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Abstract: This is the three-part series on the Weiner Model analysis, in which I will demonstrate various stages of model 

implementation using R code and R Package BRMS. The first instalment of the series demonstrates the basics of modelling and 

estimation. The second instalment of the series will demonstrate how to perform model diagnostics and access the model fit. Finally, the 

third section demonstrates how to test for differences in parameters between conditions. 
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1. Introduction & Estimation 
 

1.1 Introduction 

 

Stan is, in my opinion, the most intriguing development in 

computational statistics in recent years. The Hamiltonian 

Monte-Carlo (HMC) version implemented in Stan is 

extremely efficient, and the range of probability distributions 

implemented in the Stan language allows for the fitting of an 

extremely wide range of models. Stan has significantly 

altered which models I believe can be realistically estimated 

in terms of both model complexity and data size. It is not an 

exaggeration to say that Stan (particularly rstan) has 

significantly altered the way I analyse data. 

 

Brms is one of the R packages that allows for the simple 

implementation of Stan models and has recently gained 

popularity. Using the R formula interface, it is possible to 

specify a wide range of models. It generates the model code, 

compiles it, and then passes it along with the data to rstan 

for sampling based on the formula and a specification of the 

model family. I've avoided brms so far because I usually 

programme my models by hand (thanks to the excellent Stan 

documentation: Stan - Documentation (mc-stan.org)). 

 

However, I recently discovered that brms can estimate the 

Wiener model for simultaneously accounting for responses 

and corresponding response times for data from two-choice 

tasks. Such information is common in psychology, and the 

model is one of the most popular cognitive models available. 

In this series, I'll show how to use brms to apply the Wiener 

model to some published data. The first section explains 

how to set up and estimate the model. The second section 

provides an overview of model diagnostics as well as an 

evaluation of model fit using posterior predictive 

distributions. The third section demonstrates how to inspect 

and compare the parameter posterior distributions. 

 

This first part requires brms and a working C++ compiler, as 

well as the packages RWiener for generating the posterior 

predictive distribution within brms and rtdists for the data. 

 

Library(“brms”) 

 

 

 

 

1.2 Data & Model 

 
Figure 1.2.1: The Wiener model for two-choice reaction 

times is depicted graphically. An evidence counter begins 

with the value 'alpha'*'beta' and progresses with random 

increments. 'delta' is the mean increment. The process ends 

when the amount of evidence accumulated exceeds 'alpha' or 

exceeds 0. The decision process begins at time 'tau' after the 

stimulus is presented and ends at the reaction time. 

 

I expect the reader to be familiar with the Wiener model and 

will only provide a brief overview here; for more 

information. For binary choice tasks, the Wiener model is a 

continuous-time evidence accumulation model. It is assumed 

that evidence is accumulated in each trial by a single 

accumulator in a noisy process. The accumulation of 

evidence begins at the start point and continues until the 

accumulator reaches one of the two decision bounds, at 

which point the corresponding response is given. The total 

response time is the sum of the accumulation process's 

decision time and non-decisional components. To 

summarise, the Wiener model allows for the decomposition 

of responses to binary choice tasks and corresponding 

response times into four latent processes: 

 

 The average slope of the accumulation process towards 

the boundaries is represented by the drift rate (delta). The 

greater the (absolute value of the) drift rate, the more 

evidence there is for the corresponding response option. 

 The distance between the two decision bounds (alpha) is 

interpreted as a measure of response caution. 

 The accumulation process's starting point (beta) is a 

measure of response bias towards one of the two 

response boundaries. 

 Non-decision time (tau) encompasses all non-decisional 

processes such as stimulus encoding and response 

processes. 
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We will examine a portion of the data from my github 

account/repository ,“binmishr/Weiner-Model-Analysis”. The 

data file which has been used below for the figure 1.2.2 is 

predictions data and can be downloaded from link 

https://github.com/binmishr/Weiner-Model-

Analysis/blob/main/brms_wiener_example_predictions.rda. 

The data comes from 17 participants who completed a 

lexical decision task in which they had to determine whether 

a given string was a word or not. In different experimental 

blocks, participants made decisions based on either speed or 

accuracy emphasis instructions. To reduce estimation time, 

we restrict the analysis to high-frequency words (frequency 

= high) and the corresponding high-frequency non-words 

(frequency = nw_high) after removing some extreme 

RTs(Response Time). To complete the model, we'll also 

need a numeric response variable with a value of 0 

corresponding to responses at the lower response boundary 

and a value of 1 corresponding to responses at the upper 

response boundary. We do this by converting the categorical 

response variable response to a numeric value and 

subtracting one, so that a word response corresponds to the 

lower response boundary and a nonword response 

corresponds to the upper response boundary. 

 

 

 
Figure 1.2.2: Sample Data from McKoon's. (2008) 

 

1.3 Model Formula 

 

The most important decision to make before creating a 

model is which parameters are allowed to vary between 

which conditions (i.e., factor levels). One constraint shared 

by the Wiener model (and other evidence-accumulation 

models) is that the parameters set before the evidence 

accumulation process begins (i.e., boundary separation, 

starting point, and non-decision time) cannot change based 

on stimulus characteristics unknown to the participant before 

the trial begins. As a result, the item-type, in this case word 

versus non-word, is usually only allowed to influence the 

drift rate. We adhere to this constraint. Furthermore, as the 

speed and accuracy conditions are manipulated between 

blocks of trials, all four parameters are allowed to vary. It's 

also worth noting that all relevant variables are controlled 

within-subjects. As a result, the maximal random-effects 

structure includes random-effects parameters for each fixed-

effect. To set up the model, we need to use the bf() function 

and create one formula for each of the Wiener model's four 

parameters. 

 

 

 
Figure 1.3.1: Weiner Model Formula 
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The first formula is for the drift rate and is also used to 

specify the column on the left-hand side that contains the 

RTs (rt) and the response or decision (response2). On the 

right side, fixed and random effects can be specified in a 

manner similar to lme4. Because the drift rate is allowed to 

vary between both variables, condition and frequency (stim 

cat would be equivalent), we estimate fixed and random 

effects for both variables as well as their interaction. We 

must then create one formula for each of the remaining three 

parameters (which are only allowed to vary by condition). 

The parameter names are indicated on the left side of these 

formulas: 

 

 bs stands for boundary separation (alpha) 

 ndt stands for non-decision time (tau) 

 bias: beginning point (beta) 

 

The fixed- and random-effects are again specified on the 

right side. It is worth noting that one common approach for 

developing evidence accumulation models is to specify that 

one response boundary represents correct responses and the 

other response boundary denotes incorrect responses (in 

contrast to the current approach in which the response 

boundaries represent the actually two response options). In 

such a case, the starting point cannot be estimated and must 

be set to 0.5 (i.e., replace the formula with bias = 0.5). 

 

Two more points are important in the formulas. To begin, I 

used an unusual parameterization and suppressed the 

intercept (e.g., 0 + condition instead of condition). When an 

intercept is present, categorical variables (i.e., factors) with k 

levels are coded with k-1 deviation variables, which 

represent deviations from the intercept. As a result, in a 

Bayesian setting, the prior for these deviation variables must 

be considered. In contrast, when the intercept is suppressed, 

the model can be configured so that each factor level (or 

design cell, if more than one factor is involved) receives its 

own parameter, as shown here. This allows for the same 

prior for each parameter (as long as one does not expect the 

parameters to vary dramatically). Furthermore, this is a 

common parameterization when programming a model, 

oneself. Compare the following two calls to see the 

differences between parameterizations (model. Matrix is the 

function that creates the parameterization internally). Only 

the first generates a unique parameter for each condition. 

 

 

 
Figure 1.3.2: Model Matrix Function 

 

It should be noted that if more than one factor is involved 

and this parameterization is to be used, the factors must be 

combined using the: and not the *. This is visible when the 

code below is executed. Also, when the factors with: are 

combined without suppressing the intercept, the resulting 

model has one parameter more than can be estimated (i.e., 

the model-matrix is rank deficient). As a result, caution is 

required at this stage. Second, brms formulas allow for the 

estimation of correlations between random-effects 

parameters of different formulas. To accomplish this, insert 

an identifier in the middle of the random-effects formula, 

separated by | on both sides. Correlations between random-

effects formulas will then be estimated for all random-

effects formulas with the same identifier. In our case, we 

want to use the "latent-trait approach" to estimate the full 

random-effects matrix with correlations among all model 

parameters. As a result, we use the same identifier (p) in all 

formulas. As a result, correlations between all individual-

level deviations across all four Wiener parameters will be 

estimated. Simply omit the identifier (e.g., (0 + 

condition|id)) to estimate correlations only among the 

random-effects parameters of each formula. Furthermore, 

brms, like afex, allows you to suppress correlations between 

categorical random-effects parameters using || (e.g., (0 + 

condition||id)). 

 

 

 
Figure 1.3.3: Model Matrix Sample Code with Parameters 

 

1.4 Family, Link-Functions and Priors 

 

The following step is to configure the priors. To accomplish 

this, we can use the get_prior function. This function 

requires the formula, data, and model family to be specified. 

The family argument is the one in which we tell brms that 

we want to use the wiener model. It is also used to define the 

link function for the four Wiener parameters. Because the 

drift rate can be any value (ranging from -Inf to Inf), the 

default link function is "identity" (i.e., no transformation), 

which we keep. The other three parameters are all limited in 

their range. The boundary must be greater than zero, the 

non-decision time must be greater than zero but less than the 

smallest RT, and the starting point must be between 0 and 1. 

These constraints are respected by the default link-functions, 

which use "log" for the first two parameters and "logit" for 
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the bias. This is certainly an option, but it has a number of 

drawbacks that lead me to use the "identity" link function for 

all parameters. To begin, priors must be specified on the 

untransformed scale when parameters are transformed. 

Second, the individual-level deviations (i.e., the random-

effects estimates) are assumed to be multivariate normal 

distributions. Individual deviations are only normally 

distributed on the untransformed scale if the parameters are 

transformed. Similarly, correlations of parameter deviations 

across parameters would be on the untransformed scale as 

well. Both complicate the interpretation of the random 

effects. When specifying the parameters without 

transformation (i.e., link = "identity"), care must be taken to 

ensure that the priors place the greatest weight on values 

within the allowed range. Similarly, starting values must be 

within the permitted range. Using the identity link function 

has some drawbacks, which are discussed further below. 

However, as long as parameters outside the allowed range 

occur only infrequently, such a model can successfully 

converge, making interpretation easier. The get prior 

function returns a data.frame containing all model 

parameters. If parameters have default priors, these are also 

listed. Priors must be defined for individual parameters, 

parameter classes, parameter classes for specific groups, or 

dpars. It should be noted that all parameters that do not have 

a default prior should be assigned a specific prior. 

 

 
Figure 1.4.1: Configuration of Priors 

 

 
Figure 1.4.2: Output Of get_prior Function  

 

Priors can be defined using the prior or set_prior functions, 

which provide varying degrees of control. One advantage of 

the model's parameterization is that we only need to specify 

priors for one set of Wiener parameters (i.e., b) and do not 

need to differentiate between intercept and other parameters. 

We choose the priors based on prior knowledge of likely 

Wiener model parameter values, but otherwise try to specify 

them in a weakly informative manner. That is, they should 

limit the range to likely values while not affecting the 

estimation in any way. We use a Cauchy distribution with 

location 0 and scale 5 for the drift rate, so that roughly 70% 

of the prior mass is between -10 and 10. We use a normal 

prior with a mean of 1.5 and a standard deviation of one for 

boundary separation, a normal prior with a mean of 0.2 and 

a standard deviation of 0.1 for non-decision time, and a 

normal prior with a mean of 0.5 (i.e., no-bias) and a standard 

deviation of 0.2 for bias. 

