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Abstract

This paper introduces a linear optimization problem subject to max-Archimedean interval-valued fuzzy
relation equations. According to the literature, three types of solution sets, namely; tolerable solution
set, united solution set and controllable solution set can be identified with interval-valued fuzzy relation
equations. Since the tolerable solutions are very useful in fuzzy control problems, thus optimization
with such type of fuzzy relation equations is an important topic of research. The structure and the
properties of the tolerable solution set are studied. The tolerable solution set can be characterized by one
maximum solution and finitely many minimal solutions. Generally, determining all minimal solutions is
a computationally difficult task, thus an efficient algorithm based on the rules of reduction is proposed
which directly computes the tolerable optimal solution of the problem without finding the set of all
minimal solutions. The concept of reduction is efficient for large size problems in terms of computation.
The proposed method is illustrated with some examples.

Keywords: Interval-valued fuzzy relation equations, Archimedean t-norm, Linear optimization problem.

1 Introduction

The system of fuzzy relation equations (FRE) was first investigated by Sanchez [13], considering max-min
composition. Since the system of FRE is useful in modelling many systems such as medical diagnosis, image
processing, neural networks etc., therefore it is intensively studied by many researchers taking different type
of compositions. A general representation of the system of FRE with sup–⊗ is:

x ◦A = b (1)

where A = [aij ], 0 ≤ aij ≤ 1 is an m× n dimensional matrix, b = [bj ], 0 ≤ bj ≤ 1, is an n–dimensional vector
and ◦ denotes the sup–⊗ composition of x and A, ⊗ being a continuous t-norm. The resolution problem of
FRE (1) is to determine an m–dimensional vector x = [xi], 0 ≤ xi ≤ 1, such that (1) holds.

The general method for solving max-min FRE is given by Higashi and Klir [4]. Di Nola et al. [1] worked on
the system of FRE with sup–⊗ and proved that the solution set can be completely described by a unique
maximum solution and finitely many minimal solutions. The system of FRE with max-product composition
is studied by Markovskii [11]. It was shown that solving such type of system is closely related with the
covering problem, which is an NP -hard problem. Lin [6] considered the generalization of this problem by
taking sup–t FRE, t being any Archimedean t-norm and established a one to one correspondence between
the minimal solutions and the irredundant coverings.

Fang and Li [2] first introduced a linear optimization problem subject to the system of FRE with max-
min composition. They studied the nature of solution set, converted the system to an equivalent 0-1 integer
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programming problem and solved it using branch and bound technique. Loetamonphong and Fang [8] studied
a linear optimization problem with max-product FRE. They derived special characteristics of the feasible
domain, optimal solutions and proposed some methods to reduce the original problem. More work in this
regard can be found in [12, 18]. Thapar et al. [14] considered a linear objective function subject to max–t
FRE as constraints, where t is an Archimedean t-norm. They converted the problem to an equivalent 0-1
integer programming problem using the concept of covering problem and proposed a binary coded genetic
algorithm to obtain the optimal solution.

A non-linear optimization problem subject to the system of max-min FRE was first considered by Lu and
Fang [10]. They designed a domain specific genetic algorithm by taking advantage of the structure of the
solution set of FRE. The individuals from the initial population were chosen from the feasible solution set
and were kept within the feasible region during the mutation and crossover operations. Lin et al. [7] applied
genetic algorithm for solving non-linear optimization model subject to max–t FRE as constraints.

Loetamonphong et al. [9] studied class of optimization problems with multiple objective functions subject
to max-min FRE. They proposed a genetic algorithm to find the Pareto optimal solutions. Guu et al. [3]
solved multi-objective linear functions subject to max-t FRE as constraint using two phase method to obtain
a better solution. Thapar et al. [15] discussed satisficing solutions for multiobjective optimization problems
with max-product FRE as constraints using genetic algorithm.

The study of interval-valued FRE has been an area of interest among many researchers. Being an extension
of constant valued FRE, where each element of the relational matrix belongs to the unit interval [0,1], the
interval-valued FRE are more flexible in terms of handling impreciseness and uncertainties. Each element
of interval-valued fuzzy relational matrix are sub-intervals in the unit interval [0,1]. This nature enhances
the flexibility of applications of interval-valued FRE in real life problems. The interval-valued FRE has
important application in fuzzy control and medical diagnosis. Wang and Chang [16] first gave the method
for resolving the composite interval-valued FRE. They explored the properties of interval-valued FRE with
max-min composition and proposed an algorithm to resolve it.

Li and Fang [5] analyzed the properties of the solution set of interval-valued max-min FRE and converted
the problem into system of fuzzy relational inequalities. They suggested more efficient method in terms of
computational work for finding the complete solution set. Wang et al. [17] discussed three types of solution
sets namely: tolerable solution sets, united solution set and controllable solution set for interval-valued max–t
FRE. They studied the properties of each solution set and gave relationship between them.

