
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 4, April 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Weiner Model

Binayaka Mishra

Project Manager, Competency & Data Analytics, Tech Mahindra, Electronics City, Phase II, Bangalore -560100, Karnataka, India

Abstract: This is the three-part series on the Weiner Model analysis, in which I will demonstrate various stages of model

implementation using R code and R Package BRMS. The first instalment of the series demonstrates the basics of modelling and

estimation. The second instalment of the series will demonstrate how to perform model diagnostics and access the model fit. Finally, the

third section demonstrates how to test for differences in parameters between conditions.

Keywords: Weiner Model Analysis, Data Science, Bayesian Hypothesis Tests, Weiner Model Fit & Estimation, Weiner Model

Diagnostics, Weiner Model Parameter Estimation

1. Introduction & Estimation

1.1 Introduction

Stan is, in my opinion, the most intriguing development in

computational statistics in recent years. The Hamiltonian

Monte-Carlo (HMC) version implemented in Stan is

extremely efficient, and the range of probability distributions

implemented in the Stan language allows for the fitting of an

extremely wide range of models. Stan has significantly

altered which models I believe can be realistically estimated

in terms of both model complexity and data size. It is not an

exaggeration to say that Stan (particularly rstan) has

significantly altered the way I analyse data.

Brms is one of the R packages that allows for the simple

implementation of Stan models and has recently gained

popularity. Using the R formula interface, it is possible to

specify a wide range of models. It generates the model code,

compiles it, and then passes it along with the data to rstan

for sampling based on the formula and a specification of the

model family. I've avoided brms so far because I usually

programme my models by hand (thanks to the excellent Stan

documentation: Stan - Documentation (mc-stan.org)).

However, I recently discovered that brms can estimate the

Wiener model for simultaneously accounting for responses

and corresponding response times for data from two-choice

tasks. Such information is common in psychology, and the

model is one of the most popular cognitive models available.

In this series, I'll show how to use brms to apply the Wiener

model to some published data. The first section explains

how to set up and estimate the model. The second section

provides an overview of model diagnostics as well as an

evaluation of model fit using posterior predictive

distributions. The third section demonstrates how to inspect

and compare the parameter posterior distributions.

This first part requires brms and a working C++ compiler, as

well as the packages RWiener for generating the posterior

predictive distribution within brms and rtdists for the data.

Library(“brms”)

1.2 Data & Model

Figure 1.2.1: The Wiener model for two-choice reaction

times is depicted graphically. An evidence counter begins

with the value 'alpha'*'beta' and progresses with random

increments. 'delta' is the mean increment. The process ends

when the amount of evidence accumulated exceeds 'alpha' or

exceeds 0. The decision process begins at time 'tau' after the

stimulus is presented and ends at the reaction time.

I expect the reader to be familiar with the Wiener model and

will only provide a brief overview here; for more

information. For binary choice tasks, the Wiener model is a

continuous-time evidence accumulation model. It is assumed

that evidence is accumulated in each trial by a single

accumulator in a noisy process. The accumulation of

evidence begins at the start point and continues until the

accumulator reaches one of the two decision bounds, at

which point the corresponding response is given. The total

response time is the sum of the accumulation process's

decision time and non-decisional components. To

summarise, the Wiener model allows for the decomposition

of responses to binary choice tasks and corresponding

response times into four latent processes:

 The average slope of the accumulation process towards

the boundaries is represented by the drift rate (delta). The

greater the (absolute value of the) drift rate, the more

evidence there is for the corresponding response option.

 The distance between the two decision bounds (alpha) is

interpreted as a measure of response caution.

 The accumulation process's starting point (beta) is a

measure of response bias towards one of the two

response boundaries.

 Non-decision time (tau) encompasses all non-decisional

processes such as stimulus encoding and response

processes.

Paper ID: SR22401092446 DOI: 10.21275/SR22401092446 201

https://mc-stan.org/users/documentation/index.html

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 4, April 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

We will examine a portion of the data from my github

account/repository ,“binmishr/Weiner-Model-Analysis”. The

data file which has been used below for the figure 1.2.2 is

predictions data and can be downloaded from link

https://github.com/binmishr/Weiner-Model-

Analysis/blob/main/brms_wiener_example_predictions.rda.

The data comes from 17 participants who completed a

lexical decision task in which they had to determine whether

a given string was a word or not. In different experimental

blocks, participants made decisions based on either speed or

accuracy emphasis instructions. To reduce estimation time,

we restrict the analysis to high-frequency words (frequency

= high) and the corresponding high-frequency non-words

(frequency = nw_high) after removing some extreme

RTs(Response Time). To complete the model, we'll also

need a numeric response variable with a value of 0

corresponding to responses at the lower response boundary

and a value of 1 corresponding to responses at the upper

response boundary. We do this by converting the categorical

response variable response to a numeric value and

subtracting one, so that a word response corresponds to the

lower response boundary and a nonword response

corresponds to the upper response boundary.

Figure 1.2.2: Sample Data from McKoon's. (2008)

1.3 Model Formula

The most important decision to make before creating a

model is which parameters are allowed to vary between

which conditions (i.e., factor levels). One constraint shared

by the Wiener model (and other evidence-accumulation

models) is that the parameters set before the evidence

accumulation process begins (i.e., boundary separation,

starting point, and non-decision time) cannot change based

on stimulus characteristics unknown to the participant before

the trial begins. As a result, the item-type, in this case word

versus non-word, is usually only allowed to influence the

drift rate. We adhere to this constraint. Furthermore, as the

speed and accuracy conditions are manipulated between

blocks of trials, all four parameters are allowed to vary. It's

also worth noting that all relevant variables are controlled

within-subjects. As a result, the maximal random-effects

structure includes random-effects parameters for each fixed-

effect. To set up the model, we need to use the bf() function

and create one formula for each of the Wiener model's four

parameters.

Figure 1.3.1: Weiner Model Formula

Paper ID: SR22401092446 DOI: 10.21275/SR22401092446 202

https://github.com/binmishr/Weiner-Model-Analysis/blob/main/brms_wiener_example_predictions.rda
https://github.com/binmishr/Weiner-Model-Analysis/blob/main/brms_wiener_example_predictions.rda

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 4, April 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

The first formula is for the drift rate and is also used to

specify the column on the left-hand side that contains the

RTs (rt) and the response or decision (response2). On the

right side, fixed and random effects can be specified in a

manner similar to lme4. Because the drift rate is allowed to

vary between both variables, condition and frequency (stim

cat would be equivalent), we estimate fixed and random

effects for both variables as well as their interaction. We

must then create one formula for each of the remaining three

parameters (which are only allowed to vary by condition).