 

 

 

 

 

 

 
Figure 1.4.3: Defining the priors with data 

 

With this knowledge, we can use the make_stancode 

function to inspect the entire model code. It is critical to 

ensure that all parameters listed in the parameters block have 

a prior listed in the model block. We can also see at the start 

of the model block that none of our parameters have been 

transformed exactly as we would like. 
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make_stancode(formula,  

              family = wiener(link_bs = "identity",  

                              link_ndt = "identity", 

                              link_bias = "identity"), 

              data = speed_acc,  

              prior = prior) 

Figure 1.4.4: Inspection of Weiner Modelwith make_stancode Function 

 

// generated with brms 1.10.2 

functions {  

 

  /* Wiener Model log-PDF for a single response 

   * Args:  

   *   y: reaction time data 

   *   dec: decision data (0 or 1) 

   *   alpha: boundary separation parameter > 0 

   *   tau: non-decision time parameter > 0 

   *   beta: initial bias parameter in [0, 1] 

   *   delta: drift rate parameter 

   * Returns:   

   *   a scalar to be added to the log posterior  

   */  

   real wiener_model_lpdf(real y, int dec, real alpha,  

                              real tau, real beta, real delta) {  

     if (dec == 1) { 

       return wiener_lpdf(y | alpha, tau, beta, delta); 

     } else { 

       return wiener_lpdf(y | alpha, tau, 1 - beta, - delta); 

     } 

   } 

}  

data {  

  int<lower=1> N;  // total number of observations  

  vector[N] Y;  // response variable  

  int<lower=1> K;  // number of population-level effects  

  matrix[N, K] X;  // population-level design matrix  

  int<lower=1> K_bs;  // number of population-level effects  

  matrix[N, K_bs] X_bs;  // population-level design matrix  

  int<lower=1> K_ndt;  // number of population-level effects  

  matrix[N, K_ndt] X_ndt;  // population-level design matrix  

  int<lower=1> K_bias;  // number of population-level effects  

  matrix[N, K_bias] X_bias;  // population-level design matrix  

  // data for group-level effects of ID 1  

  int<lower=1> J_1[N];  

  int<lower=1> N_1;  

  int<lower=1> M_1;  

  vector[N] Z_1_1;  

  vector[N] Z_1_2;  

  vector[N] Z_1_3;  

  vector[N] Z_1_4;  

  vector[N] Z_1_bs_5;  

  vector[N] Z_1_bs_6;  

  vector[N] Z_1_ndt_7;  

  vector[N] Z_1_ndt_8;  

  vector[N] Z_1_bias_9;  

  vector[N] Z_1_bias_10;  

  int<lower=1> NC_1;  

  int<lower=0,upper=1> dec[N];  // decisions  

  int prior_only;  // should the likelihood be ignored?  

}  

transformed data {  
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  real min_Y = min(Y);  

}  

parameters {  

  vector[K] b;  // population-level effects  

  vector[K_bs] b_bs;  // population-level effects  

  vector[K_ndt] b_ndt;  // population-level effects  

  vector[K_bias] b_bias;  // population-level effects  

  vector<lower=0>[M_1] sd_1;  // group-level standard deviations  

  matrix[M_1, N_1] z_1;  // unscaled group-level effects  

  // cholesky factor of correlation matrix  

  cholesky_factor_corr[M_1] L_1;  

}  

transformed parameters {  

  // group-level effects  

  matrix[N_1, M_1] r_1 = (diag_pre_multiply(sd_1, L_1) * z_1)';  

  vector[N_1] r_1_1 = r_1[, 1];  

  vector[N_1] r_1_2 = r_1[, 2];  

  vector[N_1] r_1_3 = r_1[, 3];  

  vector[N_1] r_1_4 = r_1[, 4];  

  vector[N_1] r_1_bs_5 = r_1[, 5];  

  vector[N_1] r_1_bs_6 = r_1[, 6];  

  vector[N_1] r_1_ndt_7 = r_1[, 7];  

  vector[N_1] r_1_ndt_8 = r_1[, 8];  

  vector[N_1] r_1_bias_9 = r_1[, 9];  

  vector[N_1] r_1_bias_10 = r_1[, 10];  

}  

model {  

  vector[N] mu = X * b;  

  vector[N] bs = X_bs * b_bs;  

  vector[N] ndt = X_ndt * b_ndt;  

  vector[N] bias = X_bias * b_bias;  

  for (n in 1:N) {  

    mu[n] = mu[n] + (r_1_1[J_1[n]]) * Z_1_1[n] + (r_1_2[J_1[n]]) * Z_1_2[n] + (r_1_3[J_1[n]]) * Z_1_3[n] + (r_1_4[J_1[n]]) 

* Z_1_4[n];  

    bs[n] = bs[n] + (r_1_bs_5[J_1[n]]) * Z_1_bs_5[n] + (r_1_bs_6[J_1[n]]) * Z_1_bs_6[n];  

    ndt[n] = ndt[n] + (r_1_ndt_7[J_1[n]]) * Z_1_ndt_7[n] + (r_1_ndt_8[J_1[n]]) * Z_1_ndt_8[n];  

    bias[n] = bias[n] + (r_1_bias_9[J_1[n]]) * Z_1_bias_9[n] + (r_1_bias_10[J_1[n]]) * Z_1_bias_10[n];  

  }  

  // priors including all constants  

  target += cauchy_lpdf(b | 0, 5);  

  target += normal_lpdf(b_bs | 1.5, 1);  

  target += normal_lpdf(b_ndt | 0.2, 0.1);  

  target += normal_lpdf(b_bias | 0.5, 0.2);  

  target += student_t_lpdf(sd_1 | 3, 0, 10) 

    - 10 * student_t_lccdf(0 | 3, 0, 10);  

  target += lkj_corr_cholesky_lpdf(L_1 | 1);  

  target += normal_lpdf(to_vector(z_1) | 0, 1);  

  // likelihood including all constants  

  if (!prior_only) {  

    for (n in 1:N) {  

      target += wiener_model_lpdf(Y[n] | dec[n], bs[n], ndt[n], bias[n], mu[n]);  

    }  

  }  

}  

generated quantities {  

  corr_matrix[M_1] Cor_1 = multiply_lower_tri_self_transpose(L_1);  

  vector<lower=-1,upper=1>[NC_1] cor_1;  

  // take only relevant parts of correlation matrix  

 

  cor_1[1] = Cor_1[1,2];  

  [...] 
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  cor_1[45] = Cor_1[9,10];  

} 

Figure 1.4.5: Function of Wiener Model log-PDF for a single response 

 

Before we can finally estimate the model, we need a 

function that generates initial values. Estimation will not 

begin unless initial values that lead to an identifiable model 

for all data points are provided. The function must provide 

initial values for all parameters listed in the model's 

parameters block. It is worth noting that many of those 

parameters have at least one dimension with a parameterized 

extent (e.g., K). To obtain the required information, we can 

use make_standata to create the data set used by brms for 

estimation. Then, in function initfun, we use this data object 

(i.e., a list) to generate the appropriately sized initial values 

(note that initfun relies on the fact that tmp_dat is in the 

global environment, which is a bit of a code smell). 

 

tmp_dat <- make_standata(formula,  

                         family = wiener(link_bs = "identity",  

                              link_ndt = "identity", 

                              link_bias = "identity"), 

                            data = speed_acc, prior = prior) 

str(tmp_dat, 1, give.attr = FALSE) 

## List of 26 

##  $ N          : int 10462 

##  $ Y          : num [1:10462(1d)] 0.773 0.39 0.435  ... 

##  $ K          : int 4 

##  $ X          : num [1:10462, 1:4] 0 0 0 0 0 0 0 0 0 0 ... 

##  $ Z_1_1      : num [1:10462(1d)] 0 0 0 0 0 0 0 0 0 0 ... 

##  $ Z_1_2      : num [1:10462(1d)] 0 1 1 1 1 1 0 1 1 0 ... 

##  $ Z_1_3      : num [1:10462(1d)] 0 0 0 0 0 0 0 0 0 0 ... 

##  $ Z_1_4      : num [1:10462(1d)] 1 0 0 0 0 0 1 0 0 1 ... 

##  $ K_bs       : int 2 

##  $ X_bs       : num [1:10462, 1:2] 0 0 0 0 0 0 0 0 0 0 ... 

##  $ Z_1_bs_5   : num [1:10462(1d)] 0 0 0 0 0 0 0 0 0 0 ... 

##  $ Z_1_bs_6   : num [1:10462(1d)] 1 1 1 1 1 1 1 1 1 1 ... 

##  $ K_ndt      : int 2 

##  $ X_ndt      : num [1:10462, 1:2] 0 0 0 0 0 0 0 0 0 0 ... 

##  $ Z_1_ndt_7  : num [1:10462(1d)] 0 0 0 0 0 0 0 0 0 0 ... 

##  $ Z_1_ndt_8  : num [1:10462(1d)] 1 1 1 1 1 1 1 1 1 1 ... 

##  $ K_bias     : int 2 

##  $ X_bias     : num [1:10462, 1:2] 0 0 0 0 0 0 0 0 0 0 ... 

##  $ Z_1_bias_9 : num [1:10462(1d)] 0 0 0 0 0 0 0 0 0 0 ... 

##  $ Z_1_bias_10: num [1:10462(1d)] 1 1 1 1 1 1 1 1 1 1 ... 

##  $ J_1        : int [1:10462(1d)] 1 1 1 1 1 1 1 1 1 1 ... 

##  $ N_1        : int 17 

##  $ M_1        : int 10 

##  $ NC_1       : num 45 

##  $ dec        : num [1:10462(1d)] 1 0 0 0 0 0 0 0 0 0 ... 

##  $ prior_only : int 0 

 

 

 

initfun <- function() { 

  list( 

    b = rnorm(tmp_dat$K), 

    b_bs = runif(tmp_dat$K_bs, 1, 2), 

    b_ndt = runif(tmp_dat$K_ndt, 0.1, 0.15), 

    b_bias = rnorm(tmp_dat$K_bias, 0.5, 0.1), 

    sd_1 = runif(tmp_dat$M_1, 0.5, 1), 

    z_1 = matrix(rnorm(tmp_dat$M_1*tmp_dat$N_1, 0, 

0.01), 
                 tmp_dat$M_1, tmp_dat$N_1), 

    L_1 = diag(tmp_dat$M_1) 

  ) 

} 

Figure 1.4.6: Functions to generate initial values for Model 

Estimation 

 

Estimation (Sampling) 

Finally, we have all of the pieces in place and can use the 

brm function to estimate the Wiener model. Please keep in 

mind that this will take approximately a full day, and may 

take longer depending on the speed of your PC. We've also 

increased the maximum treedepth to 15. We should have 

probably increased adapt_delta above the default value of.8 

because there are a few divergent transitions, but that is up 

to the reader. After we finish estimating, we see that there 

are a few (10) divergent transitions. If this were a real 

analysis rather than an example, we would need to increase 

adapt_delta to a higher value (e.g.,.95 or.99) and rerun the 

estimation. In this case, however, we immediately proceed 

to the second step and use predict to obtain samples from the 

posterior predictive distribution. It is critical to specify the 

number of posterior samples in this case (here we use 500). 

Furthermore, for obtaining the actual posterior predictive 

distribution rather than a summary of the posterior predictive 

distribution, set summary = FALSE and negative rt = TRUE. 

The latter ensures that predicted responses to the lower 

boundary are negative, whereas predicted responses to the 

upper boundary are positive. 