According to Wang et al. [17], the nonempty solution set of max–t interval-valued FRE, t being a contin-
uous t–norm, can be characterized by one maximum and finitely many minimal solutions. Being motivated
by the study of linear optimization problem with FRE, in this paper we are focusing on optimization of a
linear objective function subject to max– Archimedean interval-valued FRE. An efficient algorithm is pro-
posed to find the optimal solution of the problem without finding the set of all minimal solutions. In Section
2, basic concepts related to interval-valued FRE are recalled. In Section 3, a linear optimization problem
with max-Archimedean interval-valued FRE is introduced and some results are proved that characterise the
components of the optimal solution. Based on these results, some rules are proposed in Section 4 that deter-
mines each component of the optimal solution to optimize the objective function. The proposed method is
illustrated using some examples in Section 5.

2 Preliminary properties

Let I = {1, 2, . . . ,m} and J = {1, 2, . . . , n} be the index sets, A− = [a−ij ] and A+ = [a+ij ] with 0 ≤ a−ij ≤ a+ij ≤
1, are m×n dimensional matrices; b− = [b−j ] and b+ = [b+j ] with 0 ≤ b−j ≤ b+j ≤ 1, are n–dimensional vectors.

Consider an m × n interval-valued matrix AI = [[a−ij , a
+
ij ]], formed by A− and A+ and an n–dimensional

interval-valued vector bI = [[b−j , b
+
j ]], formed by b− and b+, then

x ◦AI = bI (2)

represents an interval-valued FRE, where ◦ denotes the max–⊗ composition of x and AI , ⊗ being an
Archimedean t–norm. A continuous t–norm that is subidempotent, i.e. a ⊗ a < a;∀a ∈ [0, 1], is called
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an Archimedean t–norm. In [17], three types of solution sets for (2) are discussed, one of them is the toler-
able solution set. Let X(AI , bI) denotes the set of tolerable solutions of (2), then determining X(AI , bI) for
interval-valued FRE (2), means to find the set of all vectors x = [xi], 0 ≤ xi ≤ 1,∀i ∈ I, such that

b−j ≤ max
i∈I

(xi ⊗ aij) ≤ b+j ,∀aij ∈ [a−ij , a
+
ij ],∀j ∈ J

Moreover, if we denote X = {x = [xi]i∈I |0 ≤ xi ≤ 1}, AI
M = {A|A− ≤ A ≤ A+} and bIM = {b|b− ≤ b ≤ b+},

then the tolerable solution set can be defined as X(AI , bI) = {x ∈ X| for each A ∈ AI
M , there exists b ∈ bIM

such that x ◦A = b}. If X(AI , bI) 6= ∅, then it is said to be consistent and it contains one maximum solution
and finitely many minimal solutions, otherwise it is said to be inconsistent.

Theorem 1 The problem of finding the tolerable solution set X(AI , bI) of the system of interval-valued FRE
x ◦ AI = bI is equivalent to the problem of finding all solutions of the following system of fuzzy relational
inequalities: {

x ◦A+ ≤ b+

x ◦A− ≥ b−
(3)

i.e. x is a solution of (2) iff x is a solution of (3).

Proof Refer [17], for the proof.

If AI and bI are given for (2), then according to [17], define

x̂ = [x̂i]i∈I = [min
j∈J

(a+ij →s b
+
j )]i∈I (4)

where →s denotes the fuzzy implication operator defined as a →s b = sup{x ∈ [0, 1]|x ⊗ a ≤ b}, given
a, b ∈ [0, 1].

Theorem 2 If X(AI , bI) 6= ∅ then x̂ defined by (4) is the maximum solution of X(AI , bI).

Proof Refer [17], for the proof.

Lemma 1 X(AI , bI) 6= ∅ if and only if x̂ ◦A− ≥ b−.

Proof Refer [17], for the proof.

Lemma 2 If x ∈ X(AI , bI), then for every equation j ∈ J , max
i∈I

(xi⊗ a+ij) ≤ b+j , and there exists i0 ∈ I such

that (xi0 ⊗ a−i0j) ≥ b−j .

Proof For a solution x ∈ X(AI , bI), since x ◦A+ ≤ b+, thus max
i∈I

(xi⊗ a+ij) ≤ b+j , ∀j ∈ J . Also x ◦A− ≥ b−

implies that max
i∈I

(xi⊗a−ij) ≥ b−j , for j ∈ J . Thus, for each j ∈ J , there exists i0 ∈ I such that (xi0⊗a−i0j) ≥ b−j .

Lemma 3 If for any equation j ∈ J , a+ij < b−j ,∀i ∈ I, then X(AI , bI) = ∅.

Proof If for any equation j ∈ J , a+ij < b−j ,∀i ∈ I, this implies a−ij < b−j ,∀i ∈ I. Thus, xi ⊗ a−ij ≤ 1⊗ a−ij =

a−ij < b−j ,∀i ∈ I, i.e. xi ⊗ a−ij < b−j ,∀i ∈ I, i.e. max
i∈I

(xi ⊗ a−ij) < b−j . Hence X(AI , bI) = ∅.