The parameter names are indicated on the left side of these

formulas:

 bs stands for boundary separation (alpha)

 ndt stands for non-decision time (tau)

 bias: beginning point (beta)

The fixed- and random-effects are again specified on the

right side. It is worth noting that one common approach for

developing evidence accumulation models is to specify that

one response boundary represents correct responses and the

other response boundary denotes incorrect responses (in

contrast to the current approach in which the response

boundaries represent the actually two response options). In

such a case, the starting point cannot be estimated and must

be set to 0.5 (i.e., replace the formula with bias = 0.5).

Two more points are important in the formulas. To begin, I

used an unusual parameterization and suppressed the

intercept (e.g., 0 + condition instead of condition). When an

intercept is present, categorical variables (i.e., factors) with k

levels are coded with k-1 deviation variables, which

represent deviations from the intercept. As a result, in a

Bayesian setting, the prior for these deviation variables must

be considered. In contrast, when the intercept is suppressed,

the model can be configured so that each factor level (or

design cell, if more than one factor is involved) receives its

own parameter, as shown here. This allows for the same

prior for each parameter (as long as one does not expect the

parameters to vary dramatically). Furthermore, this is a

common parameterization when programming a model,

oneself. Compare the following two calls to see the

differences between parameterizations (model. Matrix is the

function that creates the parameterization internally). Only

the first generates a unique parameter for each condition.

Figure 1.3.2: Model Matrix Function

It should be noted that if more than one factor is involved

and this parameterization is to be used, the factors must be

combined using the: and not the *. This is visible when the

code below is executed. Also, when the factors with: are

combined without suppressing the intercept, the resulting

model has one parameter more than can be estimated (i.e.,

the model-matrix is rank deficient). As a result, caution is

required at this stage. Second, brms formulas allow for the

estimation of correlations between random-effects

parameters of different formulas. To accomplish this, insert

an identifier in the middle of the random-effects formula,

separated by | on both sides. Correlations between random-

effects formulas will then be estimated for all random-

effects formulas with the same identifier. In our case, we

want to use the "latent-trait approach" to estimate the full

random-effects matrix with correlations among all model

parameters. As a result, we use the same identifier (p) in all

formulas. As a result, correlations between all individual-

level deviations across all four Wiener parameters will be

estimated. Simply omit the identifier (e.g., (0 +

condition|id)) to estimate correlations only among the

random-effects parameters of each formula. Furthermore,

brms, like afex, allows you to suppress correlations between

categorical random-effects parameters using || (e.g., (0 +

condition||id)).

Figure 1.3.3: Model Matrix Sample Code with Parameters

1.4 Family, Link-Functions and Priors

The following step is to configure the priors. To accomplish

this, we can use the get_prior function. This function

requires the formula, data, and model family to be specified.

The family argument is the one in which we tell brms that

we want to use the wiener model. It is also used to define the

link function for the four Wiener parameters. Because the

drift rate can be any value (ranging from -Inf to Inf), the

default link function is "identity" (i.e., no transformation),

which we keep. The other three parameters are all limited in

their range. The boundary must be greater than zero, the

non-decision time must be greater than zero but less than the

smallest RT, and the starting point must be between 0 and 1.

These constraints are respected by the default link-functions,

which use "log" for the first two parameters and "logit" for

Paper ID: SR22401092446 DOI: 10.21275/SR22401092446 203

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 4, April 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

the bias. This is certainly an option, but it has a number of

drawbacks that lead me to use the "identity" link function for

all parameters. To begin, priors must be specified on the

untransformed scale when parameters are transformed.

Second, the individual-level deviations (i.e., the random-

effects estimates) are assumed to be multivariate normal

distributions. Individual deviations are only normally

distributed on the untransformed scale if the parameters are

transformed. Similarly, correlations of parameter deviations

across parameters would be on the untransformed scale as

well. Both complicate the interpretation of the random

effects. When specifying the parameters without

transformation (i.e., link = "identity"), care must be taken to

ensure that the priors place the greatest weight on values

within the allowed range. Similarly, starting values must be

within the permitted range. Using the identity link function

has some drawbacks, which are discussed further below.

However, as long as parameters outside the allowed range

occur only infrequently, such a model can successfully

converge, making interpretation easier. The get prior

function returns a data.frame containing all model

parameters. If parameters have default priors, these are also

listed. Priors must be defined for individual parameters,

parameter classes, parameter classes for specific groups, or

dpars. It should be noted that all parameters that do not have

a default prior should be assigned a specific prior.

Figure 1.4.1: Configuration of Priors

Figure 1.4.2: Output Of get_prior Function

Priors can be defined using the prior or set_prior functions,

which provide varying degrees of control. One advantage of

the model's parameterization is that we only need to specify

priors for one set of Wiener parameters (i.e., b) and do not

need to differentiate between intercept and other parameters.

We choose the priors based on prior knowledge of likely

Wiener model parameter values, but otherwise try to specify

them in a weakly informative manner. That is, they should

limit the range to likely values while not affecting the

estimation in any way. We use a Cauchy distribution with

location 0 and scale 5 for the drift rate, so that roughly 70%

of the prior mass is between -10 and 10. We use a normal

prior with a mean of 1.5 and a standard deviation of one for

boundary separation, a normal prior with a mean of 0.2 and

a standard deviation of 0.1 for non-decision time, and a

normal prior with a mean of 0.5 (i.e., no-bias) and a standard

deviation of 0.2 for bias.

Figure 1.4.3: Defining the priors with data

With this knowledge, we can use the make_stancode

function to inspect the entire model code. It is critical to

ensure that all parameters listed in the parameters block have

a prior listed in the model block. We can also see at the start

of the model block that none of our parameters have been

transformed exactly as we would like.