 

fit_wiener <- brm(formula,  

                  data = speed_acc, 

                  family = wiener(link_bs = "identity",  

                                  link_ndt = "identity", 

                                  link_bias = "identity"), 

                  prior = prior, inits = initfun, 

                  iter = 1000, warmup = 500,  

                  chains = 4, cores = 4,  

                  control = list(max_treedepth = 15)) 

NPRED <- 500 

pred_wiener <- predict(fit_wiener,  

                       summary = FALSE,  

                       negative_rt = TRUE,  

                       nsamples = NPRED) 

Figure 1.5.1: Weiner Model Estimation 

 

We save the results of both steps because they are both time 

consuming (estimation takes a day, obtaining posterior 

predictives takes a few hours). Given the relative size of 

both objects, using the 'xz' compression (the strongest in R) 

appears to be a good idea. 
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save(fit_wiener, file = "brms_wiener_example_fit.rda",  

     compress = "xz") 

save(pred_wiener, file = "brms_wiener_example_predictions.rda",  

     compress = "xz") 

Figure 1.5.2: Saving Results of Weiner Model Estimation 

 

2. Model Fit & Diagnostics 
 

2.1 Introduction 

 

This second section is concerned with perhaps the most 

important steps in any model-based data analysis, model 

diagnostics and model fit assessment. It should be noted that 

the code in this part is completely self-contained and can be 

run without requiring the code from Part I. 

 

 

 

 

2.2 Setup 

 

We begin by loading a large number of packages that we 

will require later on. Obviously, brms, but also some of the 

tidyverse packages (i.e., dplyr, tidyr, tibble, and ggplot2). It 

took me a while to get on board with tidyverse, but now that 

I'm using it more and more, I can't deny its usefulness. If 

your data can be made 'tidy,' the tidyverse's cohesive set of 

tools makes many seemingly difficult tasks relatively 

simple. A few examples will be provided below. GridExtra 

is also required for combining plots, as is DescTools for the 

concordance correlation coefficient CCC, which is used 

below. 

library("brms") 
library("dplyr") 

library("tidyr") 

library("tibble")    # for rownames_to_column 

library("ggplot2") 

library("gridExtra") # for grid.arrange 

library("DescTools") # for CCC 

Figure 2.2.1: Loading of the R Libraries 

 

data(speed_acc, package = "rtdists") 

speed_acc <- droplevels(speed_acc[!speed_acc$censor,]) # remove extreme RTs 

speed_acc <- droplevels(speed_acc[ speed_acc$frequency %in%  

                                     c("high", "nw_high"),]) 

speed_acc$response2 <- as.numeric(speed_acc$response)-1 

Figure 2.2.2: Loading of the data with rtdists package 

 

I've used a binary R data file that contains the fitted model 

object as well as the generated posterior predictive 

distributions below, which we can download directly into R. 

It's worth noting that I had to go through a temporary folder 

to get there. For your convenience, I have attached both 

Model fit and predictions .RDA files in my Github 

account/repository “binmishr/Weiner-Model-Analysis”. You 

can download the attached files to your PC location, change 

the file path in the download. File function and then load the 

files into temporary folder per the syntax given below in 

figure 2.2.3 

 

 

tmp <- tempdir() 

download.file("https://github.com/binmishr/Weiner-Model-Analysis/blob/main/brms_wiener_example_fit.rda",  

              file.path(tmp, "brms_wiener_example_fit.rda")) 

download.file("https://github.com/binmishr/Weiner-Model-Analysis/blob/main/brms_wiener_example_predictions.rda",  

              file.path(tmp, "brms_wiener_example_predictions.rda")) 

load(file.path(tmp, "brms_wiener_example_fit.rda")) 

load(file.path(tmp, "brms_wiener_example_predictions.rda")) 

Figure 2.2.3: Downloading the Model & Prediction data into Temporary folder 

 

2.3 Model Diagnostics 

 

Part I already informed us that there are a few divergent 

transitions. If this were a real analysis, we would be 

dissatisfied with the current fit and would attempt to rerun 

brm with a higher adapt_delta in the hope of removing the 

divergent transitions. According to the Stan warning 

guidelines, "the validity of the estimates is not guaranteed if 

there are post-warmup divergences." However, it is unclear 

how the small number of divergent transitions (<10) 

observed here affects the posterior. It's also unclear what to 

do if adapt delta can't be increased any longer and the model 

can't be reparametrized. Should all fits with any divergent 

transitions be ignored entirely. Returning to our fit, we 
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check the R-hat statistic as well as the number of effective 

samples as a first step in our model diagnostics. We focus on 

the parameters with the highest R
2
 and the fewest effective 

samples. Both are unproblematic (R-hat 1.05 and n eff > 

100), indicating that the sampler has converged on the 

stationary distribution. 

 

tail(sort(rstan::summary(fit_wiener$fit)$summary[,"Rhat"])) 

#                      sd_id__conditionaccuracy:frequencyhigh  

#                                                        1.00  

#                              r_id__bs[15,conditionaccuracy]  

#                                                        1.00  

#                                    b_bias_conditionaccuracy  

#                                                        1.00  

# cor_id__conditionspeed:frequencyhigh__ndt_conditionaccuracy  

#                                                        1.00  

#                                   sd_id__ndt_conditionspeed  

#                                                        1.00  

#  cor_id__conditionspeed:frequencynw_high__bs_conditionspeed  

#                                                        1.01  

head(sort(rstan::summary(fit_wiener$fit)$summary[,"n_eff"])) 

#                                     lp__  

#                                      462  

#        b_conditionaccuracy:frequencyhigh  

#                                      588  

#                sd_id__ndt_conditionspeed  

#                                      601  

#      sd_id__conditionspeed:frequencyhigh  

#                                      646  

#           b_conditionspeed:frequencyhigh  

#                                      695  

# r_id[12,conditionaccuracy:frequencyhigh]  

#                                      712 

Figure 2.3.1: Measuring the R-hat statistics& Number of effective samples 

 

pars <- parnames(fit_wiener) 

pars_sel <- c(sample(pars[1:10], 3), sample(pars[-(1:10)], 3)) 

plot(fit_wiener, pars = pars_sel, N = 6,  

     ask = FALSE, exact_match = TRUE, newpage = TRUE, plot = TRUE) 

Figure 2.3.2: Plotting of the data 
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Figure 2.3.3: Graph of Chain behaviour of the Sampled data 

 

Finally, there are some discussions in the literature about 

parameter trade-offs for the related models. These trade-offs 

are said to make fitting the model in a Bayesian setting 

particularly difficult. We look at the joint posterior of the 

fixed-effects of the main Wiener parameters for the accuracy 

condition to see if fitting the Wiener model with HMC as 

implemented in Stan (i.e., NUTS) also shows this pattern. 

For this, we use the pairs function's stanfit method with the 

condition set to "divergent__." This plot shows the few 

divergent transitions above the diagonal and the remaining 

samples below it. 

 

pairs(fit_wiener$fit, pars = pars[c(1, 3, 5, 7, 9)], condition = "divergent__") 

Figure 2.3.4: Plotting of the divergent Transitions of the Sampled data 
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Figure 2.3.5: Graph of the Divergent Transitions 

 

The below table displays the ten largest absolute values of 

correlations among posteriors for all pairwise parameter 

combinations. The value in column Freq is the observed 

correlation between the posteriors of the two parameters 

listed in the two previous columns, which is somewhat 

counterintuitive. To make this table, I used a trick called 

as.table, which is in charge of labelling the column 

containing the correlation value Freq. 

 

posterior <- as.mcmc(fit_wiener, combine_chains = TRUE) 

cor_posterior <- cor(posterior) 

cor_posterior[lower.tri(cor_posterior, diag = TRUE)] <- NA 

cor_long <- as.data.frame(as.table(cor_posterior)) 

cor_long <- na.omit(cor_long) 

tail(cor_long[order(abs(cor_long$Freq)),], 10) 

#                              Var1                         Var2   Freq 

# 43432        b_ndt_conditionspeed  r_id__ndt[1,conditionspeed] -0.980 

# 45972 r_id__ndt[4,conditionspeed] r_id__ndt[11,conditionspeed]  0.982 

# 46972        b_ndt_conditionspeed r_id__ndt[16,conditionspeed] -0.982 

# 44612        b_ndt_conditionspeed  r_id__ndt[6,conditionspeed] -0.983 

# 46264        b_ndt_conditionspeed r_id__ndt[13,conditionspeed] -0.983 

# 45320        b_ndt_conditionspeed  r_id__ndt[9,conditionspeed] -0.984 

# 45556        b_ndt_conditionspeed r_id__ndt[10,conditionspeed] -0.985 

# 46736        b_ndt_conditionspeed r_id__ndt[15,conditionspeed] -0.985 

# 44140        b_ndt_conditionspeed  r_id__ndt[4,conditionspeed] -0.990 
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# 45792        b_ndt_conditionspeed r_id__ndt[11,conditionspeed] -0.991 

Figure 2.3.6: Correlations values among posteriors for all pairwise parameter combinations 

 

pairs(fit_wiener$fit, pars =  

        c("b_ndt_conditionspeed",  

          "r_id__ndt[11,conditionspeed]", 

          "r_id__ndt[4,conditionspeed]"),  

      condition = "divergent__") 

Figure 2.3.7: Plotting of the Correlations values among 

posteriors for all pairwise parameter combinations 

 
Figure 2.3.8: Graph of the Correlations values among 

posteriors for all pairwise parameter combinations 

 

Overall, the model diagnostics show no particularly 

troubling behaviour (with the exception of the divergent 

transitions). We've discovered that some of the individual-

level estimates for some of the parameters aren't very 

reliable. This, however, does not rule out the overall fit. The 

main take away from this fact is that we must exercise 

caution when interpreting individual-level estimates. As a 

result, we assume the fit is satisfactory and proceed to the 

next step of the analysis. 

 

hist(cor_long$Freq, breaks = 40) 

Figure 2.3.9: Plotting of the Histogram of Correlations 

values 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.3.10: Histogram graph of the Correlations values among posteriors for all pairwise parameter combinations 

 

2.4 Accessing Model Fit 

 

We will now look into the model fit. That is, we will 

investigate whether the model adequately describes the 

observed data. We will primarily do so through graphical 

checks. To accomplish this, we must first prepare the 

posterior predictive distribution and the data. We begin by 

combining the posterior predictive distributions with the 

data. Then, for each cell of the design (i.e., a combination of 

condition and frequency factors), we compute three 

important measures (or test statistics T()): 

 

 Probability of responding with an upper boundary 

response (i.e., "nonword"). 

 Median response times (RTs) to the upper boundary. 

 The lower boundary's median RTs. 

 

This is first computed for each sample of the posterior 

predictive distribution. The median and some additional 
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quantiles across the posterior predictive distribution are then 

calculated to summarise these three measures. We compute 

all of this in a single step using a lengthy combination of 

dplyr and tidyr magic. 

 

d_speed_acc <- as_tibble(cbind(speed_acc, as_tibble(t(pred_wiener)))) 

Figure 2.4.1: Combination of posterior predictive distribution with data 

 

d_speed_acc_agg <- d_speed_acc %>%  

  group_by(id, condition, frequency) %>%  # select grouping vars 

  summarise_at(.vars = vars(starts_with("V")),  

               funs(prob.upper = mean(. > 0), 

                    medrt.lower = median(abs(.[. < 0]) ), 

                    medrt.upper = median(.[. > 0] ) 

               )) %>%  

  ungroup %>%  

  gather("key", "value", -id, -condition, -frequency) %>% # remove grouping vars 

  separate("key", c("rep", "measure"), sep = "_") %>%  

  spread(measure, value) %>%  

  group_by(id, condition, frequency) %>% # select grouping vars 

  summarise_at(.vars = vars(prob.upper, medrt.lower, medrt.upper),  

               .funs = funs(median = median(., na.rm = TRUE), 

                            llll = quantile(., probs = 0.01,na.rm = TRUE), 

                            lll = quantile(., probs = 0.025,na.rm = TRUE), 

                            ll = quantile(., probs = 0.1,na.rm = TRUE), 

                            l = quantile(., probs = 0.25,na.rm = TRUE), 

                            h = quantile(., probs = 0.75,na.rm = TRUE), 

                            hh = quantile(., probs = 0.9,na.rm = TRUE), 

                            hhh = quantile(., probs = 0.975,na.rm = TRUE), 

                            hhhh = quantile(., probs = 0.99,na.rm = TRUE) 

               )) 

Figure 2.4.2: Calculate Posterior predictive distribution, Median & quantiles across measures 

 

Following that, we compute the three measures for the data and combine them with the results of the posterior predictive 

distribution in a single data set. frame created with left join 

 

speed_acc_agg <- speed_acc %>%  

  group_by(id, condition, frequency) %>% # select grouping vars 

  summarise(prob.upper = mean(response == "nonword"), 

            medrt.upper = median(rt[response == "nonword"]), 

            medrt.lower = median(rt[response == "word"]) 

  ) %>%  

  ungroup %>%  

  left_join(d_speed_acc_agg) 

Figure 2.4.3: Calculating measures & Combining with Posterior predictive distribution 

 

2.5 Aggregated Model Fit 

 

The first critical question is whether our model can 

adequately describe the aggregated patterns in the data 

across participants. We simply use mean to aggregate the 

results obtained in the previous step (i.e., the summary 

results from the posterior predictive distribution as well as 

the data test statistics). The summaries are then used to plot 

predictions (in grey and black) as well as data (in red) for the 

three measures. The inner (fat) error bars represent the 80% 

credibility intervals (CIs), while the outer (thin) error bars 

represent the 95% CIs. The median of the posterior 

predictive distributions is depicted by the black circle. 