Definition 1 For x = [xi]i∈I ∈ X(AI , bI), xi is called a binding variable if xi ⊗ a−ij ≥ b−j holds for some

equation j ∈ J and a constraint j ∈ J is said to be a binding constraint if xi⊗ a−ij ≥ b−j holds for some i ∈ I.
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Let X(AI , bI) 6= ∅, then define Ij = {i ∈ I|x̂i ⊗ a−ij ≥ b−j },∀j ∈ J and Ji = {j ∈ J |x̂i ⊗ a−ij ≥ b−j },∀i ∈ I.

Ij denotes the set of binding variables for the jth equation and Ji denotes the set of binding constraints for
the ith variable. Thus for x = [xi]i∈I ∈ X(AI , bI), xi is a binding variable iff Ji 6= ∅.

Let →i denotes the fuzzy implication operator defined as a →i b = inf{x ∈ [0, 1]|x ⊗ a ≥ b}, given
a, b ∈ [0, 1] and a ≥ b. From Definition 1, for a binding variable xi, xi ⊗ a−ij ≥ b−j for some j ∈ J and for a

binding constraint xi⊗a−ij ≥ b−j for some i ∈ I. This implies that xi ≥ a−ij →i b
−
j ∀j ∈ Ji. By using property

of t-norms a ⊗ b ≤ min(a, b), we get xi ⊗ a−ij ≤ min(xi, a
−
ij), therefore a−ij ≥ b−j . Thus, a−ij →i b

−
j is clearly

defined.

Theorem 3 Let x = [xi]i∈I ∈ X(AI , bI). For any ith component of the solution,

(i) if Ji 6= ∅, then max
j∈Ji

(a−ij →i b
−
j ) ≤ xi ≤ x̂i,

(ii) if Ji = ∅, then 0 ≤ xi ≤ x̂i.

Proof (i) For x = [xi]i∈I ∈ X(AI , bI), if Ji 6= ∅, then xi is a binding variable. Thus xi⊗a−ij ≥ b−j ,∀j ∈ Ji,

i.e. xi ≥ a−ij →i b
−
j ,∀j ∈ Ji. Thus xi ≥ max

j∈Ji

(a−ij →i b
−
j ). Since x̂ = [x̂i]i∈I is the maximum solution of

(2), hence max
j∈Ji

(a−ij →i b
−
j ) ≤ xi ≤ x̂i.

(ii) For x = [xi]i∈I ∈ X(AI , bI), if Ji = ∅, then xi is a nonbinding variable. Thus xi ⊗ a−ij < b−j ,∀j ∈ J .
Since xi ∈ [0, 1] and x̂ = [x̂i]i∈I is the maximum solution, therefore 0 ≤ xi ≤ x̂i.

From Theorem 3, for x = [xi]i∈I ∈ X(AI , bI), if xi is a binding variable, then max
j∈Ji

(a−ij →i b
−
j ) serves as

the lower bound of xi and x̂i serves as the upper bound of xi. And if xi is a nonbinding variable, then 0
serves as the lower bound of xi and x̂i serves as the upper bound of xi.

For binding variable xi, we denote lower bound of xi as x̌i, i.e. x̌i = max
j∈Ji

(a−ij →i b
−
j ).

3 The Problem

According to Theorem 3, the value of each component xi, for x = [xi]i∈I ∈ X(AI , bI) either lies within x̌i and
x̂i, or lies within 0 and x̂i, i.e. x̌i ≤ xi ≤ x̂i or 0 ≤ xi ≤ x̂i and X(AI , bI) contains one maximum solution
and finitely many minimal solutions, thus optimization problem can be associated to it. We are interested
in solving the following optimization problem:

Min Z =
∑
i∈I

cixi (5)

s.t. b−j ≤ max
i∈I

(xi ⊗ aij) ≤ b+j ,∀aij ∈ [a−ij , a
+
ij ],∀j ∈ J (6)

0 ≤ xi ≤ 1,∀i ∈ I

where ci ∈ R is the cost associated with the variable xi and the other symbols have their usual meaning as
defined in Section 2.

Finding the optimal solution of the problem (5)–(6) is to find one or more tolerable solutions from
X(AI , bI) that minimize (5). Since the objective function is linear, thus any component x∗i of the optimal
solution x∗ = [x∗i ]i∈I ∈ X(AI , bI) will be equal to its lower bound or its upper bound. Our aim is to determine
each component of the optimal solution, so as to optimize the considered objective function. Each component
x∗i of the optimal solution x∗ = [x∗i ]i∈I ∈ X(AI , bI) can be found by considering the cost ci associated with
xi in the objective function as well as the nature of xi, i.e. whether it is a binding variable or a nonbinding
variable.
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Theorem 4 Let x∗ = [x∗i ]i∈I ∈ X(AI , bI) be the optimal solution of the problem (5)–(6). Then for k ∈ I,
the following holds:

(i) If ck < 0, then x∗k = x̂k,

(ii) If ck > 0, then x∗k = x̌k, if xk is a binding variable and x∗k = 0, if xk is a nonbinding variable.