Paper ID: SR22401092446 DOI: 10.21275/SR22401092446 204

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 4, April 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

make_stancode(formula,

 family = wiener(link_bs = "identity",

 link_ndt = "identity",

 link_bias = "identity"),

 data = speed_acc,

 prior = prior)

Figure 1.4.4: Inspection of Weiner Modelwith make_stancode Function

// generated with brms 1.10.2

functions {

 /* Wiener Model log-PDF for a single response

 * Args:

 * y: reaction time data

 * dec: decision data (0 or 1)

 * alpha: boundary separation parameter > 0

 * tau: non-decision time parameter > 0

 * beta: initial bias parameter in [0, 1]

 * delta: drift rate parameter

 * Returns:

 * a scalar to be added to the log posterior

 */

 real wiener_model_lpdf(real y, int dec, real alpha,

 real tau, real beta, real delta) {

 if (dec == 1) {

 return wiener_lpdf(y | alpha, tau, beta, delta);

 } else {

 return wiener_lpdf(y | alpha, tau, 1 - beta, - delta);

 }

 }

}

data {

 int<lower=1> N; // total number of observations

 vector[N] Y; // response variable

 int<lower=1> K; // number of population-level effects

 matrix[N, K] X; // population-level design matrix

 int<lower=1> K_bs; // number of population-level effects

 matrix[N, K_bs] X_bs; // population-level design matrix

 int<lower=1> K_ndt; // number of population-level effects

 matrix[N, K_ndt] X_ndt; // population-level design matrix

 int<lower=1> K_bias; // number of population-level effects

 matrix[N, K_bias] X_bias; // population-level design matrix

 // data for group-level effects of ID 1

 int<lower=1> J_1[N];

 int<lower=1> N_1;

 int<lower=1> M_1;

 vector[N] Z_1_1;

 vector[N] Z_1_2;

 vector[N] Z_1_3;

 vector[N] Z_1_4;

 vector[N] Z_1_bs_5;

 vector[N] Z_1_bs_6;

 vector[N] Z_1_ndt_7;

 vector[N] Z_1_ndt_8;

 vector[N] Z_1_bias_9;

 vector[N] Z_1_bias_10;

 int<lower=1> NC_1;

 int<lower=0,upper=1> dec[N]; // decisions

 int prior_only; // should the likelihood be ignored?

}

transformed data {

Paper ID: SR22401092446 DOI: 10.21275/SR22401092446 205

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 4, April 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

 real min_Y = min(Y);

}

parameters {

 vector[K] b; // population-level effects

 vector[K_bs] b_bs; // population-level effects

 vector[K_ndt] b_ndt; // population-level effects

 vector[K_bias] b_bias; // population-level effects

 vector<lower=0>[M_1] sd_1; // group-level standard deviations

 matrix[M_1, N_1] z_1; // unscaled group-level effects

 // cholesky factor of correlation matrix

 cholesky_factor_corr[M_1] L_1;

}

transformed parameters {

 // group-level effects

 matrix[N_1, M_1] r_1 = (diag_pre_multiply(sd_1, L_1) * z_1)';

 vector[N_1] r_1_1 = r_1[, 1];

 vector[N_1] r_1_2 = r_1[, 2];

 vector[N_1] r_1_3 = r_1[, 3];

 vector[N_1] r_1_4 = r_1[, 4];

 vector[N_1] r_1_bs_5 = r_1[, 5];

 vector[N_1] r_1_bs_6 = r_1[, 6];

 vector[N_1] r_1_ndt_7 = r_1[, 7];

 vector[N_1] r_1_ndt_8 = r_1[, 8];

 vector[N_1] r_1_bias_9 = r_1[, 9];

 vector[N_1] r_1_bias_10 = r_1[, 10];

}

model {

 vector[N] mu = X * b;

 vector[N] bs = X_bs * b_bs;

 vector[N] ndt = X_ndt * b_ndt;

 vector[N] bias = X_bias * b_bias;

 for (n in 1:N) {

 mu[n] = mu[n] + (r_1_1[J_1[n]]) * Z_1_1[n] + (r_1_2[J_1[n]]) * Z_1_2[n] + (r_1_3[J_1[n]]) * Z_1_3[n] + (r_1_4[J_1[n]])

* Z_1_4[n];

 bs[n] = bs[n] + (r_1_bs_5[J_1[n]]) * Z_1_bs_5[n] + (r_1_bs_6[J_1[n]]) * Z_1_bs_6[n];

 ndt[n] = ndt[n] + (r_1_ndt_7[J_1[n]]) * Z_1_ndt_7[n] + (r_1_ndt_8[J_1[n]]) * Z_1_ndt_8[n];

 bias[n] = bias[n] + (r_1_bias_9[J_1[n]]) * Z_1_bias_9[n] + (r_1_bias_10[J_1[n]]) * Z_1_bias_10[n];

 }

 // priors including all constants

 target += cauchy_lpdf(b | 0, 5);

 target += normal_lpdf(b_bs | 1.5, 1);

 target += normal_lpdf(b_ndt | 0.2, 0.1);

 target += normal_lpdf(b_bias | 0.5, 0.2);

 target += student_t_lpdf(sd_1 | 3, 0, 10)

 - 10 * student_t_lccdf(0 | 3, 0, 10);

 target += lkj_corr_cholesky_lpdf(L_1 | 1);

 target += normal_lpdf(to_vector(z_1) | 0, 1);

 // likelihood including all constants

 if (!prior_only) {

 for (n in 1:N) {

 target += wiener_model_lpdf(Y[n] | dec[n], bs[n], ndt[n], bias[n], mu[n]);

 }

 }

}

generated quantities {

 corr_matrix[M_1] Cor_1 = multiply_lower_tri_self_transpose(L_1);

 vector<lower=-1,upper=1>[NC_1] cor_1;

 // take only relevant parts of correlation matrix

 cor_1[1] = Cor_1[1,2];

 [...]