 

d_speed_acc_agg2 <- speed_acc_agg %>%  

  group_by(condition, frequency) %>%  

  summarise_if(is.numeric, mean, na.rm = TRUE) %>%  

  ungroup 

Figure 2.5.1: Aggregation of the Posterior predictive distribution 
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new_x <- with(d_speed_acc_agg2,  

              paste(rep(levels(condition), each = 2),  

                    levels(frequency), sep = "\n")) 

p1 <- ggplot(d_speed_acc_agg2, aes(x = condition:frequency)) + 

  geom_linerange(aes(ymin =  prob.upper_lll, ymax =  prob.upper_hhh),  

                 col = "darkgrey") +  

  geom_linerange(aes(ymin =  prob.upper_ll, ymax =  prob.upper_hh),  

                 size = 2, col = "grey") +  

  geom_point(aes(y = prob.upper_median), shape = 1) + 

  geom_point(aes(y = prob.upper), shape = 4, col = "red") + 

  ggtitle("Response Probabilities") +  

  ylab("Probability of upper resonse") + xlab("") + 

  scale_x_discrete(labels = new_x) 

 

p2 <- ggplot(d_speed_acc_agg2, aes(x = condition:frequency)) + 

  geom_linerange(aes(ymin =  medrt.upper_lll, ymax =  medrt.upper_hhh),  

                 col = "darkgrey") +  

  geom_linerange(aes(ymin =  medrt.upper_ll, ymax =  medrt.upper_hh),  

                 size = 2, col = "grey") +  

  geom_point(aes(y = medrt.upper_median), shape = 1) + 

  geom_point(aes(y = medrt.upper), shape = 4, col = "red") + 

  ggtitle("Median RTs upper") +  

  ylab("RT (s)") + xlab("") + 

  scale_x_discrete(labels = new_x) 

 

p3 <- ggplot(d_speed_acc_agg2, aes(x = condition:frequency)) + 

  geom_linerange(aes(ymin =  medrt.lower_lll, ymax =  medrt.lower_hhh),  

                 col = "darkgrey") +  

  geom_linerange(aes(ymin =  medrt.lower_ll, ymax =  medrt.lower_hh),  

                 size = 2, col = "grey") +  

  geom_point(aes(y = medrt.lower_median), shape = 1) + 

  geom_point(aes(y = medrt.lower), shape = 4, col = "red") + 

  ggtitle("Median RTs lower") +  

  ylab("RT (s)") + xlab("") + 

  scale_x_discrete(labels = new_x) 

 

grid.arrange(p1, p2, p3, ncol = 2) 

Figure 2.5.2: Plot of the Posterior Predictive Distribution 

 

 
Figure 2.5.3: Graph of the Measures of the Posterior 

Predictive Distribution 

A close examination of the plots reveals no dramatic 

misalignment. Overall, the model appears to be capable of 

describing the data's general patterns. Only the response 

probabilities for words (frequency = high) appear to be 

overestimated. The red x appears to be outside the 80 

percent confidence intervals, but possibly also outside the 95 

percent confidence intervals. The RT plots reveal an 

intriguing (but not surprising) pattern. The posterior 

predictive distributions for rare responses (i.e., "word" 

responses to upper/non-word stimuli and "nonword" 

responses to lower/word stimuli) are relatively broad. The 

posterior predictive distributions for the common responses, 

on the other hand, are relatively narrow. In each case, the 

observed median is within the 80 percent confidence interval 

and also very close to the predicted median. 

 

2.6 Individual Level Fit 

 

We look at predicted response probabilities on an individual 

level to further investigate the pattern. We plot the response 

probabilities in the same manner as before, but this time by 

participant id. 
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ggplot(speed_acc_agg, aes(x = condition:frequency)) + 

  geom_linerange(aes(ymin =  prob.upper_lll, ymax =  

prob.upper_hhh),  

                 col = "darkgrey") +  

  geom_linerange(aes(ymin =  prob.upper_ll, ymax =  

prob.upper_hh),  

                 size = 2, col = "grey") +  

  geom_point(aes(y = prob.upper_median), shape = 1) + 

  geom_point(aes(y = prob.upper), shape = 4, col = "red") + 

  facet_wrap(~id, ncol = 3) + 

  ggtitle("Prediced (in grey) and observed (red) response 

probabilities by ID") +  

  ylab("Probability of upper resonse") + xlab("") + 

  scale_x_discrete(labels = new_x) 

Figure 2.6.1: Plot of the Predicted Response Probabilities 

 

 
Figure 2.6.2: Graph of the Predicted Response Probabilities 

 

The above graph follows the same pattern as the aggregated 

data. We see no dramatic misfits among the participants. 

Furthermore, response probabilities to non-word stimuli 

appear to be fairly well predicted. Response probabilities for 

word stimuli, on the other hand, are predicted to be lower 

than observed. This misfit, on the other hand, does not 

appear to be overly powerful. Following that, we examine 

the coverage probabilities of our three measures across 

individuals. That is, for each of the measures, each of the 

design cells, and each of the CIs (50 percent, 80 percent, 95 

percent, and 99 percent), we calculate the proportion of 

participants whose observed test statistics fall within the 

corresponding CI. 

 

speed_acc_agg %>%  

  mutate(prob.upper_99 = (prob.upper >= prob.upper_llll) & 

           (prob.upper <= prob.upper_hhhh), 

         prob.upper_95 = (prob.upper >= prob.upper_lll) & 

           (prob.upper <= prob.upper_hhh), 

         prob.upper_80 = (prob.upper >= prob.upper_ll) & 

           (prob.upper <= prob.upper_hh), 

         prob.upper_50 = (prob.upper >= prob.upper_l) & 

           (prob.upper <= prob.upper_h), 

         medrt.upper_99 = (medrt.upper > medrt.upper_llll) & 

           (medrt.upper < medrt.upper_hhhh), 

         medrt.upper_95 = (medrt.upper > medrt.upper_lll) & 

           (medrt.upper < medrt.upper_hhh), 

         medrt.upper_80 = (medrt.upper > medrt.upper_ll) & 

           (medrt.upper < medrt.upper_hh), 

         medrt.upper_50 = (medrt.upper > medrt.upper_l) & 

           (medrt.upper < medrt.upper_h), 

         medrt.lower_99 = (medrt.lower > medrt.lower_llll) & 

           (medrt.lower < medrt.lower_hhhh), 

         medrt.lower_95 = (medrt.lower > medrt.lower_lll) & 

           (medrt.lower < medrt.lower_hhh), 

         medrt.lower_80 = (medrt.lower > medrt.lower_ll) & 

           (medrt.lower < medrt.lower_hh), 

         medrt.lower_50 = (medrt.lower > medrt.lower_l) & 

           (medrt.lower < medrt.lower_h) 

  ) %>%  

  group_by(condition, frequency) %>% ## grouping factors 

without id 

  summarise_at(vars(matches("\\d")), mean, na.rm = TRUE) 

%>%  

  gather("key", "mean", -condition, -frequency) %>%  

  separate("key", c("measure", "ci"), "_") %>%  

  spread(ci, mean) %>%  

  as.data.frame() 

#    condition frequency     measure    50     80    95    99 

# 1   accuracy      high medrt.lower 0.706 0.8824 0.882 1.000 

# 2   accuracy      high medrt.upper 0.500 0.8333 1.000 1.000 

# 3   accuracy      high  prob.upper 0.529 0.7059 0.765 0.882 

# 4   accuracy   nw_high medrt.lower 0.500 0.8125 0.938 

0.938 

# 5   accuracy   nw_high medrt.upper 0.529 0.8235 1.000 

1.000 

# 6   accuracy   nw_high  prob.upper 0.529 0.8235 0.941 

0.941 

# 7      speed      high medrt.lower 0.471 0.8824 0.941 1.000 

# 8      speed      high medrt.upper 0.706 0.9412 1.000 1.000 

# 9      speed      high  prob.upper 0.000 0.0588 0.588 0.647 

# 10     speed   nw_high medrt.lower 0.706 0.8824 0.941 

0.941 

# 11     speed   nw_high medrt.upper 0.471 0.7647 1.000 

1.000 

# 12     speed   nw_high  prob.upper 0.235 0.6471 0.941 

1.000 

Figure 2.6.3: Coverage Probabilities of the Measures 

 

As can be seen, the coverage probability for the RTs is 

generally in line with or even above the width of the CIs. 

Furthermore, the coverage probability for the common 

response (i.e., upper for frequency = nw high and lower for 

frequency = high) is 1 for the 99 percent CIs in all cases. 

Unfortunately, the coverage for response probabilities is not 
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very good. Particularly in high-speed conditions and for 

tighter CIs. However, the coverage probabilities are at least 

acceptable for the wide CIs. So far, the results indicate that 

the model provides an adequate account. There are some 

misfits to be aware of if one wishes to extend the model or 

fit it to new data, but overall it provides a satisfactory 

account. 

 

2.7 QQ-Plots: RTs 

 

The final method for assessing model fit will be based on 

more quantiles of the RT distribution (i.e., so far we only 

looked at th .5 quantile, the median). Individual observed 

versus predicted (i.e., mean from posterior predictive 

distribution) quantiles will then be plotted across conditions. 

To accomplish this, we first compute the quantiles per 

sample from the posterior predictive distribution and then 

aggregate across samples. This is accomplished through the 

use of dplyr::summarise at with a list column and 

tidyr::unnest to unstack the columns. The aggregated 

predicted RT quantiles are then combined with the observed 

RT quantiles. 

 

quantiles <- c(0.1, 0.25, 0.5, 0.75, 0.9) 

 

pp2 <- d_speed_acc %>%  

  group_by(id, condition, frequency) %>%  # select grouping vars 

  summarise_at(.vars = vars(starts_with("V")),  

               funs(lower = list(rownames_to_column( 

                 data.frame(q = quantile(abs(.[. < 0]), probs = quantiles)))), 

                    upper = list(rownames_to_column( 

                      data.frame(q = quantile(.[. > 0], probs = quantiles )))) 

               )) %>%  

  ungroup %>%  

  gather("key", "value", -id, -condition, -frequency) %>% # remove grouping vars 

  separate("key", c("rep", "boundary"), sep = "_") %>%  

  unnest(value) %>%  

  group_by(id, condition, frequency, boundary, rowname) %>% # grouping vars + new vars 

  summarise(predicted = mean(q, na.rm = TRUE)) 

 

rt_pp <- speed_acc %>%  

  group_by(id, condition, frequency) %>% # select grouping vars 

  summarise(lower = list(rownames_to_column( 

    data.frame(observed = quantile(rt[response == "word"], probs = quantiles)))), 

    upper = list(rownames_to_column( 

      data.frame(observed = quantile(rt[response == "nonword"], probs = quantiles )))) 

  ) %>%  

  ungroup %>%  

  gather("boundary", "value", -id, -condition, -frequency) %>% 

  unnest(value) %>%  

  left_join(pp2) 

Figure 2.7.1: Calculation of quantiles per sample from posterior predictive distribution & Aggregation across samples 

 

To assess the agreement between observed and predicted 

quantiles, we compute the concordance correlation 

coefficient for each cell and quantile. The CCC is a measure 

of absolute agreement between two values, making it more 

suitable than simple correlation. It is scaled from -1 to 1, 

with 1 representing perfect agreement, 0 representing no 

relationship, and -1 representing a -1 correlation with the 

same mean and variance of the two variables. The code 

below generates QQ-plots for each condition and quantile 

separately for responses to the upper and lower boundaries. 