(iii) If ck = 0, x∗k can take any value within its lower and upper bound.

Proof (i) For the optimal solution x∗ ∈ X(AI , bI), if ck < 0, k ∈ I, let x∗k 6= x̂k. Then
∑
i∈I

cix
∗
i =∑

i∈I,i6=k

cix
∗
i + ckx

∗
k >

∑
i∈I,i6=k

cix
∗
i + ckx̂k. It contradicts the fact that x∗ is the optimal solution. Hence,

x∗k = x̂k.

(ii) For the optimal solution x∗ ∈ X(AI , bI), if ck > 0, k ∈ I, let x∗k be a binding variable and x∗k 6= x̌k.
Then using Theorem 3, x̌k ≤ x∗k ≤ x̂k. Since ck > 0, therefore

∑
i∈I

cix
∗
i =

∑
i∈I,i6=k

cix
∗
i + ckx

∗
k >∑

i∈I,i6=k

cix
∗
i + ckx̌k. It contradicts the fact that x∗ is the optimal solution. Hence, x∗k = x̌k.

Similarly, let xk be a nonbinding variable and x∗k 6= 0, then using Theorem 3, 0 ≤ x∗k ≤ x̂k. Since
ck > 0, therefore

∑
i∈I

cix
∗
i =

∑
i∈I,i6=k

cix
∗
i + ckx

∗
k >

∑
i∈I,i6=k

cix
∗
i + ck · 0. It contradicts the fact that x∗ is

the optimal solution. Hence, x∗k = 0.

(iii) For the optimal solution x∗ ∈ X(AI , bI), if ck = 0 for some k ∈ I, there will be no effect on objective
function with the value of x∗k. Thus, x∗k can take any value with in its lower and upper bound.

4 Rules for reducing the problem

On the basis of the properties discussed in Section 2 and Section 3, in this section, we employ a value based
matrix method to reduce the original problem. Moreover using Theorem 4, for ci < 0, i ∈ I, the optimal value
x∗i of xi is always fixed to x̂i. Thus, we can limit our search to find the optimal values of the components
xi, i ∈ I with ci > 0. In this case a component x∗i of the optimal solution is equal to x̌i, if xi is binding
and equal to 0, if xi is nonbinding. Hence, binding variables can provide useful information in searching an
optimal solution of the problem (5)–(6). Using these properties a value matrix M = [mij ] is defined as

mij =

{
cix̌i, if j ∈ Ji

∞, otherwise
,∀i ∈ I, ∀j ∈ J

Define Īj = {i ∈ I|mij = cix̌i},∀j ∈ J and J̄i = {j ∈ J |mij = cix̌i},∀i ∈ I. Some rules are proposed to
optimize the problem by employing value matrix.

Rule 1 If for some i ∈ I, mij < 0 for some j ∈ J , then assign x∗i = x̂i in the optimal solution x∗.

Proof If for some i ∈ I, mij < 0 for some j ∈ J , this implies that ci < 0. Thus, from Theorem 4, x∗i = x̂i.

Rule 2 If for some j ∈ J , Īj = {i} is a singleton set and ci > 0, then assign x∗i = x̌i in the optimal solution
x∗.

Proof If for some j ∈ J , Īj = {i} is a singleton set, then this implies that the jth equation can only be
satisfied by the variable xi, i.e. xi is the only binding variable for the jth equation. Also, since ci > 0, thus
by Theorem 4, x∗i = x̌i.

Rule 3 If Īs ⊆ Īt for some s, t in the value matrix, then tth column of the value matrix M can be deleted.
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Proof If Īs ⊆ Īt for some s, t ∈ J in the value matrix, then all the variables that are binding for the sth

equation are also binding for the tth equation. Thus, column corresponding to the tth equation can be deleted
from consideration.

Rule 4 If ∅ 6= J̄p ⊆ J̄q for some p, q ∈ I and 0 < cqx̌q < cpx̌p, then assign x∗p = 0 in the optimal solution
x∗.

Proof Let x∗ = [x∗i ]i∈I be any optimal solution. Since J̄p ⊆ J̄q, this implies that Jp ⊆ Jq. Also since
0 < cqx̌q < cpx̌p, thus cp > 0. This implies that x∗p = 0 or x∗p = x̌p, using Theorem 4. If x∗p = 0, then the
proof is done. If x∗p = x̌p > 0, then if x∗q = 0, then we can construct a solution vector x, equal to x∗, except
for xp = 0 and xq = x̌q. Since Jp ⊆ Jq, the constraints satisfied by x∗p = x̌p are also satisfied by xq = x̌q.
Thus, x is a solution of the problem. Also Z(x∗)−Z(x) =

∑
i∈I

cix
∗
i −

∑
i∈I

cixi = cpx
∗
p−cqxq = cpx̌p−cqx̌q > 0.