Paper ID: SR22401092446 DOI: 10.21275/SR22401092446 206

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 4, April 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

 cor_1[45] = Cor_1[9,10];

}

Figure 1.4.5: Function of Wiener Model log-PDF for a single response

Before we can finally estimate the model, we need a

function that generates initial values. Estimation will not

begin unless initial values that lead to an identifiable model

for all data points are provided. The function must provide

initial values for all parameters listed in the model's

parameters block. It is worth noting that many of those

parameters have at least one dimension with a parameterized

extent (e.g., K). To obtain the required information, we can

use make_standata to create the data set used by brms for

estimation. Then, in function initfun, we use this data object

(i.e., a list) to generate the appropriately sized initial values

(note that initfun relies on the fact that tmp_dat is in the

global environment, which is a bit of a code smell).

tmp_dat <- make_standata(formula,

 family = wiener(link_bs = "identity",

 link_ndt = "identity",

 link_bias = "identity"),

 data = speed_acc, prior = prior)

str(tmp_dat, 1, give.attr = FALSE)

List of 26

$ N : int 10462

$ Y : num [1:10462(1d)] 0.773 0.39 0.435 ...

$ K : int 4

$ X : num [1:10462, 1:4] 0 0 0 0 0 0 0 0 0 0 ...

$ Z_1_1 : num [1:10462(1d)] 0 0 0 0 0 0 0 0 0 0 ...

$ Z_1_2 : num [1:10462(1d)] 0 1 1 1 1 1 0 1 1 0 ...

$ Z_1_3 : num [1:10462(1d)] 0 0 0 0 0 0 0 0 0 0 ...

$ Z_1_4 : num [1:10462(1d)] 1 0 0 0 0 0 1 0 0 1 ...

$ K_bs : int 2

$ X_bs : num [1:10462, 1:2] 0 0 0 0 0 0 0 0 0 0 ...

$ Z_1_bs_5 : num [1:10462(1d)] 0 0 0 0 0 0 0 0 0 0 ...

$ Z_1_bs_6 : num [1:10462(1d)] 1 1 1 1 1 1 1 1 1 1 ...

$ K_ndt : int 2

$ X_ndt : num [1:10462, 1:2] 0 0 0 0 0 0 0 0 0 0 ...

$ Z_1_ndt_7 : num [1:10462(1d)] 0 0 0 0 0 0 0 0 0 0 ...

$ Z_1_ndt_8 : num [1:10462(1d)] 1 1 1 1 1 1 1 1 1 1 ...

$ K_bias : int 2

$ X_bias : num [1:10462, 1:2] 0 0 0 0 0 0 0 0 0 0 ...

$ Z_1_bias_9 : num [1:10462(1d)] 0 0 0 0 0 0 0 0 0 0 ...

$ Z_1_bias_10: num [1:10462(1d)] 1 1 1 1 1 1 1 1 1 1 ...

$ J_1 : int [1:10462(1d)] 1 1 1 1 1 1 1 1 1 1 ...

$ N_1 : int 17

$ M_1 : int 10

$ NC_1 : num 45

$ dec : num [1:10462(1d)] 1 0 0 0 0 0 0 0 0 0 ...

$ prior_only : int 0

initfun <- function() {

 list(

 b = rnorm(tmp_dat$K),

 b_bs = runif(tmp_dat$K_bs, 1, 2),

 b_ndt = runif(tmp_dat$K_ndt, 0.1, 0.15),

 b_bias = rnorm(tmp_dat$K_bias, 0.5, 0.1),

 sd_1 = runif(tmp_dat$M_1, 0.5, 1),

 z_1 = matrix(rnorm(tmp_datM_1*tmp_datN_1, 0,

0.01),
 tmp_datM_1, tmp_datN_1),

 L_1 = diag(tmp_dat$M_1)

)

}

Figure 1.4.6: Functions to generate initial values for Model

Estimation

Estimation (Sampling)

Finally, we have all of the pieces in place and can use the

brm function to estimate the Wiener model. Please keep in

mind that this will take approximately a full day, and may

take longer depending on the speed of your PC. We've also

increased the maximum treedepth to 15. We should have

probably increased adapt_delta above the default value of.8

because there are a few divergent transitions, but that is up

to the reader. After we finish estimating, we see that there

are a few (10) divergent transitions. If this were a real

analysis rather than an example, we would need to increase

adapt_delta to a higher value (e.g.,.95 or.99) and rerun the

estimation. In this case, however, we immediately proceed

to the second step and use predict to obtain samples from the

posterior predictive distribution. It is critical to specify the

number of posterior samples in this case (here we use 500).

Furthermore, for obtaining the actual posterior predictive

distribution rather than a summary of the posterior predictive

distribution, set summary = FALSE and negative rt = TRUE.

The latter ensures that predicted responses to the lower

boundary are negative, whereas predicted responses to the

upper boundary are positive.

fit_wiener <- brm(formula,

 data = speed_acc,

 family = wiener(link_bs = "identity",

 link_ndt = "identity",

 link_bias = "identity"),

 prior = prior, inits = initfun,

 iter = 1000, warmup = 500,

 chains = 4, cores = 4,

 control = list(max_treedepth = 15))

NPRED <- 500

pred_wiener <- predict(fit_wiener,

 summary = FALSE,

 negative_rt = TRUE,

 nsamples = NPRED)

Figure 1.5.1: Weiner Model Estimation

We save the results of both steps because they are both time

consuming (estimation takes a day, obtaining posterior

predictives takes a few hours). Given the relative size of

both objects, using the 'xz' compression (the strongest in R)

appears to be a good idea.

Paper ID: SR22401092446 DOI: 10.21275/SR22401092446 207

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 4, April 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

save(fit_wiener, file = "brms_wiener_example_fit.rda",

 compress = "xz")

save(pred_wiener, file = "brms_wiener_example_predictions.rda",

 compress = "xz")

Figure 1.5.2: Saving Results of Weiner Model Estimation

2. Model Fit & Diagnostics

2.1 Introduction

This second section is concerned with perhaps the most

important steps in any model-based data analysis, model

diagnostics and model fit assessment. It should be noted that

the code in this part is completely self-contained and can be

run without requiring the code from Part I.