The CCC measures of absolute agreement are indicated by 

the value in the upper left corner of each plot. 

 

plot_text <- rt_pp %>%  

  group_by(condition, frequency, rowname, boundary) %>%  

  summarise(ccc = format( 

    CCC(observed, predicted, na.rm = TRUE)$rho.c$est,  

    digits = 2)) 

 

p_upper <- rt_pp %>%  

  filter(boundary == "upper") %>%  

  ggplot(aes(x = observed, predicted)) + 

  geom_abline(slope = 1, intercept = 0) + 

  geom_point() + 

  facet_grid(condition+frequency~ rowname) +  
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  geom_text(data=plot_text[ plot_text$boundary == "upper", ], 

            aes(x = 0.5, y = 1.8, label=ccc),  

            parse = TRUE, inherit.aes=FALSE) + 

  coord_fixed() + 

  ggtitle("Upper responses") + 

  theme_bw() 

 

p_lower <- rt_pp %>%  

  filter(boundary == "lower") %>%  

  ggplot(aes(x = observed, predicted)) + 

  geom_abline(slope = 1, intercept = 0) + 

  geom_point() + 

  facet_grid(condition+frequency~ rowname) +  

  geom_text(data=plot_text[ plot_text$boundary == "lower", ], 

            aes(x = 0.5, y = 1.6, label=ccc),  

            parse = TRUE, inherit.aes=FALSE) + 

  coord_fixed() + 

  ggtitle("Lower responses") + 

  theme_bw() 

 

grid.arrange(p_upper, p_lower, ncol = 1) 

Figure 2.7.2: QQ-plot of the Quantiles  
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Figure 2.7.3: Graph of QQ-plot of the Quantiles with Upper and Lower response 

 

3. Parameter Estimation & Hypothesis Tests 
 

3.1 Introduction 

 

This is the third instalment of the series on fitting the Wiener 

4-parameter model with brms. The first section went over 

how to set up the data and model. The second section dealt 

with (mostly graphical) model diagnostics and the 

evaluation of the model's adequacy (i.e., fit). This third 

section will examine the model's parameter estimates to see 

if there is any evidence for differences between the 

conditions. As before, this part is completely self-contained 

and can be run without needing to run the code from Parts I 

or II. Due to the length of this section, I will provide a brief 

overview. The following section provides a brief explanation 

of how we will conduct hypothesis testing. This is followed 

by a brief section that loads some packages and the fitted 

model object before providing a brief recap of the model. 

Following this is a relatively long section that examines the 

drift rate parameters in a variety of ways. Then we'll look at 

each of the other three parameters one by one. The section 

on non-decision time will be especially important. As I'll 

explain further below, I believe this parameter cannot be 

interpreted. Finally, I provide a brief overview of some of 

the current model's limitations and how it could be 

improved. 

 

3.2 Bayesian Hypothesis Testing 

 

The purpose of this section is to show that there are 

differences in parameter estimates between conditions. 

Importantly, different methods of producing such evidence 

are only meant in a technical sense. In statistical terms, we 

will always inspect difference distributions resulting from 

linear combinations of cell-wise posterior distributions of 

group-level model parameter estimates. The slightly 

technical phrase "linear combinations of cell-wise posterior 

distributions" is frequently used to simply mean the 

difference between two distributions. The difference 

distribution, for example, is the result of subtracting the 

posterior of the speed condition from the posterior of the 

accuracy condition. To recap, a posterior distribution is the 

probability distribution of a parameter based on data and 

model (where the latter includes the parameter priors). It 

provides an answer to the question of which parameters are 

most likely given our prior knowledge and data. As a result, 

the posterior distribution of the difference answers questions 

such as whether the difference values between two 

conditions are likely or not. With such a disparity in 

distribution, we can do two things as stated below: 

 

 First, we can see if the difference distribution's x percent-

highest posterior density (HPD) or credibility interval 

includes 0. If 0 falls within the 95 percent HPD interval, 

it may be considered a plausible value. If 0 is outside the 

95 percent interval, we may consider it insufficiently 

plausible and conclude that there is evidence for a 

difference. 

 Second, we can determine how much of the difference 

distribution is on one side of 0 and how much is on the 

other. If this value deviates significantly from 50%, there 

is evidence of a difference. For example, if all of the 

posterior samples for a particular difference are greater 

than zero, this provides strong evidence that the 

difference is greater than zero. 

 

The investigation of posterior distributions to assess 

differences between conditions is only one method for 

hypothesis testing in a Bayesian setting. And, at least in the 

psychological literature, it is not the most widely accepted. 

Many of the more vocal supporters of Bayesian statistics in 

the psychological literature advocate hypothesis testing 

using Bayes factors. In general, I agree with many of the 

arguments in favour of the Bayes factor, particularly in cases 

like this one, where all relevant hypotheses or competing 

models are nested within a single large (super) model. The 
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main challenge with Bayes factors is their extreme 

sensitivity to parameter priors. In the case of nested models, 

this is not a major issue. This approach has been extended to 

general ANOVA designs. It has been applied to accumulator 

models. The general idea is to reparametrize the model using 

effect parameters that have been normalised, such as the 

residual variance. For a two-sample design, for example, 

parameterize the model with a standardised difference. 

Then, putting a prior on the standardised effect size measure 

is relatively simple and uncontroversial. In the current case, 

where the model lacks a residual variance parameter, such a 

normalisation could be accomplished by using the variance 

estimate of the group-level distribution for each parameter. 

 

Unfortunately, to the best of my knowledge, brms does not 

support specifying a parameterization and prior distribution 

in accordance with default Bayes factor. And, it's also 

unlikely that brms will ever get this ability. As a result, I 

believe that brms is not the best tool for model selection 

using Bayes factors. While it now technically supports this 

capability (via our bridge sampling package), it only 

supports models with unnormalized parameterization. I 

believe that such a parameterization is inappropriate for 

Bayes factors-based model selection in most cases because 

the priors cannot be specified in a 'default' manner. As a 

result, I am unable to recommend brms for Bayes factor-

based model selection at this time. To summarise, the reason 

we are basing our inferences solely on posterior distributions 

in this case is due to practical constraints rather than 

philosophical considerations. 

 

One final word of caution for the psychological audience. 

While Bayes factors are clearly popular in psychology, they 

are not in many other scientific disciplines. As far as I can 

tell, the difference stems from the different types of data that 

different people work with. When working with 

observational (or correlational) data, tests for the presence of 

effects (or nullity) are either a no-no (e.g., when trying to do 

causal inference) or simply uninteresting. We all know that 

the real world is full of arbitrary relationships, especially 

small ones. So simply increasing N to get effects is not 

interesting, and estimation is the more interesting approach. 

For experimental data, on the other hand, we frequently have 

true null hypotheses, and testing those makes a lot of sense. 

However, as far as I can tell, the effect is completely 

insignificant. In this case, hypothesis testing is critical. 

 

3.3 Getting Started 

 

We begin by loading some packages for posterior analysis. 

Since the beginning of this series, I've grown increasingly 

fond of the entire tidyverse, so we've imported it entirely. Of 

course, we require brms as well. As shown below, we will 

require a few more packages (particularly emmeans and 

tidybayes), but these are only loaded when necessary. Then 

we'll need the posterior samples, which we can load in the 

same way we did in Part II by loading into the Temporary 

folder, as shown in Figure 2.2.3. 

 

 

 

library("brms") 

library("tidyverse") 

theme_set(theme_classic()) # theme for ggplot2 

options(digits = 3) 

 

tmp <- tempdir() 

download.file("https://github.com/binmishr/Weiner-Model- 

Analysis/blob/main/brms_wiener_example_fit.rda", 

file.path(tmp, "brms_wiener_example_fit.rda")) 

load(file.path(tmp, "brms_wiener_example_fit.rda")) 

Figure 3.3.1: Loading of R libraries & Data file into Temp Folder 

 

#                                    Estimate Est.Error l-95% CI u-95% CI 

# conditionaccuracy:frequencyhigh      -2.944    0.1971   -3.345   -2.562 

# conditionspeed:frequencyhigh         -2.716    0.2135   -3.125   -2.299 

# conditionaccuracy:frequencynw_high    2.238    0.1429    1.965    2.511 

# conditionspeed:frequencynw_high       1.989    0.1785    1.626    2.332 

# bs_conditionaccuracy                  1.898    0.1448    1.610    2.186 

# bs_conditionspeed                     1.357    0.0813    1.200    1.525 

# ndt_conditionaccuracy                 0.323    0.0173    0.289    0.358 

# ndt_conditionspeed                    0.262    0.0154    0.232    0.293 

# bias_conditionaccuracy                0.471    0.0107    0.449    0.491 

# bias_conditionspeed                   0.499    0.0127    0.474    0.524 

# Warning message: 

# There were 7 divergent transitions after warmup. Increasing adapt_delta above 0.8 may help. 

Figure 3.3.2: Sample data of Group Level Posteriors 

 

As a reminder, we have data from a lexical decision task 

(i.e., participants must decide whether presented strings are 

words or not), and frequency is the factor determining a 

string's true status, with high referring to words and nw_high 

referring to non-words. As a result, the frequency factor 

determines the sign of the parameter estimates for the drift 
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rate (the first four rows in the results table), with the drift 

rate for words (rows 1 and 2) being clearly negative (i.e., 

those trials mostly hit the lower boundary for the word 

decision) and the drift rate for non-words (rows 3 and 4) 

being clearly positive (i.e., those trials mostly hit the upper 

boundary for non-word decisions). Furthermore, there may 

be differences in drift rates depending on the accuracy or 

speed conditions. In particular, drift rates appear to be less 

extreme (i.e., closer to 0) in the speed conditions when 

compared to the accuracy conditions. 

 

The only difference between the other three parameters is 

the condition factor. Given the experimental manipulation of 

the accuracy versus speed condition, we anticipate 

differences in the boundary separation parameters beginning 

with bs_. There appears to be a small effect for the non-

decision time, parameters beginning with ndt_, as the 95 

percent overlaps only slightly. However, as discussed in 

greater detail below, we must exercise caution in 

interpreting this distinction. Finally, there may or may not be 

a difference for bias parameters beginning with bias_. 

Furthermore, there appears to be a bias for "word" 

responses, at least in the accuracy condition. 

 

The hypothesis function in brms can be used to test 

differences between conditions. But I couldn't get it to work 

with the current model. I believe this is due to the somewhat 

unusual parameterizations in which each cell receives one 

parameter (in some sense each cell has its own intercept, but 

there is no overall intercept). In contrast, a more "standard" 

parameterization has one intercept (for either the unweighted 

means or one of the cells) and the remaining parameters 

capture the differences between the intercept and the cell 

means. As a reminder, I chose this unconventional 

parameterization in the first place to make it easier to specify 

the parameter priors. Furthermore, when programming 

cognitive models by hand, this is a common 

parameterization. 

3.3 Emmeans & tidybayes : Differences In Drift Rate 

 

Another option is to use excellent emmeans package. I am a 

huge fan of emmeans and use it frequently when working 

with "normal" statistical models (e.g., ANOVAs, mixed 

models), regardless of whether I use frequentist (e.g., via 

afex) or Bayesian methods (e.g., rstanarm or brms). 