This contradicts the assumption of x∗ = [x∗i ]i∈I being the optimal solution. Therefore, if 0 < cqx̌q < cpx̌p,
then for the optimal solution x∗ = [x∗i ]i∈I , x∗p = 0.

If x∗p = x̌p > 0, then if x∗q = x̌q, then we can construct a solution vector x, equal to x∗, except for xp = 0.
Since Jp ⊆ Jq, the constraints satisfied by x∗p = x̌p are also satisfied by xq = x̌q. Thus, x is a solution of
the problem. Also Z(x∗) − Z(x) =

∑
i∈I

cix
∗
i −

∑
i∈I

cixi = cpx
∗
p = cpx̌p > 0. This contradicts the assumption

of x∗ = [x∗i ]i∈I being the optimal solution. Therefore, if 0 < cqx̌q < cpx̌p, then for the optimal solution
x∗ = [x∗i ]i∈I , x∗p = 0.

Rule 5 Let Î ⊆ I and
⋃
i∈Î

J̄i = Ĵ . If p ∈ I, p /∈ Î, J̄p ⊆ Ĵ , and
∑
i∈Î

cix̌i < cpx̌p, then assign x∗p = 0 in the

optimal solution x∗.

Proof Similar to Rule 4.

Rule 6 If for some p ∈ I, cp > 0 and J̄p = ∅, then assign x∗p = 0 in the optimal solution x∗.

Proof If for some p ∈ I, J̄p = ∅, then xp is a nonbinding variable. Since cp > 0, thus by Theorem 4, pth

component of the optimal solution vector can be assigned value 0.

Algorithm for obtaining the optimal solution of the problem (5)–(6)

Step 1 Compute the maximum solution x̂, according to (4).

Step 2 Check feasibility. If x̂ ◦A− ≥ b−, continue to the next step. Otherwise stop, the problem is inconsis-
tent, i.e. X(AI , bI) = ∅.

Step 3 Find index sets Ji,∀i ∈ I.

Step 4 For i ∈ I, if Ji 6= ∅, compute x̌i using x̌i = max
j∈Ji

(a−ij →i b
−
j ). Hence, compute the value of cix̌i.

Step 5 Obtain the value matrix M .

Step 6 Find index sets J̄i,∀i ∈ I and Īj ,∀j ∈ J for the value matrix M .

Step 7 Apply Rule 1- Rule 6 to determine the values of as many decision variables as possible. If all the
components of the optimal solution x∗ are determined, generate the optimal solution and hence the optimal
value of the objective function, else go to next step.

Step 8 Apply branch and bound method as discussed in [18], to determine the remaining undecided decision
variables and hence the optimal solution x∗ and the optimal value of the objective function.
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5 Numerical illustrations

Example 1 Consider the following linear optimization problem subject to the system of interval-valued FRE
with max-product composition defined as x⊗ a = x · a,

Min Z = 3x1 + 2x2 + x3 + 0.5x4

s.t. x⊗AI = bI

0 ≤ xi ≤ 1,∀i ∈ I

where

AI =


[0.51, 0.80] [0.34, 0.72] [0.17, 0.39]
[0.42, 0.58] [0.60, 0.96] [0.30, 0.80]
[0.60, 0.65] [0.12, 0.52] [0.20, 0.70]
[0.35, 0.82] [0.25, 0.91] [0.36, 0.60]


bI =

[
[0.30, 0.60] [0.20, 0.60] [0.10, 0.40]

]
In this problem, we have

A− =


0.51 0.34 0.17
0.42 0.60 0.30
0.60 0.12 0.20
0.35 0.25 0.36



A+ =


0.80 0.72 0.39
0.58 0.96 0.80
0.65 0.52 0.70
0.82 0.91 0.60


b− =

[
0.30 0.20 0.10

]
b+ =

[
0.60 0.60 0.40

]
Step 1 Compute the maximum solution x̂, according to (4). We get x̂1 = 0.75, x̂2 = 0.50, x̂3 = 0.57, x̂4 =
0.66. Thus, x̂ =

[
0.75 0.50 0.57 0.66

]
is the maximum solution.

Step 2 Since x̂⊗A− ≥ b−, the given system of interval-valued FRE is consistent.

Step 3 Find index sets Ji, ∀i ∈ I.
J1 = {1, 2, 3}, J2 = {2, 3}, J3 = {1, 3}, J4 = {3}.

Step 4 Since Ji 6= ∅,∀i ∈ I, thus we have x̌1 = 0.59, x̌2 = 0.33, x̌3 = 0.50, x̌4 = 0.28 and c1x̌1 = 1.77, c2x̌2 =
0.66, c3x̌3 = 0.50, c4x̌4 = 0.14.

Step 5 Obtain the value matrix M .

M =


1 2 3

x1 1.77 1.77 1.77
x2 ∞ 0.66 0.66
x3 0.50 ∞ 0.50
x4 ∞ ∞ 0.14


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Step 6 Find index sets J̄i,∀i ∈ I and Īj ,∀j ∈ J corresponding to the matrix M . J̄1 = {1, 2, 3}, J̄2 =
{2, 3}, J̄3 = {1, 3}, J̄4 = {3} and Ī1 = {1, 3}, Ī2 = {1, 2}, Ī3 = {1, 2, 3, 4}.