2.2 Setup

We begin by loading a large number of packages that we

will require later on. Obviously, brms, but also some of the

tidyverse packages (i.e., dplyr, tidyr, tibble, and ggplot2). It

took me a while to get on board with tidyverse, but now that

I'm using it more and more, I can't deny its usefulness. If

your data can be made 'tidy,' the tidyverse's cohesive set of

tools makes many seemingly difficult tasks relatively

simple. A few examples will be provided below. GridExtra

is also required for combining plots, as is DescTools for the

concordance correlation coefficient CCC, which is used

below.

library("brms")
library("dplyr")

library("tidyr")

library("tibble") # for rownames_to_column

library("ggplot2")

library("gridExtra") # for grid.arrange

library("DescTools") # for CCC

Figure 2.2.1: Loading of the R Libraries

data(speed_acc, package = "rtdists")

speed_acc <- droplevels(speed_acc[!speed_acc$censor,]) # remove extreme RTs

speed_acc <- droplevels(speed_acc[speed_acc$frequency %in%

 c("high", "nw_high"),])

speed_acc$response2 <- as.numeric(speed_acc$response)-1

Figure 2.2.2: Loading of the data with rtdists package

I've used a binary R data file that contains the fitted model

object as well as the generated posterior predictive

distributions below, which we can download directly into R.

It's worth noting that I had to go through a temporary folder

to get there. For your convenience, I have attached both

Model fit and predictions .RDA files in my Github

account/repository “binmishr/Weiner-Model-Analysis”. You

can download the attached files to your PC location, change

the file path in the download. File function and then load the

files into temporary folder per the syntax given below in

figure 2.2.3

tmp <- tempdir()

download.file("https://github.com/binmishr/Weiner-Model-Analysis/blob/main/brms_wiener_example_fit.rda",

 file.path(tmp, "brms_wiener_example_fit.rda"))

download.file("https://github.com/binmishr/Weiner-Model-Analysis/blob/main/brms_wiener_example_predictions.rda",

 file.path(tmp, "brms_wiener_example_predictions.rda"))

load(file.path(tmp, "brms_wiener_example_fit.rda"))

load(file.path(tmp, "brms_wiener_example_predictions.rda"))

Figure 2.2.3: Downloading the Model & Prediction data into Temporary folder

2.3 Model Diagnostics

Part I already informed us that there are a few divergent

transitions. If this were a real analysis, we would be

dissatisfied with the current fit and would attempt to rerun

brm with a higher adapt_delta in the hope of removing the

divergent transitions. According to the Stan warning

guidelines, "the validity of the estimates is not guaranteed if

there are post-warmup divergences." However, it is unclear

how the small number of divergent transitions (<10)

observed here affects the posterior. It's also unclear what to

do if adapt delta can't be increased any longer and the model

can't be reparametrized. Should all fits with any divergent

transitions be ignored entirely. Returning to our fit, we

Paper ID: SR22401092446 DOI: 10.21275/SR22401092446 208

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 4, April 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

check the R-hat statistic as well as the number of effective

samples as a first step in our model diagnostics. We focus on

the parameters with the highest R
2
 and the fewest effective

samples. Both are unproblematic (R-hat 1.05 and n eff >

100), indicating that the sampler has converged on the

stationary distribution.

tail(sort(rstan::summary(fit_wiener$fit)$summary[,"Rhat"]))

sd_id__conditionaccuracy:frequencyhigh

1.00

r_id__bs[15,conditionaccuracy]

1.00

b_bias_conditionaccuracy

1.00

cor_id__conditionspeed:frequencyhigh__ndt_conditionaccuracy

1.00

sd_id__ndt_conditionspeed

1.00

cor_id__conditionspeed:frequencynw_high__bs_conditionspeed

1.01

head(sort(rstan::summary(fit_wiener$fit)$summary[,"n_eff"]))

lp__

462

b_conditionaccuracy:frequencyhigh

588

sd_id__ndt_conditionspeed

601

sd_id__conditionspeed:frequencyhigh

646

b_conditionspeed:frequencyhigh

695

r_id[12,conditionaccuracy:frequencyhigh]

712

Figure 2.3.1: Measuring the R-hat statistics& Number of effective samples

pars <- parnames(fit_wiener)

pars_sel <- c(sample(pars[1:10], 3), sample(pars[-(1:10)], 3))

plot(fit_wiener, pars = pars_sel, N = 6,

 ask = FALSE, exact_match = TRUE, newpage = TRUE, plot = TRUE)

Figure 2.3.2: Plotting of the data

Paper ID: SR22401092446 DOI: 10.21275/SR22401092446 209

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 4, April 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 2.3.3: Graph of Chain behaviour of the Sampled data

Finally, there are some discussions in the literature about

parameter trade-offs for the related models. These trade-offs

are said to make fitting the model in a Bayesian setting

particularly difficult. We look at the joint posterior of the

fixed-effects of the main Wiener parameters for the accuracy

condition to see if fitting the Wiener model with HMC as

implemented in Stan (i.e., NUTS) also shows this pattern.

For this, we use the pairs function's stanfit method with the

condition set to "divergent__." This plot shows the few

divergent transitions above the diagonal and the remaining

samples below it.

pairs(fit_wiener$fit, pars = pars[c(1, 3, 5, 7, 9)], condition = "divergent__")

Figure 2.3.4: Plotting of the divergent Transitions of the Sampled data

Paper ID: SR22401092446 DOI: 10.21275/SR22401092446 210

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 4, April 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 2.3.5: Graph of the Divergent Transitions

The below table displays the ten largest absolute values of

correlations among posteriors for all pairwise parameter

combinations. The value in column Freq is the observed

correlation between the posteriors of the two parameters

listed in the two previous columns, which is somewhat

counterintuitive. To make this table, I used a trick called

as.table, which is in charge of labelling the column

containing the correlation value Freq.

posterior <- as.mcmc(fit_wiener, combine_chains = TRUE)

cor_posterior <- cor(posterior)

cor_posterior[lower.tri(cor_posterior, diag = TRUE)] <- NA

cor_long <- as.data.frame(as.table(cor_posterior))

cor_long <- na.omit(cor_long)

tail(cor_long[order(abs(cor_long$Freq)),], 10)

Var1 Var2 Freq

43432 b_ndt_conditionspeed r_id__ndt[1,conditionspeed] -0.980

45972 r_id__ndt[4,conditionspeed] r_id__ndt[11,conditionspeed] 0.982

46972 b_ndt_conditionspeed r_id__ndt[16,conditionspeed] -0.982

44612 b_ndt_conditionspeed r_id__ndt[6,conditionspeed] -0.983

46264 b_ndt_conditionspeed r_id__ndt[13,conditionspeed] -0.983

45320 b_ndt_conditionspeed r_id__ndt[9,conditionspeed] -0.984

45556 b_ndt_conditionspeed r_id__ndt[10,conditionspeed] -0.985

46736 b_ndt_conditionspeed r_id__ndt[15,conditionspeed] -0.985

44140 b_ndt_conditionspeed r_id__ndt[4,conditionspeed] -0.990

Paper ID: SR22401092446 DOI: 10.21275/SR22401092446 211

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 4, April 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