Unfortunately, it appears that emmeans can only analyse the 

main parameter of the response distribution for models 

estimated with brms at the moment, which in our case is the 

drift rate. In any case, I strongly advise you to review the 

emmeans vignettes to get a sense of what types of follow-up 

tests are all possible with this fantastic package. 

 

As I recently discovered, emmeans plays well with 

tidybayes, a package that allows you to work with posterior 

draws within the tidyverse. tidybayes has an unusually large 

package footprint (i.e., it imports a large number of other 

packages) for a package with such limited functionality. I 

suppose this is a result of being a part of the tidyverse. In 

any case, many of the imported packages are already in the 

search path as a result of loading the tidyverse above, so 

attaching should be quick. 

 

We start with emmeans only to ensure that everything works 

as expected. We get the estimated marginal means plus 95 

percent -highest posterior density (HPD) intervals that match 

the output of the fixed effects for the central tendency 

estimate (which is the median of the posterior samples in 

both cases). As a reminder, the fact that the cell estimates 

match the parameter estimates is due to the unusual 

parameterization, which emmeans correctly detects. The 

lower and upper bounds of the intervals differ slightly 

between the summary outputs of brms and emmeans, as a 

result of the different methods for calculating the intervals 

(i.e., quantiles versus HPD intervals). 

 

library("emmeans") 

library("tidybayes") 

Figure 3.3.1: Loading of the R Libraries 

 

fit_wiener %>% 

  emmeans( ~ condition*frequency)  

#  condition frequency emmean lower.HPD upper.HPD 

#  accuracy  high       -2.94     -3.34     -2.56 

#  speed     high       -2.72     -3.10     -2.28 

#  accuracy  nw_high     2.24      1.96      2.50 

#  speed     nw_high     1.99      1.64      2.34 

#  

# HPD interval probability: 0.95 

Figure 3.3.2: Extracting Data with HPD Interval Probability 

 

3.4 HPD Intervals & Histograms 

 

As a first test, we want to see if there is evidence for a 

difference in speed and accuracy conditions for both words 

(frequency = high) and non-words (frequency = nw_high). 

There are several ways to accomplish this with emmeans, 

one of which is through the by argument and the pairs 

function. We don't have much evidence that there is a 

difference for either stimulus type here, because both HPD 

intervals include 0. 

 

fit_wiener %>% 
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  emmeans("condition", by = "frequency") %>%  

  pairs 

# frequency = high: 

#  contrast         estimate lower.HPD upper.HPD 

#  accuracy - speed   -0.225   -0.6964     0.256 

#  

# frequency = nw_high: 

#  contrast         estimate lower.HPD upper.HPD 

#  accuracy - speed    0.249   -0.0647     0.550 

#  

# HPD interval probability: 0.95 

Figure 3.4.1: Difference in speed and accuracy conditions for both (frequency = high) and non-words (frequency = nw_high). 

 

Instead of using emmeans to get the summary of the 

distribution, we can use tidybayes to extract the samples in a 

tidy manner. The samples are then aggregated based on the 

same conditioning variable using one of the handy 

aggregation functions included with tidybayes. After 

experimenting with a few different options, I believe 

emmeans' hpd.summary() function uses the same method for 

calculating HPD intervals as tidybayes, as both results 

match. 

 

samp1 <- fit_wiener %>% 

  emmeans("condition", by = "frequency") %>%  

  pairs %>%  

  gather_emmeans_draws() 

samp1 %>%  

  median_hdi() 

# # A tibble: 2 x 8 

# # Groups:   contrast [1] 

#   contrast         frequency .value  .lower .upper .width .point .interval 

#   <fct><fct><dbl><dbl><dbl><dbl><chr><chr> 

# 1 accuracy - speed high      -0.225 -0.696   0.256   0.95 median hdi       

# 2 accuracy - speed nw_high    0.249 -0.0647  0.550   0.95 median hdi 

Figure 3.4.2: Calculating HPD Intervals with Median 

 

samp1 %>%  

  mode_hdi() 

# # A tibble: 2 x 8 

# # Groups:   contrast [1] 

#   contrast         frequency .value  .lower .upper .width .point .interval 

#   <fct><fct><dbl><dbl><dbl><dbl><chr><chr> 

# 1 accuracy - speed high      -0.190 -0.696   0.256   0.95 mode   hdi       

# 2 accuracy - speed nw_high    0.252 -0.0647  0.550   0.95 mode   hdi 

Figure 3.4.3: Calculating HPD Intervals with Mode 

 

get_hdi <- function(x, level = 95) { 

  tmp <- hdrcde::hdr(x, prob = level) 

  list(data.frame(mode = tmp$mode[1], lower = tmp$hdr[1,1], upper = tmp$hdr[1,2])) 

} 

samp1 %>%  

  summarise(hdi = get_hdi(.value)) %>%  

  unnest 

# # A tibble: 2 x 5 

# # Groups:   contrast [1] 

#   contrast         frequency   mode   lower upper 

#   <fct><fct><dbl><dbl><dbl> 

# 1 accuracy - speed high      -0.227 -0.712  0.247 

# 2 accuracy - speed nw_high    0.249 -0.0616 0.558 

Figure 3.4.4: Calculating HPD Intervals For Sample Point Estimation with Mode and User Defined Function 

 

samp1 %>%  
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  summarise(hdi = get_hdi(.value, level = 80)) %>%  

  unnest 

# # A tibble: 2 x 5 

# # Groups:   contrast [1] 

#   contrast         frequency   mode   lower  upper 

#   <fct><fct><dbl><dbl><dbl> 

# 1 accuracy - speed high      -0.212 -0.540  0.0768 

# 2 accuracy - speed nw_high    0.246  0.0547 0.442 

Figure 3.4.4: Calculating HPD Intervals For Sample Point Estimation with Mode and User Defined Function with Level 80% 

 

We can now assess whether there is evidence for a drift rate 

difference between conditions for both word and non-word 

stimuli because we have the samples in a convenient format. 

One issue with this is that the direction of the effect varies 

between words and non-words. This is due to the fact that 

word stimuli necessitate a response at the lower decision 

boundary and non-word stimuli necessitate a response at the 

upper decision boundary. As a result, for one of the 

conditions, we must multiply the effect by -1. Then we can 

take the average of both conditions. We accomplish this 

using tidyverse magic, and we also add the number of values 

aggregated in this manner to the table. This is just a check to 

ensure that our logic is correct and that we always aggregate 

exactly two values. This is confirmed by the final check. 

 

samp2 <- samp1 %>%  

  mutate(val2 = if_else(frequency == "high", -1*.value, .value)) %>%  

  group_by(contrast, .draw) %>%  

  summarise(value = mean(val2), 

            n = n()) 

all(samp2$n == 2) 

# [1] TRUE 

Figure 3.4.5: Calculation of Drift Rate Difference between conditions for both word and non-word stimuli 

 

The resulting difference distribution can then be 

investigated. A histogram is one method for doing so 

graphically. It's a good idea to experiment with the number 

of bins until the figure looks right. Given the large number 

of samples, 75 bins seemed reasonable. There wasn't enough 

granularity with fewer bins, and there were too many small 

peaks with more bins. 

 

ggplot(samp2, aes(value)) + 

  geom_histogram(bins = 75) + 

  geom_vline(xintercept = 0) 

Figure 3.4.6: Code Plot of the Histogram of Drift Rate 

Difference between conditions for both word and non-word 

stimuli 

 

 
Figure 3.4.6: Histogram of Drift Rate Difference between 

conditions for both word and non-word stimuli 

 

The above histogram in figure 3.4.6 demonstrates that, while 

a significant portion of the posterior mass is to the right of 0, 

a significant portion is still to the left. So there is some 

evidence for a difference, but it is not very strong, even 

when words and non-words are considered together. The 

HPD intervals can also be used to investigate this difference 

distribution. To get a better picture, consider the following 

interval sizes. This demonstrates that 0 is excluded only for 

the 85 percent interval and smaller intervals. To get a 

graphical overview of the output, use hdrcde::hdr.den 

instead of hdrcde::hdr.den. 

 

hdrcde::hdr(samp2$value, prob = c(99, 95, 90, 80, 85, 50)) 

# $`hdr` 

#        [,1]  [,2] 

# 99% -0.1825 0.669 

# 95% -0.0669 0.554 

# 90% -0.0209 0.505 

# 85%  0.0104 0.471 

# 80%  0.0333 0.445 

# 50%  0.1214 0.340 

#  

# $mode 

# [1] 0.225 

#  

# $falpha 

#    1%    5%   10%   15%   20%   50%  

# 0.116 0.476 0.757 0.984 1.161 1.857  

Figure 3.4.7: Difference Distribution via Different HPD 

Intervals 

 

3.5 Bayesian P-values 

 

Calculating the actual proportion of samples below 0 is a 

method that requires fewer arbitrary cutoffs than HPDs (for 

which the width must be defined).As previously stated, if 
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this proportion is small, this would be evidence of a 

difference. In this case, the proportion of samples that are 

less than 0 is.067. Unfortunately,.067 is slightly higher than 

the magical cutoff of.05, which is universally accepted as 

distinguishing small from large numbers, or, perhaps more 

accurately, likely from unlikely probabilities. 

 

mean(samp2$value < 0) 

# [1] 0.0665 

Figure 3.5.1: Calculating Actual proportion of samples 

below 0 

 

Let's take a closer look at this proportion. If two posterior 

distributions are stacked exactly on top of each other, the 

resulting difference distribution is centred on 0, with exactly 

half of the difference distribution on either side of 0. As a 

result, a proportion of 50% corresponds to the least evidence 

for a difference or, alternatively, the strongest evidence for 

the absence of a difference. Another implication is that both 

values near 0 and values near 1 indicate a difference, albeit 

in opposite directions. To facilitate interpretation of these 

proportions, I recommend that they be calculated in such a 

way that small values represent evidence for a difference 

(e.g., by subtracting the proportion from 1 if it is above 

.5).But what exactly does this proportion tell us? It denotes 

the likelihood of a difference in a specific direction. As a 

result, it is one-sided evidence for a difference. In contrast, 

for a 95% HPD, we subtract 2.5 percent from both sides of 

the difference distribution. We must multiply this proportion 

by 2 to ensure that it has the same two-sided property as our 

HPD intervals. Another advantage of this multiplication is 

that it extends the range to the entire probability scale (i.e., 

from 0 to 1). 

 

As a result, the resulting value is a probability (ranging from 

0 to 1), with values close to zero indicating evidence for a 

difference and values close to one indicating evidence 

against a difference. Thus, unlike a traditional p-value, it is a 

continuous measure of evidence for (when near 0) or against 

(when near 1) a difference in parameter estimates. Given its 

superficial resemblance to classical p-values (low values are 

regarded as evidence for a difference), we could refer to it as 

a Bayesian p-value, or pB for short. In this case, we could 

say: The pB value for a difference in drift rate between 

speed and accuracy conditions across word and non-word 

stimuli is.13, indicating that the evidence for a difference is 

at best weak. Of course, Bayesian p-values can be abused in 

the same way that classical p-values can. For example, you 

could introduce arbitrary cutoff values, such as.05. Consider 

for a moment that we want to see if there are any differences 

in the absolute amount of evidence as measured by drift rate 

for any of the four cells in the design (I am not suggesting 

that is particularly sensible). This would necessitate 

transforming the posterior for all drift rates onto the same 

side (note, we do not want to take the absolute values as we 

still want to retain the information of switching from 

positive to negative drift rates or the other way around). For 

instance, multiply the drift rate for words by -1. We do so, 

and then we examine what the cell means. According to an 

examination of the four cell means, the drift rate values for 

words are greater than the values for non-words. 

samp3 <- fit_wiener %>% 

  emmeans( ~ condition*frequency) %>%  

  gather_emmeans_draws() %>%  

  mutate(.value = if_else(frequency == "high", -1 * .value, .value), 

         intera = paste(condition, frequency, sep = "."))  

samp3 %>%  

  mode_hdi(.value) 

# # A tibble: 4 x 8 

# # Groups:   condition [2] 

#   condition frequency .value .lower .upper .width .point .interval 

#   <fct><fct><dbl><dbl><dbl><dbl><chr><chr> 

# 1 accuracy  high        2.97   2.56   3.34   0.95 mode   hdi       

# 2 accuracy  nw_high     2.25   1.96   2.50   0.95 mode   hdi       

# 3 speed     high        2.76   2.28   3.10   0.95 mode   hdi       

# 4 speed     nw_high     2.00   1.64   2.34   0.95 mode   hdi 

Figure 3.5.2: Inspection of the four cell means of drift rate values for words and non-words 

 

I wrote two functions that return a compact letter display of 

all pairwise comparisons in order to get an overview of all 

pairwise differences using an arbitrary cut-off value. The 

functions require data in a wide format, with each column 

representing one parameter's draws. It's worth noting that the 

compact letter display is calculated by another package, 

multcompView, which must be installed before you can use 

these functions. 