Step 7 In the matrix M , Ī1 ⊆ Ī3, thus using Rule 3, delete 3rd column of the value matrix M . After
reduction, the updated matrix M is obtained as

M =


1 2

x1 1.77 1.77
x2 ∞ 0.66
x3 0.50 ∞
x4 ∞ ∞


In the updated matrix M , J̄4 = ∅, therefore using Rule 6, assign x∗4 = 0. Delete the row corresponding to
the variable x4 and obtain the updated matrix M .

M =


1 2

x1 1.77 1.77
x2 ∞ 0.66
x3 0.50 ∞


Now in the updated matrix M , we have J̄1 = {1, 2} ⊆

⋃
i∈{2,3}

J̄i = {1, 2}, and also c2x̌2 + c3x̌3 =

1.16, c1x̌1 = 1.77, i.e. c2x̌2 + c3x̌3 < c1x̌1. Thus, using Rule 5, assign x∗1 = 0. Delete the row corresponding
to the variable x1 to obtain the updated matrix M .

M =

[ 1 2

x2 ∞ 0.66
x3 0.50 ∞

]
In the updated matrix M , Ī1 = {3} and Ī2 = {2} are singleton sets, thus using Rule 2, assign x∗2 =

x̌2 = 0.33 and x∗3 = x̌3 = 0.50. Since all the components of the optimal solution are determined, thus the
optimal solution is x∗ =

[
0 0.33 0.50 0

]
and the corresponding optimal value of the objective function

is Z∗ = 1.16.

Example 2 Consider the following linear optimization problem subject to the system of interval-valued FRE
with max- Lukasiewicz composition defined as x⊗ a = max(0, x + a− 1),

Min Z = 2x1 + 5x2 + 1.4x3 + 0.5x4 − 3x5 + 0.7x6 + 2x7 + x8

s.t. x⊗AI = bI

0 ≤ xi ≤ 1,∀i ∈ I

where

AI =



[0.2, 0.6] [0.3, 0.6] [0.5, 1.0] [0.7, 0.7] [0.2, 0.5] [0.3, 0.7] [0.4, 0.8] [0.2, 0.7] [0.2, 0.6] [0.1, 0.3]
[0.1, 0.5] [0.6, 0.9] [0.2, 0.7] [0.5, 0.6] [0.6, 0.9] [0.7, 0.8] [0.3, 0.9] [0.3, 0.4] [0.7, 0.9] [0.7, 0.7]
[0.3, 0.7] [0.5, 0.8] [0.7, 0.8] [0.1, 0.8] [0.3, 0.4] [0.5, 0.7] [1.0, 1.0] [0.5, 0.8] [0.8, 0.9] [0.2, 0.8]
[0.5, 0.8] [0.6, 0.9] [0.3, 0.7] [0.1, 0.5] [0.1, 0.6] [0.1, 0.3] [0.9, 0.9] [0.6, 0.7] [0.4, 0.5] [0.4, 0.6]
[0.3, 0.4] [0.2, 0.7] [0.6, 0.8] [0.4, 0.9] [0.5, 0.7] [0.4, 0.8] [0.4, 0.6] [0.9, 1.0] [0.7, 0.8] [0.3, 0.6]
[0.2, 0.5] [0.3, 0.7] [0.8, 0.9] [0.3, 0.6] [0.3, 0.8] [0.2, 0.6] [0.3, 0.5] [0.8, 0.9] [0.2, 1.0] [0.5, 0.8]
[0.6, 0.7] [0.4, 0.8] [0.5, 0.6] [0.5, 0.8] [0.7, 0.8] [0.6, 0.7] [0.5, 0.7] [0.7, 0.8] [0.5, 0.7] [0.4, 0.8]
[0.1, 0.3] [0.2, 0.9] [0.2, 0.8] [0.4, 0.5] [0.8, 0.8] [0.5, 0.8] [0.2, 0.9] [0.2, 0.7] [0.2, 0.7] [0.5, 0.5]


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bI =
[
[0.2, 0.7] [0.3, 0.9] [0.3, 0.8] [0.5, 0.5] [0.7, 0.8] [0.4, 0.8] [0.6, 0.9] [0.3, 0.7] [0.4, 0.8] [0.4, 0.6]

]
In this problem, we have

A− =



0.2 0.3 0.5 0.7 0.2 0.3 0.4 0.2 0.2 0.1
0.1 0.6 0.2 0.5 0.6 0.7 0.3 0.3 0.7 0.7
0.3 0.5 0.7 0.1 0.3 0.5 1.0 0.5 0.8 0.2
0.5 0.6 0.3 0.1 0.1 0.1 0.9 0.6 0.4 0.4
0.3 0.2 0.6 0.4 0.5 0.4 0.4 0.9 0.7 0.3
0.2 0.3 0.8 0.3 0.3 0.2 0.3 0.8 0.2 0.5
0.6 0.4 0.5 0.5 0.7 0.6 0.5 0.7 0.5 0.4
0.1 0.2 0.2 0.4 0.8 0.5 0.2 0.2 0.2 0.5