45792 b_ndt_conditionspeed r_id__ndt[11,conditionspeed] -0.991

Figure 2.3.6: Correlations values among posteriors for all pairwise parameter combinations

pairs(fit_wiener$fit, pars =

 c("b_ndt_conditionspeed",

 "r_id__ndt[11,conditionspeed]",

 "r_id__ndt[4,conditionspeed]"),

 condition = "divergent__")

Figure 2.3.7: Plotting of the Correlations values among

posteriors for all pairwise parameter combinations

Figure 2.3.8: Graph of the Correlations values among

posteriors for all pairwise parameter combinations

Overall, the model diagnostics show no particularly

troubling behaviour (with the exception of the divergent

transitions). We've discovered that some of the individual-

level estimates for some of the parameters aren't very

reliable. This, however, does not rule out the overall fit. The

main take away from this fact is that we must exercise

caution when interpreting individual-level estimates. As a

result, we assume the fit is satisfactory and proceed to the

next step of the analysis.

hist(cor_long$Freq, breaks = 40)

Figure 2.3.9: Plotting of the Histogram of Correlations

values

Figure 2.3.10: Histogram graph of the Correlations values among posteriors for all pairwise parameter combinations

2.4 Accessing Model Fit

We will now look into the model fit. That is, we will

investigate whether the model adequately describes the

observed data. We will primarily do so through graphical

checks. To accomplish this, we must first prepare the

posterior predictive distribution and the data. We begin by

combining the posterior predictive distributions with the

data. Then, for each cell of the design (i.e., a combination of

condition and frequency factors), we compute three

important measures (or test statistics T()):

 Probability of responding with an upper boundary

response (i.e., "nonword").

 Median response times (RTs) to the upper boundary.

 The lower boundary's median RTs.

This is first computed for each sample of the posterior

predictive distribution. The median and some additional

Paper ID: SR22401092446 DOI: 10.21275/SR22401092446 212

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 4, April 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

quantiles across the posterior predictive distribution are then

calculated to summarise these three measures. We compute

all of this in a single step using a lengthy combination of

dplyr and tidyr magic.

d_speed_acc <- as_tibble(cbind(speed_acc, as_tibble(t(pred_wiener))))

Figure 2.4.1: Combination of posterior predictive distribution with data

d_speed_acc_agg <- d_speed_acc %>%

 group_by(id, condition, frequency) %>% # select grouping vars

 summarise_at(.vars = vars(starts_with("V")),

 funs(prob.upper = mean(. > 0),

 medrt.lower = median(abs(.[. < 0])),

 medrt.upper = median(.[. > 0])

)) %>%

 ungroup %>%

 gather("key", "value", -id, -condition, -frequency) %>% # remove grouping vars

 separate("key", c("rep", "measure"), sep = "_") %>%

 spread(measure, value) %>%

 group_by(id, condition, frequency) %>% # select grouping vars

 summarise_at(.vars = vars(prob.upper, medrt.lower, medrt.upper),

 .funs = funs(median = median(., na.rm = TRUE),

 llll = quantile(., probs = 0.01,na.rm = TRUE),

 lll = quantile(., probs = 0.025,na.rm = TRUE),

 ll = quantile(., probs = 0.1,na.rm = TRUE),

 l = quantile(., probs = 0.25,na.rm = TRUE),

 h = quantile(., probs = 0.75,na.rm = TRUE),

 hh = quantile(., probs = 0.9,na.rm = TRUE),

 hhh = quantile(., probs = 0.975,na.rm = TRUE),

 hhhh = quantile(., probs = 0.99,na.rm = TRUE)

))

Figure 2.4.2: Calculate Posterior predictive distribution, Median & quantiles across measures

Following that, we compute the three measures for the data and combine them with the results of the posterior predictive

distribution in a single data set. frame created with left join

speed_acc_agg <- speed_acc %>%

 group_by(id, condition, frequency) %>% # select grouping vars

 summarise(prob.upper = mean(response == "nonword"),

 medrt.upper = median(rt[response == "nonword"]),

 medrt.lower = median(rt[response == "word"])

) %>%

 ungroup %>%

 left_join(d_speed_acc_agg)

Figure 2.4.3: Calculating measures & Combining with Posterior predictive distribution

2.5 Aggregated Model Fit

The first critical question is whether our model can

adequately describe the aggregated patterns in the data

across participants. We simply use mean to aggregate the

results obtained in the previous step (i.e., the summary

results from the posterior predictive distribution as well as

the data test statistics). The summaries are then used to plot

predictions (in grey and black) as well as data (in red) for the

three measures. The inner (fat) error bars represent the 80%

credibility intervals (CIs), while the outer (thin) error bars

represent the 95% CIs. The median of the posterior

predictive distributions is depicted by the black circle.

d_speed_acc_agg2 <- speed_acc_agg %>%

 group_by(condition, frequency) %>%

 summarise_if(is.numeric, mean, na.rm = TRUE) %>%

 ungroup

Figure 2.5.1: Aggregation of the Posterior predictive distribution

Paper ID: SR22401092446 DOI: 10.21275/SR22401092446 213

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 4, April 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

new_x <- with(d_speed_acc_agg2,

 paste(rep(levels(condition), each = 2),

 levels(frequency), sep = "\n"))

p1 <- ggplot(d_speed_acc_agg2, aes(x = condition:frequency)) +

 geom_linerange(aes(ymin = prob.upper_lll, ymax = prob.upper_hhh),

 col = "darkgrey") +

 geom_linerange(aes(ymin = prob.upper_ll, ymax = prob.upper_hh),

 size = 2, col = "grey") +

 geom_point(aes(y = prob.upper_median), shape = 1) +

 geom_point(aes(y = prob.upper), shape = 4, col = "red") +

 ggtitle("Response Probabilities") +

 ylab("Probability of upper resonse") + xlab("") +

 scale_x_discrete(labels = new_x)