 

get_p_matrix <- function(df, only_low = TRUE) { 

  # pre-define matrix 

  out <- matrix(-1, nrow = ncol(df), ncol = ncol(df), dimnames = list(colnames(df), colnames(df))) 

  for (i in seq_len(ncol(df))) { 

    for (j in seq_len(ncol(df))) { 

      out[i, j] <- mean(df[,i] < df[,j])  

    } 

  } 

  if (only_low) out[out > .5] <- 1- out[out > .5] 
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  out 

} 

cld_pmatrix <- function(model, pars, level = 0.05) { 

  p_matrix <- get_p_matrix(model) 

  lp_matrix <- (p_matrix < (level/2) | p_matrix > (1-(level/2))) 

  cld <- multcompView::multcompLetters(lp_matrix)$Letters 

  cld 

} 

samp3 %>% ungroup() %>% ## to get rid of unneeded columns 

  select(.value, intera, .draw) %>%  

  spread(intera, .value) %>%  

  select(-.draw) %>% ## we need to get rid of all columns not containing draws 

  cld_pmatrix() 

 

 

# accuracy.high accuracy.nw_high       speed.high    speed.nw_high  

#           "a"              "b"              "a"              "b" 

Figure 3.5.3: Using Functions to Find Compact Letter Display of all Pairwise Comparisons 

 

Conditions that share a common letter in a compact letter 

display do not differ based on the criterion. Conditions that 

do not share a common letter differ based on the criterion. 

The compact letter display in this case is not very 

informative and simply repeats what we saw above. The 

drift rates for words are divided into two groups, and the 

drift rates for non-words are divided into two groups. 

Compact letter displays can be quite informative in cases 

with more conditions or more complicated difference 

patterns. We could have also used tidybayes' functionality to 

inspect all pairwise comparisons. It is critical to use ungroup 

before calling the compare levels function. Otherwise, we 

get a difficult-to-understand error (the grouping appears to 

be a consequence of using emmeans). 

 

 

samp3 %>%  

  ungroup %>%  

  compare_levels(.value, by = intera) %>%  

  mode_hdi() 

# # A tibble: 6 x 7 

#   intera                           .value  .lower  .upper .width .point .interval 

#   <fct><dbl><dbl><dbl><dbl><chr><chr> 

# 1 accuracy.nw_high - accuracy.high -0.715 -1.09   -0.351    0.95 mode   hdi       

# 2 speed.high - accuracy.high       -0.190 -0.696   0.256    0.95 mode   hdi       

# 3 speed.nw_high - accuracy.high    -0.946 -1.46   -0.526    0.95 mode   hdi       

# 4 speed.high - accuracy.nw_high     0.488  0.0879  0.876    0.95 mode   hdi       

# 5 speed.nw_high - accuracy.nw_high -0.252 -0.550   0.0647   0.95 mode   hdi       

# 6 speed.nw_high - speed.high       -0.741 -1.12   -0.309    0.95 mode   hdi 

Figure 3.5.4: Using Tidybayes to Find Compact Letter Display of all Pairwise Comparisons 

 

3.6 Differences In Other Parameters 

 

As previously discussed, we appear to be unable to use 

emmeans to examine the differences in the other parameter. 

Fortunately, tidybayes still allows you to extract posterior 

samples in a tidy manner by using either gather_draws or 

spread_draws. It appears that you must pass the specific 

variable names you want to extract for either of those. We 

obtain them using get variables: 

 

get_variables(fit_wiener)[1:10] 

# [1] "b_conditionaccuracy:frequencyhigh"    "b_conditionspeed:frequencyhigh"       

# [3] "b_conditionaccuracy:frequencynw_high" "b_conditionspeed:frequencynw_high"    

# [5] "b_bs_conditionaccuracy"               "b_bs_conditionspeed"                  

# [7] "b_ndt_conditionaccuracy"              "b_ndt_conditionspeed"                 

# [9] "b_bias_conditionaccuracy"             "b_bias_conditionspeed" 

Figure 3.6.1: Extract Posterior Samples in Tidy Manner 
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3.7 Boundary Separation 

 

Spread_draws will be used to analyse the boundary 

separation. We begin by extracting the draws and then 

immediately compute the difference distribution between the 

two. 

 

samp_bs <- fit_wiener %>% 

  spread_draws(b_bs_conditionaccuracy, 

b_bs_conditionspeed) %>%  

  mutate(bs_diff = b_bs_conditionaccuracy - 

b_bs_conditionspeed) 

 

samp_bs 

# # A tibble: 2,000 x 6 

#    .chain .iteration .draw b_bs_conditionaccuracy 

b_bs_conditionspeed bs_diff 

#     <int><int><int><dbl><dbl><dbl> 

#  1      1          1     1                   1.73                1.48   0.250 

#  2      1          2     2                   1.82                1.41   0.411 

#  3      1          3     3                   1.80                1.28   0.514 

#  4      1          4     4                   1.85                1.42   0.424 

#  5      1          5     5                   1.86                1.37   0.493 

#  6      1          6     6                   1.81                1.36   0.450 

#  7      1          7     7                   1.67                1.34   0.322 

#  8      1          8     8                   1.90                1.47   0.424 

#  9      1          9     9                   1.99                1.20   0.790 

# 10      1         10    10                   1.76                1.19   0.569 

# # ... with 1,990 more rows 

Figure 3.7.1: Analysis of Boundary Separation of the 

Samples 

Of course, we can now use the same tools as before. Take a 

look at the histogram, for example. I chose 75 bins once 

more. Of course, we can now use the same tools as before. 

Take a look at the histogram, for example. I chose 75 bins 

once more. Overall, we can be fairly certain that varying the 

speed versus accuracy conditions affects the boundary 

separation in the current data set. Everything went exactly as 

planned. 

 

samp_bs %>%  

  ggplot(aes(bs_diff)) + 

  geom_histogram(bins = 75) + 

  geom_vline(xintercept = 0) 

Figure 3.7.2: Histogram Code of Boundary Separation of 

the Samples 

 

Figure 3.7.3: Histogram Plot Of Boundary Separation of the 

Samples 

sum(samp_bs$bs_diff < 0) 

# [1] 2 

mean(samp_bs$bs_diff < 0) *2 

# [1] 0.002 

Figure 3.7.4: Sample Data of Boundary Separation of the 

Samples below 0 

 

3.8 Non-Decision Time 

 

We use gather_draws to compare differences in non-

decision time. One advantage of this function over 

spread_draws is that it makes obtaining marginal estimates 

simple. As previously stated, the HPD intervals overlap only 

very slightly, indicating that there is a difference between 

the conditions. The resulting marginal estimates are saved 

for later use in new data.frame. ndt_mean is a data frame. 

 

samp_ndt <- fit_wiener %>% 

  gather_draws(b_ndt_conditionaccuracy, 

b_ndt_conditionspeed)  

(ndt_mean <- samp_ndt %>%  

  median_hdi()) 

# # A tibble: 2 x 7 

#   .variable               .value .lower .upper .width .point 

.interval 

#   <chr><dbl><dbl><dbl><dbl><chr><chr> 

# 1 b_ndt_conditionaccuracy  0.323  0.293  0.362   0.95 

median hdi       

# 2 b_ndt_conditionspeed     0.262  0.235  0.295   0.95 

median hdi 

Figure 3.8.1: Accessing Differences in Non-decision time to 

obtain Marginal Estimates 

 

To calculate the difference, it appears to me that the simplest 

approach is to spread the two variables across rows and then 

calculate the difference (similar to starting with spread 

draws in the first place). The resulting difference distribution 

can then be plotted again. 

 

samp_ndt2 <- samp_ndt %>%  

  spread(.variable, .value) %>%  

  mutate(ndt_diff = b_ndt_conditionaccuracy - 

b_ndt_conditionspeed)   

 

samp_ndt2 %>%  

  ggplot(aes(ndt_diff)) + 

  geom_histogram(bins = 75) + 

  geom_vline(xintercept = 0) 

Figure 3.8.2: Calculating the spread of two variables across 

rows and then calculate the difference from results of Figure 

3.8.1 
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Figure 3.8.3: Plotting Histogram of the results from Figure 

3.8.2 

 

As previously speculated, there appears to be compelling 

evidence for a distinction. We can confirm this further using 

the Bayesian p-value: 

 

mean(samp_ndt2$ndt_diff < 0) * 2 

# [1] 0.005 

Figure 3.8.4: Confirming Evidence of Difference of results 

of Figure 3.8.3 via Bayesian p-values 

 

So far, it appears that we discovered another significant 

difference in parameter estimates as a result of the 

manipulation. This, however, would be a hasty conclusion. 

In fact, examining the non-decision time estimated by the 4-

parameter Wiener model in this manner is completely 

misleading. The non-decision time parameter is only 

sensitive to a few data points, rather than capturing a 

meaningful feature of the response time distribution. In 

particular, the non-decision time reflects a specific feature of 

the distribution of minimum response times per participant 

and condition or cell for which it is estimated. For our 

example data, I will demonstrate this in the following.We 

must first load the data in the same manner as described in 

previous posts. The minimum RTs are then calculated for 

each participant and condition. 

 

data(speed_acc, package = "rtdists") 

speed_acc <- droplevels(speed_acc[!speed_acc$censor,]) # 

remove extreme RTs 

speed_acc <- droplevels(speed_acc[ speed_acc$frequency 

%in%  

                                     c("high", "nw_high"),]) 

min_val <- speed_acc %>%  

  group_by(condition, id) %>%  

  summarise(min = min(rt)) 

Figure 3.8.5: Calculating Minimum RTs per participant and 

Conditions 

 

To investigate the issue, we want to compare the distribution 

of minimum RTs with non-decision time estimates 

graphically. To accomplish this, we must add a condition 

column with matching condition names to the ndt_mean 

data.frame that we created earlier. Then we can combine 

them into a single plot. We also include a few summary 

statistics on the distribution of individual minimum RTs. 

The black points represent the individual minimum RTs for 

each of the two conditions; the blue + and blue x represent 

the median and mean of the individual minimum RTs; the 

blue circle represents the midpoint between the largest and 

smallest value of the minimum RT distributions; and the red 

square represents the point estimate of the non-decision time 

parameter with corresponding 95 percent HPD intervals. 