A+ =



0.6 0.6 1.0 0.7 0.5 0.7 0.8 0.7 0.6 0.3
0.5 0.9 0.7 0.6 0.9 0.8 0.9 0.4 0.9 0.7
0.7 0.8 0.8 0.8 0.4 0.7 1.0 0.8 0.9 0.8
0.8 0.9 0.7 0.5 0.6 0.3 0.9 0.7 0.5 0.6
0.4 0.7 0.8 0.9 0.7 0.8 0.6 1.0 0.8 0.6
0.5 0.7 0.9 0.6 0.8 0.6 0.5 0.9 1.0 0.8
0.7 0.8 0.6 0.8 0.8 0.7 0.7 0.8 0.7 0.8
0.3 0.9 0.8 0.5 0.8 0.8 0.9 0.7 0.7 0.5


b− =

[
0.2 0.3 0.3 0.5 0.7 0.4 0.6 0.3 0.4 0.4

]
b+ =

[
0.7 0.9 0.8 0.5 0.8 0.8 0.9 0.7 0.8 0.6

]
Step 1 Compute the maximum solution x̂, according to (4). We get x̂1 = 0.8, x̂2 = 0.9, x̂3 = 0.7, x̂4 =
0.9, x̂5 = 0.6, x̂6 = 0.8, x̂7 = 0.7, x̂8 = 1.0. Thus, x̂ =

[
0.8 0.9 0.7 0.9 0.6 0.8 0.7 1

]
is the maxi-

mum solution.

Step 2 Since x̂⊗A− ≥ b−, the given system of interval-valued FRE is consistent.

Step 3 Find index sets Ji, ∀i ∈ I.
J1 = {3, 4}, J2 = {2, 6, 9, 10}, J3 = {3, 7, 9}, J4 = {1, 2, 7, 8}, J5 = {8}, J6 = {3, 8}, J7 = {1, 8}, J8 =

{5, 6, 10}.

Step 4 Since Ji 6= ∅,∀i ∈ I, thus we have x̌1 = 0.80, x̌2 = 0.70, x̌3 = 0.60, x̌4 = 0.70, x̌5 = 0.40, x̌6 =
0.50, x̌7 = 0.60, x̌8 = 0.90 and c1x̌1 = 1.60, c2x̌2 = 3.50, c3x̌3 = 0.84, c4x̌4 = 0.35, c5x̌5 = −0.12, c6x̌6 =
0.35, c7x̌7 = 1.20, c8x̌8 = 0.90.

Step 5 Obtain the value matrix M .

M =



1 2 3 4 5 6 7 8 9 10

x1 ∞ ∞ 1.60 1.60 ∞ ∞ ∞ ∞ ∞ ∞
x2 ∞ 3.50 ∞ ∞ ∞ 3.50 ∞ ∞ 3.50 3.50
x3 ∞ ∞ 0.84 ∞ ∞ ∞ 0.84 ∞ 0.84 ∞
x4 0.35 0.35 ∞ ∞ ∞ ∞ 0.35 0.35 ∞ ∞
x5 ∞ ∞ ∞ ∞ ∞ ∞ ∞ −0.12 ∞ ∞
x6 ∞ ∞ 0.35 ∞ ∞ ∞ ∞ 0.35 ∞ ∞
x7 1.20 ∞ ∞ ∞ ∞ ∞ ∞ 1.20 ∞ ∞
x8 ∞ ∞ ∞ ∞ 0.90 0.90 ∞ ∞ ∞ 0.90


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Step 6 Find index sets J̄i,∀i ∈ I and Īj ,∀j ∈ J corresponding to the matrix M .
J̄1 = {3, 4}, J̄2 = {2, 6, 9, 10}, J̄3 = {3, 7, 9}, J̄4 = {1, 2, 7, 8}, J̄5 = {8}, J̄6 = {3, 8}, J̄7 = {1, 8}, J̄8 =

{5, 6, 10} and Ī1 = {4, 7}, Ī2 = {2, 4}, Ī3 = {1, 3, 6}, Ī4 = {1}, Ī5 = {8}, Ī6 = {2, 8}, Ī7 = {3, 4}, Ī8 =
{4, 5, 6, 7}, Ī9 = {2, 3}, Ī10 = {2, 8}.

Step 7 In the matrix M , m58 = −0.120 < 0. Thus, using Rule 1, assign x∗5 = x̂5 = 0.60. Delete the row
corresponding to the variable x5 and the column corresponding to the 8th equation. Obtain the updated matrix
M .