p2 <- ggplot(d_speed_acc_agg2, aes(x = condition:frequency)) +

 geom_linerange(aes(ymin = medrt.upper_lll, ymax = medrt.upper_hhh),

 col = "darkgrey") +

 geom_linerange(aes(ymin = medrt.upper_ll, ymax = medrt.upper_hh),

 size = 2, col = "grey") +

 geom_point(aes(y = medrt.upper_median), shape = 1) +

 geom_point(aes(y = medrt.upper), shape = 4, col = "red") +

 ggtitle("Median RTs upper") +

 ylab("RT (s)") + xlab("") +

 scale_x_discrete(labels = new_x)

p3 <- ggplot(d_speed_acc_agg2, aes(x = condition:frequency)) +

 geom_linerange(aes(ymin = medrt.lower_lll, ymax = medrt.lower_hhh),

 col = "darkgrey") +

 geom_linerange(aes(ymin = medrt.lower_ll, ymax = medrt.lower_hh),

 size = 2, col = "grey") +

 geom_point(aes(y = medrt.lower_median), shape = 1) +

 geom_point(aes(y = medrt.lower), shape = 4, col = "red") +

 ggtitle("Median RTs lower") +

 ylab("RT (s)") + xlab("") +

 scale_x_discrete(labels = new_x)

grid.arrange(p1, p2, p3, ncol = 2)

Figure 2.5.2: Plot of the Posterior Predictive Distribution

Figure 2.5.3: Graph of the Measures of the Posterior

Predictive Distribution

A close examination of the plots reveals no dramatic

misalignment. Overall, the model appears to be capable of

describing the data's general patterns. Only the response

probabilities for words (frequency = high) appear to be

overestimated. The red x appears to be outside the 80

percent confidence intervals, but possibly also outside the 95

percent confidence intervals. The RT plots reveal an

intriguing (but not surprising) pattern. The posterior

predictive distributions for rare responses (i.e., "word"

responses to upper/non-word stimuli and "nonword"

responses to lower/word stimuli) are relatively broad. The

posterior predictive distributions for the common responses,

on the other hand, are relatively narrow. In each case, the

observed median is within the 80 percent confidence interval

and also very close to the predicted median.

2.6 Individual Level Fit

We look at predicted response probabilities on an individual

level to further investigate the pattern. We plot the response

probabilities in the same manner as before, but this time by

participant id.

Paper ID: SR22401092446 DOI: 10.21275/SR22401092446 214

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 4, April 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

ggplot(speed_acc_agg, aes(x = condition:frequency)) +

 geom_linerange(aes(ymin = prob.upper_lll, ymax =

prob.upper_hhh),

 col = "darkgrey") +

 geom_linerange(aes(ymin = prob.upper_ll, ymax =

prob.upper_hh),

 size = 2, col = "grey") +

 geom_point(aes(y = prob.upper_median), shape = 1) +

 geom_point(aes(y = prob.upper), shape = 4, col = "red") +

 facet_wrap(~id, ncol = 3) +

 ggtitle("Prediced (in grey) and observed (red) response

probabilities by ID") +

 ylab("Probability of upper resonse") + xlab("") +

 scale_x_discrete(labels = new_x)

Figure 2.6.1: Plot of the Predicted Response Probabilities

Figure 2.6.2: Graph of the Predicted Response Probabilities

The above graph follows the same pattern as the aggregated

data. We see no dramatic misfits among the participants.

Furthermore, response probabilities to non-word stimuli

appear to be fairly well predicted. Response probabilities for

word stimuli, on the other hand, are predicted to be lower

than observed. This misfit, on the other hand, does not

appear to be overly powerful. Following that, we examine

the coverage probabilities of our three measures across

individuals. That is, for each of the measures, each of the

design cells, and each of the CIs (50 percent, 80 percent, 95

percent, and 99 percent), we calculate the proportion of

participants whose observed test statistics fall within the

corresponding CI.

speed_acc_agg %>%

 mutate(prob.upper_99 = (prob.upper >= prob.upper_llll) &

 (prob.upper <= prob.upper_hhhh),

 prob.upper_95 = (prob.upper >= prob.upper_lll) &

 (prob.upper <= prob.upper_hhh),

 prob.upper_80 = (prob.upper >= prob.upper_ll) &

 (prob.upper <= prob.upper_hh),

 prob.upper_50 = (prob.upper >= prob.upper_l) &

 (prob.upper <= prob.upper_h),

 medrt.upper_99 = (medrt.upper > medrt.upper_llll) &

 (medrt.upper < medrt.upper_hhhh),

 medrt.upper_95 = (medrt.upper > medrt.upper_lll) &

 (medrt.upper < medrt.upper_hhh),

 medrt.upper_80 = (medrt.upper > medrt.upper_ll) &

 (medrt.upper < medrt.upper_hh),

 medrt.upper_50 = (medrt.upper > medrt.upper_l) &

 (medrt.upper < medrt.upper_h),

 medrt.lower_99 = (medrt.lower > medrt.lower_llll) &

 (medrt.lower < medrt.lower_hhhh),

 medrt.lower_95 = (medrt.lower > medrt.lower_lll) &

 (medrt.lower < medrt.lower_hhh),

 medrt.lower_80 = (medrt.lower > medrt.lower_ll) &

 (medrt.lower < medrt.lower_hh),

 medrt.lower_50 = (medrt.lower > medrt.lower_l) &

 (medrt.lower < medrt.lower_h)

) %>%

 group_by(condition, frequency) %>% ## grouping factors

without id

 summarise_at(vars(matches("\\d")), mean, na.rm = TRUE)

%>%

 gather("key", "mean", -condition, -frequency) %>%

 separate("key", c("measure", "ci"), "_") %>%

 spread(ci, mean) %>%

 as.data.frame()

condition frequency measure 50 80 95 99

1 accuracy high medrt.lower 0.706 0.8824 0.882 1.000

2 accuracy high medrt.upper 0.500 0.8333 1.000 1.000

3 accuracy high prob.upper 0.529 0.7059 0.765 0.882

4 accuracy nw_high medrt.lower 0.500 0.8125 0.938

0.938

5 accuracy nw_high medrt.upper 0.529 0.8235 1.000

1.000

6 accuracy nw_high prob.upper 0.529 0.8235 0.941

0.941

7 speed high medrt.lower 0.471 0.8824 0.941 1.000

8 speed high medrt.upper 0.706 0.9412 1.000 1.000

9 speed high prob.upper 0.000 0.0588 0.588 0.647

10 speed nw_high medrt.lower 0.706 0.8824 0.941

0.941

11 speed nw_high medrt.upper 0.471 0.7647 1.000

1.000

12 speed nw_high prob.upper 0.235 0.6471 0.941

1.000

Figure 2.6.3: Coverage Probabilities of the Measures

As can be seen, the coverage probability for the RTs is

generally in line with or even above the width of the CIs.