 

ndt_mean$condition <- c("accuracy", "speed") 

 

ggplot(min_val, aes(x = condition, y = min)) + 

  geom_jitter(width = 0.1) + 

  geom_pointrange(data = ndt_mean,  

                  aes(y = .value, ymin = .lower, ymax = .upper),  

                  shape = 15, size = 1, color = "red") + 

  stat_summary(col = "blue", size = 3.5, shape = 3,  

               fun.y = "median", geom = "point") + 

  stat_summary(col = "blue", size = 3.5, shape = 4,  

               fun.y = "mean", geom = "point") + 

  stat_summary(col = "blue", size = 3.5, shape = 16,  

               fun.y = function(x) (min(x) + max(x))/2,  

               geom = "point") 

Figure 3.8.6: Comparison of the distribution of Minimum 

RTs with Estimates for Non-Decision Times 

 

 
Figure 3.8.7: Graph Plot of the distribution of Minimum 

RTs with Estimates for Non-Decision Times 

 

This graph in Figure 3.8.7 shows that the estimated non-

decision time almost perfectly matches the midpoint 

between the largest and smallest minimum RT (i.e., the blue 

dot). To put this into context, consider comparing the 

number of minimum data points (i.e., the number of 

participants) to the total number of data points. 

 

speed_acc %>%  

  group_by(condition) %>%  

  summarise(n()) 

# # A tibble: 2 x 2 

#   condition `n()` 

#   <fct><int> 

# 1 accuracy   5221 

# 2 speed      5241 

 

length(unique(speed_acc$id)) 
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# [1] 17 

 

17 / 5000 

# [1] 0.0034 

Figure 3.8.8: Comparing the Number of data points with 

Total number of data points 

 

This demonstrates that the non-decision time parameter, one 

of only four model parameters, is largely determined by less 

than.5% of the data. If any of these minimum RTs is an 

outlier (which seems likely in the accuracy condition), a 

single response time can have a huge impact on the 

parameter estimate. In other words, it is unlikely that the 

non-decision time parameter reflects an actual latent process 

with the current implementation. Instead, it simply reflects 

the midpoint between the smallest and largest minimum RTs 

per participant and condition, slightly weighted toward the 

mass of the minimum RT distribution. This parameter 

estimate should not be used to draw any meaningful 

conclusions. 

 

In the present case, this blunder does not appear to be too 

significant. If only one of the data points in the accuracy 

condition is an outlier and the other data points are faithful 

representations of the response time distribution's leading 

edge (which is essentially what the non-decision time is 

supposed to capture), the current parameter estimates 

understate the true difference. This conclusion is supported 

further by using a more robust ad hoc measure of the leading 

edge, specifically the 10% trimmed mean of the 40 fastest 

RTs per participant and condition plotted below. This graph 

also no longer contains any obvious outliers. The non-

decision time estimates are still included for reference. 

However, having a parameter that is essentially driven by 

very few data points appears to be completely at odds with 

the general concept of cognitive modelling, and the 

interpretation of non-decision times obtained with such a 

model is not recommended. 

 

min_val2 <- speed_acc %>%  

  group_by(condition, id) %>%  

  summarise(min = mean(sort(rt)[1:40], trim = 0.1)) 

 

ggplot(min_val2, aes(x = condition, y = min)) + 

  geom_jitter(width = 0.1) + 

  stat_summary(col = "blue", size = 3.5, shape = 3,  

               fun.y = "median", geom = "point") + 

  stat_summary(col = "blue", size = 3.5, shape = 4,  

               fun.y = "mean", geom = "point") + 

  stat_summary(col = "blue", size = 3.5, shape = 16,  

               fun.y = function(x) (min(x) + max(x))/2,  

               geom = "point") + 

  geom_point(data = ndt_mean, aes(y = .value), shape = 15,  

             size = 2, color = "red") 

Figure 3.8.9: Plotting of Data Points with 10% trimmed 

mean of the 40 fastest RTs per participant and condition of 

Samples 

 

 
Figure 3.8.10: Graph of Data Points with 10% trimmed 

mean of the 40 fastest RTs per participant and condition Of 

Samples 

 

It is important to note that this confound does not apply to 

all model implementations, but only to the 4-parameter 

Wiener model as implemented here. There are solutions to 

this problem, two of which I'd like to highlight here. To 

begin, one could add trial variability in non-decision time 

across trials. This variability is frequently assumed to follow 

a uniform distribution, which can capture outliers at the 

response time distribution's leading edge. Second, rather 

than fitting only a model, one could assume that some of the 

responses are contaminants from a different process, such as 

random responses from a uniform distribution ranging from 

the absolute minimum to the maximum RT. Technically, this 

is a mixture model of the process and a uniform distribution 

with either a free or fixed mixture/contamination rate. It 

should be relatively simple to implement such a mixture 

model in brms using a custom_family, and I hope to find the 

time to do so at some point in the future. 

 

Of course, I am not the first to notice this behaviour of the 4-

parameter Wiener model. However, this problem appears to 

be particularly prevalent in a Bayesian setting because the 4-

parameter model variant is readily available while model 

variants dealing with this problem are not. I found some 

time ago what would be the best way to address this issue, 

and one thing I remember that using the 4-parameter Wiener 

model, we can simply ignore the non-decision time 

parameter. That still appears to be the best option to me. 

 

I hope there aren't too many papers that use the 4-parameter 

model in this manner to interpret differences in the non-

decision time parameter.  

 

3.9 Starting Point / Bias  

 

Finally, we can examine the starting point or bias. We repeat 

this process with spread_draws and plot the resulting 

difference distribution. 

samp_bias <- fit_wiener %>% 

  spread_draws(b_bias_conditionaccuracy, 

b_bias_conditionspeed) %>%  
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  mutate(bias_diff = b_bias_conditionaccuracy - 

b_bias_conditionspeed) 

samp_bias %>%  

  ggplot(aes(bias_diff)) + 

  geom_histogram(bins = 100) + 

  geom_vline(xintercept = 0) 

Figure 3.9.1: Examining the Starting Point or Bias of 

Sampling Data Distribution  

 
Figure 3.9.2: Histogram of Starting Point or Bias of 

Sampling Data Distribution 

 

The difference distributions imply that there could be a 

difference. As a result, we compute the Bayesian p-value 

next. This time, we calculate the difference in the opposite 

direction, so evidence for a difference is represented by 

small values. 

 

mean(samp_bias$bias_diff > 0) *2 

# [1] 0.046 

Figure 3.9.3: Calculating the Bayesian p-values of 

Sampling Data Distribution 

 

Together with the evidence for a difference, we can now 

more confidently postulate that there is a bias toward the 

lower boundary and "word" responses in the accuracy 

condition, whereas evidence accumulation begins unbiased 

in the speed condition. We are fortunate in that our Bayesian 

p-value is just below.05, leading us to believe that the 

difference is real. To wrap things up, here are some more 

estimates: 

 

fit_wiener %>% 

  gather_draws(b_bias_conditionaccuracy, 

b_bias_conditionspeed) %>%  

  summarise(hdi = get_hdi(.value, level = 80)) %>%  

  unnest 

# # A tibble: 2 x 4 

#   .variable                 mode lower upper 

#   <chr><dbl><dbl><dbl> 

# 1 b_bias_conditionaccuracy 0.470 0.457 0.484 

# 2 b_bias_conditionspeed    0.498 0.484 0.516 

Figure 3.9.4: Estimating the Starting Point or Bias of 

Sampling Data Distribution 

 

For the current data, we find a specific pattern that is 

commonly perceived as typical. In the accuracy condition, 

error RTs are significantly slower than correct RTs, as 

shown below. This effect does not exist in the speed 

condition, where error RTs are faster than correct RTs. 

 

speed_acc %>%  

  mutate(correct = stim_cat == response) %>%  

  group_by(condition, correct, id) %>%  

  summarise(mean = mean(rt),  

            se = mean(rt)/sqrt(n())) %>%  

  summarise(mean = mean(mean), 

            se = mean(se)) 

# # A tibble: 4 x 4 

# # Groups:   condition [?] 

#   condition correct  mean     se 

#   <fct><lgl><dbl><dbl> 

# 1 accuracy  FALSE   0.751 0.339  

# 2 accuracy  TRUE    0.693 0.0409 

# 3 speed     FALSE   0.491 0.103  

# 4 speed     TRUE    0.513 0.0314 

Figure 3.9.5: Examining of Error RTs & Correct RTs 

 

Given the difference in the relative speeds of correct and 

error responses in the accuracy condition, it may come as no 

surprise that the accuracy condition also has a measurable 

bias. Specifically, a preference for word responses. 

However, as can be seen by inserting stim cat into the above 

group by call, the difference in relative error rate is 

especially pronounced for non-words, where a bias toward 

words should result in faster errors. As a result, it appears 

that the current model variant does not fully account for 

some of the more subtle effects in the data. 

 

The standard method for dealing with differences in the 

relative speed of errors in weiner modelling is to use across-

trial variability in model parameters. Variability in the 

starting point enables errors to be faster than correct RTs. 

Error RTs can be slower than correct RTs due to drift rate 

variability. However, as will be discussed further below, 

introducing these variables into a Bayesian framework has 

its own set of issues.  

 

4. Conclusion 
 

Overall, the fit is better for accuracy than for speed 

conditions, according to the results. Fit is also better for the 

common response (i.e., nw_high for upper and high for 

lower responses). This latter observation is, once again, 

unsurprising. When the fit for the different quantiles is 

compared, it appears that at least the median (i.e., 50%) 

shows acceptable values for the common response. 

However, especially in the speed condition, the other 

quantiles are not well taken into account. Nonetheless, 

dramatic misfit is only seen in rare responses. The 

comparatively low variances in some of the cells could 

explain some of the low CCCs in the speed conditions. For 

example, for both common speed conditions (i.e., speed and 

nw_high for upper responses and speed and high for lower 

responses), a visual inspection of the plot suggests an 

acceptable account while some CCC values are low (i.e.,.5). 

Only in the speed conditions do we see systematic 
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deviations for the 90 percent quantile (and slightly less for 

the 75 percent quantile). The model predicts slower RTs 

than what has been observed. 

 

As I've mentioned several times throughout this series, the 

model used here is the 4-parameter Wiener model. While 

this allows for estimation in the first place, it does have a 

few drawbacks. One of them has been extensively discussed 

in this section. The non-decision time parameter estimate 

essentially captures a feature of the distribution of minimum 

RTs. If these are contaminated by responses that cannot be 

assumed to be the result of the same process as the other 

responses (which I believe a priori to be quite likely), the 

estimate loses its meaning. I believe that the risks far 

outweigh the benefits. Another feature of the 4-parameter 

Wiener model is that it predicts equal mean response times 

for correct and error responses in the absence of a bias for 

any of the response options. This is possibly the most 

important theoretical constraint that has led to the 

development of many of the more highly parameterized 

model variants, such as the full (i.e., 7-parameter) model. 

While this series concludes here, there are a few more things 

that appear to be important, interesting, or viable. Here they 

are: 

 We haven't yet looked at the estimates of the group-level 

parameters, which is a crucial step (i.e., standard 

deviations and correlations). They may contain important 

information about the specific data set and research 

question, but they may also contain information about the 

model parameters' trade-offs. 

 To interpret the non-decision time, replace the pure 

Wiener process with a mixture of a Wiener and a 

uniform distribution. As previously stated, this should be 

possible with a custom family in brms. 

 As previously stated, differences in the relative speed of 

error and correct RTs were one of the driving forces 

behind modern response time models. Variabilities in 

model parameters are typically used to explain these. The 

hierarchical structure is a relatively simple way to 

implement these variables in a Bayesian setting. For 

example, for the drift rate, each participant receives a by-

trial random intercept, + (0+id||trial) (the double bar 

notation should ensure that these are uncorrelated across 

participants). While this appears to be a simple concept, I 

doubt such a model will converge in a reasonable 

timeframe. Given the theoretical significance of this 

approach, it appears to be an extremely important angle 

to investigate. 

 It takes a long time to fit the Wiener model. It would be 

interesting to compare the fit using full Bayesian 

inference (i.e., sampling as done here) with variational 

Bayes (i.e., posterior parametric approximation), which 

is also implemented in Stan. I expect it to be ineffective, 

but the comparison would be fascinating. Diagnostics for 

variational Bayes were recently introduced. 
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