^2}))$ is A(G), whose (i, j)- entry is

$$_{ij} = \begin{cases} 1 & if \ v_i = \bar{a} \ and \ v_j = \overline{p^2} - \bar{a} \\ & or \\ v_i = \overline{p^2} - \bar{a} \ and \ v_j = \bar{a} \\ & or \\ v_i = \bar{a} \ and \ v_j = \overline{pk} - \bar{a} \\ & or \\ v_i = \overline{pk} - \bar{a} \ and \ v_j = \bar{a} \\ & or \\ v_i \ and \ v_j \ both \ multiple \ of \ p \\ & otherwise \end{cases}$$

Where, *p* is any prime and $k \in \mathbb{N}$

A

Proof: In the graph $T(\mathbb{T}(Z_p))$ zero divisors are multiple of p. Set of zero-divisors form a complete graph. So, by definition of adjacency matrix, if v_i and v_j are zero divisors (i.e multiple of p) then (i, j)- entry is 1. For any unit element \overline{a} ,

$$\bar{a} + p^2 - \bar{a} \equiv \bar{0} \pmod{p^2}$$
$$\therefore \bar{a} \sim (\overline{p^2} - \bar{a})$$
$$(\overline{pk} - \bar{a}) = \overline{pk} \text{ is zero divisor}$$

So, $\bar{a} \sim \left(\frac{a}{pk} - \bar{a}\right)^{2}$

And \bar{a} +

Therefore, by definition of adjacency matrix A(G), whose (i, j)- entry is

$$A_{ij} = \begin{cases} 1 & \text{if } v_i = \bar{a} \text{ and } v_j = p^2 - \bar{a} \\ & \text{or} \\ v_i = \overline{p^2} - \bar{a} \text{ and } v_j = \bar{a} \\ & \text{or} \\ v_i = \bar{a} \text{ and } v_j = \overline{pk} - \bar{a} \\ & \text{or} \\ v_i = \overline{pk} - \bar{a} \text{ and } v_j = \bar{a} \\ & \text{or} \\ v_i \text{ and } v_j \text{ both multiple of } p \\ 0 & \text{otherwise} \end{cases}$$

Where, p is any prime and $k \in \mathbb{N}$.

Theorem 3.3: Adjacency matrix of the graph $G = T(\mathbb{T}(Z_n))$ for $n = 2^k p$ is A(G), whose (i, j)- entry is

$$A_{ij} = \\ \left(\begin{array}{ccc} 1 & \quad if \ v_i is \ unit \ element \ and \ v_j \ is \ any \ odd \ element \ (v_i \neq v_j) \\ or \\ if \ v_i + v_j \ is \ multiple \ of \ p \ where, v_i \ is \ unit \\ or \\ if \ v_i \ is \ an \ odd \ zero \ divisor \ and \ v_j is \ any \ odd \ element \\ or \\ if \ v_i \ is \ an \ odd \ zero \ divisor \ and \ v_i + v_j \ is \ multiple \ of \ p \\ or \\ if \ v_i \ is \ an \ even \ zero \ divisor \ and \ v_j is \ any \ even \ element \\ or \\ if \ v_i \ is \ an \ even \ zero \ divisor \ and \ v_j is \ any \ even \ element \\ or \\ if \ v_i \ is \ an \ even \ and \ v_i + v_j \ is \ multiple \ of \ p \\ or \\ or \\ if \ v_i \ is \ an \ even \ and \ v_i + v_j \ is \ multiple \ of \ p \\ otherwise \end{array}$$

Where p is prime and $k \in \mathbb{N}$.

Proof: In the graph $T(\mathbb{T}(Z_{2^{k_p}}))$ every even element and multiple of p are zero divisor of $Z_{2^{k_p}}$. Sum of two unit element is even because, unit elements are prime to $n = 2^{k_p}$. Where, $n = 2^{k_p}$ is even. So, units are odd. Sum of two unit element is even which is zero divisor.

For any unit element v_i which is adjacent with any odd element because sum of v_i and any odd element is even. Also, for any unit element v_i , if sum of v_i and v_j is multiple of p, which is zero divisor then $v_i \sim v_i$.

Volume 11 Issue 4, April 2022

<u>www.ijsr.net</u>

Licensed Under Creative Commons Attribution CC BY

If v_i is any odd zero divisor, then sum of v_i and any odd element is even, which is zero divisor. Therefore, $v_i \sim v_j$ if v_i is any odd zero divisor and v_j is any odd element of $Z_{2^k p}$.

If v_i is any even zero divisor, then sum of v_i and any even element is even, which is zero divisor. Therefore, $v_i \sim v_j$ if v_i is any even zero divisor and v_j is any even element of Z_{2k_n} .

For an even vertex v_i if $v_i + v_j$ is multiple of *p*then $v_i + v_j$ will be zero divisor. Therefore, $v_i \sim v_j$ if $v_i + v_j$ is multiple of *p*. Hence by definition of adjacency matrix

 $A_{ij} = \begin{cases} 1 & if \ v_i is \ unit \ element \ and \ v_j \ is \ any \ odd \ element \ (v_i \neq v_j) \\ or \\ if \ v_i \ is \ unit \ element \ and \ v_j \ is \ any \ odd \ element \ (v_i \neq v_j) \\ or \\ if \ v_i \ v_j \ is \ unit \ place{0} \\ if \ v_i \ is \ an \ odd \ zero \ divisor \ and \ v_j \ is \ any \ odd \ element \\ or \\ or \\ if \ v_i \ is \ an \ even \ zero \ divisor \ and \ v_j \ is \ any \ even \ element \\ or \\ if \ v_i \ is \ an \ even \ and \ v_i + v_j \ is \ multiple \ of \ p \\ or \\ or \\ if \ v_i \ is \ an \ even \ and \ v_i + v_j \ is \ multiple \ of \ p \\ or \\ or \\ if \ v_i \ is \ an \ even \ and \ v_i + v_j \ is \ multiple \ of \ p \\ or \\ or \\ even \ and \ v_i + v_j \ is \ multiple \ of \ p \\ otherwise \end{cases}$

Where *p* is prime and $k \in \mathbb{N}$.

References

- [1] David F. Anderson, Ayman Badawi, The total graph of a commutative ring, Journal of Algebra 320 (2008), 2706–2719.
- [2] David F. Anderson, P. S. Livingston, The zero-divisor graph of a commutative ring, Journal of Algebra, 217 (1999), 434–447
- [3] T. Asir, T.T Chelvam, A note on total graph of \mathbb{Z}_n , Journal of discrete mathematical sciences and cryptography 14(2010), 1-7
- [4] David S. Dummit, Richard M. Foote, Abstract Algebra, Second Edition, Wiley Student Edition (2008).
- [5] B. Bollaboás, Graph Theory, An Introductory Course, Springer-Verlag, New York, 1979
- [6] Irving Kaplansky, Commutative Rings, rev. ed., University of Chicago Press, Chicago (1974).
- [7] Gary Chartrand, Ping Zhang, Introduction to Graph Theory, Tata McGraw-Hill Edition (2006).