M =



1 2 3 4 5 6 7 9 10

x1 ∞ ∞ 1.60 1.60 ∞ ∞ ∞ ∞ ∞
x2 ∞ 3.50 ∞ ∞ ∞ 3.50 ∞ 3.50 3.50
x3 ∞ ∞ 0.84 ∞ ∞ ∞ 0.84 0.84 ∞
x4 0.35 0.35 ∞ ∞ ∞ ∞ 0.35 ∞ ∞
x6 ∞ ∞ 0.35 ∞ ∞ ∞ ∞ ∞ ∞
x7 1.20 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
x8 ∞ ∞ ∞ ∞ 0.90 0.90 ∞ ∞ 0.90


In the updated matrix M , Ī4 = {1} ⊆ Ī3 = {1, 3, 6}, Ī5 = {8} ⊆ Ī6 = {2, 8} and Ī5 = {8} ⊆ Ī10 = {2, 8}.

Therefore using Rule 3, the columns corresponding to the 3rd, 6th and 10th equation can be deleted to obtain
the updated matrix M .

M =



1 2 4 5 7 9

x1 ∞ ∞ 1.60 ∞ ∞ ∞
x2 ∞ 3.50 ∞ ∞ ∞ 3.50
x3 ∞ ∞ ∞ ∞ 0.84 0.84
x4 0.35 0.35 ∞ ∞ 0.35 ∞
x6 ∞ ∞ ∞ ∞ ∞ ∞
x7 1.20 ∞ ∞ ∞ ∞ ∞
x8 ∞ ∞ ∞ 0.90 ∞ ∞


Now, in the updated matrix M , J̄6 = ∅, thus, using Rule 6, assign x∗6 = 0 and delete the row corresponding

to the variable x6 to obtain the updated matrix M .

M =



1 2 4 5 7 9

x1 ∞ ∞ 1.60 ∞ ∞ ∞
x2 ∞ 3.50 ∞ ∞ ∞ 3.50
x3 ∞ ∞ ∞ ∞ 0.84 0.84
x4 0.35 0.35 ∞ ∞ 0.35 ∞
x7 1.20 ∞ ∞ ∞ ∞ ∞
x8 ∞ ∞ ∞ 0.90 ∞ ∞


In the updated matrix M , Ī4 = {1} and Ī5 = {8} are singleton sets, thus using Rule 2, assign x∗1 =

x̌1 = 0.80 and x∗8 = x̌8 = 0.90. Delete the rows corresponding to the variables x1 and x8 and the columns
corresponding to the 4th and 5th equation. Obtain the updated matrix M .

M =


1 2 7 9

x2 ∞ 3.50 ∞ 3.50
x3 ∞ ∞ 0.84 0.84
x4 0.35 0.35 0.35 ∞
x7 1.20 ∞ ∞ ∞


In the updated matrix M , J̄7 = {1} ⊆ J̄4 = {1, 2, 7} and also c4x̌4 = 0.35 < c7x̌7 = 1.20. Thus, using

Rule 4, assign x∗7 = 0 and delete the row corresponding to the variable x7 to obtain the updated matrix M .
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M =


1 2 7 9

x2 ∞ 3.50 ∞ 3.50
x3 ∞ ∞ 0.84 0.84
x4 0.35 0.35 0.35 ∞


In the updated matrix M , Ī1 = {4} ⊆ Ī2 = {2, 4} and Ī1 = {4} ⊆ Ī7 = {3, 4}. Thus, using Rule 3, the

columns corresponding to the 2nd and 7th equation can be deleted to obtain the updated matrix M .

M =


1 9

x2 ∞ 3.50
x3 ∞ 0.84
x4 0.35 ∞


In the updated matrix M , Ī1 = {4} is a singleton set. Thus, using Rule 2, assign x∗4 = x̌4 = 0.70. Delete

the row corresponding to the variable x4 and the column corresponding to the 1st equation. Obtain the
updated matrix M .

M =

[ 9

x2 3.50
x3 0.84

]
In the updated matrix M , J̄2 = {9} ⊆ J̄3 = {9} and also c3x̌3 = 0.84 < c2x̌2 = 3.50. Thus, using Rule 4,

assign x∗2 = 0 and delete the row corresponding to the variable x2 to obtain the updated matrix M .

M =
[ 9

x3 0.84
]

In the updated matrix M , Ī9 = {3} is a singleton set. Thus, using Rule 2, assign x∗3 = x̌3 = 0.60. Since
all the components of the optimal solution are determined, thus the optimal solution is

x∗ =
[
0.80 0 0.60 0.70 0.60 0 0 0.90

]
and the corresponding optimal value of the objective function is Z∗ = 1.89.

6 Conclusion

In this study, a linear optimization problem subject to interval-valued FRE with max-Archimedean compo-
sition is considered. The applications of tolerable solutions of interval-valued FRE can be found in fuzzy
control and diagnosis problems. Therefore optimization with such type of FRE are useful. Basic properties
related to interval-valued FRE are studied. Some necessary conditions are proved for the considered type
of optimization problem, that deal with the value of each component in the optimal solution. Using these
conditions, some rules are proposed that reduce the problem size and compute the components of the optimal
solution efficiently.
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