Furthermore, the coverage probability for the common

response (i.e., upper for frequency = nw high and lower for

frequency = high) is 1 for the 99 percent CIs in all cases.

Unfortunately, the coverage for response probabilities is not

Paper ID: SR22401092446 DOI: 10.21275/SR22401092446 215

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 4, April 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

very good. Particularly in high-speed conditions and for

tighter CIs. However, the coverage probabilities are at least

acceptable for the wide CIs. So far, the results indicate that

the model provides an adequate account. There are some

misfits to be aware of if one wishes to extend the model or

fit it to new data, but overall it provides a satisfactory

account.

2.7 QQ-Plots: RTs

The final method for assessing model fit will be based on

more quantiles of the RT distribution (i.e., so far we only

looked at th .5 quantile, the median). Individual observed

versus predicted (i.e., mean from posterior predictive

distribution) quantiles will then be plotted across conditions.

To accomplish this, we first compute the quantiles per

sample from the posterior predictive distribution and then

aggregate across samples. This is accomplished through the

use of dplyr::summarise at with a list column and

tidyr::unnest to unstack the columns. The aggregated

predicted RT quantiles are then combined with the observed

RT quantiles.

quantiles <- c(0.1, 0.25, 0.5, 0.75, 0.9)

pp2 <- d_speed_acc %>%

 group_by(id, condition, frequency) %>% # select grouping vars

 summarise_at(.vars = vars(starts_with("V")),

 funs(lower = list(rownames_to_column(

 data.frame(q = quantile(abs(.[. < 0]), probs = quantiles)))),

 upper = list(rownames_to_column(

 data.frame(q = quantile(.[. > 0], probs = quantiles))))

)) %>%

 ungroup %>%

 gather("key", "value", -id, -condition, -frequency) %>% # remove grouping vars

 separate("key", c("rep", "boundary"), sep = "_") %>%

 unnest(value) %>%

 group_by(id, condition, frequency, boundary, rowname) %>% # grouping vars + new vars

 summarise(predicted = mean(q, na.rm = TRUE))

rt_pp <- speed_acc %>%

 group_by(id, condition, frequency) %>% # select grouping vars

 summarise(lower = list(rownames_to_column(

 data.frame(observed = quantile(rt[response == "word"], probs = quantiles)))),

 upper = list(rownames_to_column(

 data.frame(observed = quantile(rt[response == "nonword"], probs = quantiles))))

) %>%

 ungroup %>%

 gather("boundary", "value", -id, -condition, -frequency) %>%

 unnest(value) %>%

 left_join(pp2)

Figure 2.7.1: Calculation of quantiles per sample from posterior predictive distribution & Aggregation across samples

To assess the agreement between observed and predicted

quantiles, we compute the concordance correlation

coefficient for each cell and quantile. The CCC is a measure

of absolute agreement between two values, making it more

suitable than simple correlation. It is scaled from -1 to 1,

with 1 representing perfect agreement, 0 representing no

relationship, and -1 representing a -1 correlation with the

same mean and variance of the two variables. The code

below generates QQ-plots for each condition and quantile

separately for responses to the upper and lower boundaries.

The CCC measures of absolute agreement are indicated by

the value in the upper left corner of each plot.

plot_text <- rt_pp %>%

 group_by(condition, frequency, rowname, boundary) %>%

 summarise(ccc = format(

 CCC(observed, predicted, na.rm = TRUE)$rho.c$est,

 digits = 2))

p_upper <- rt_pp %>%

 filter(boundary == "upper") %>%

 ggplot(aes(x = observed, predicted)) +

 geom_abline(slope = 1, intercept = 0) +

 geom_point() +

 facet_grid(condition+frequency~ rowname) +

Paper ID: SR22401092446 DOI: 10.21275/SR22401092446 216

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 4, April 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

 geom_text(data=plot_text[plot_text$boundary == "upper",],

 aes(x = 0.5, y = 1.8, label=ccc),

 parse = TRUE, inherit.aes=FALSE) +

 coord_fixed() +

 ggtitle("Upper responses") +

 theme_bw()

p_lower <- rt_pp %>%

 filter(boundary == "lower") %>%

 ggplot(aes(x = observed, predicted)) +

 geom_abline(slope = 1, intercept = 0) +

 geom_point() +

 facet_grid(condition+frequency~ rowname) +

 geom_text(data=plot_text[plot_text$boundary == "lower",],

 aes(x = 0.5, y = 1.6, label=ccc),

 parse = TRUE, inherit.aes=FALSE) +

 coord_fixed() +

 ggtitle("Lower responses") +

 theme_bw()

grid.arrange(p_upper, p_lower, ncol = 1)

Figure 2.7.2: QQ-plot of the Quantiles

Paper ID: SR22401092446 DOI: 10.21275/SR22401092446 217

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 4, April 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 2.7.3: Graph of QQ-plot of the Quantiles with Upper and Lower response

3. Parameter Estimation & Hypothesis Tests

3.1 Introduction

This is the third instalment of the series on fitting the Wiener

4-parameter model with brms. The first section went over

how to set up the data and model. The second section dealt

with (mostly graphical) model diagnostics and the

evaluation of the model's adequacy (i.e., fit). This third

section will examine the model's parameter estimates to see

if there is any evidence for differences between the

conditions. As before, this part is completely self-contained

and can be run without needing to run the code from Parts I

or II. Due to the length of this section, I will provide a brief

overview. The following section provides a brief explanation

of how we will conduct hypothesis testing. This is followed

by a brief section that loads some packages and the fitted

model object before providing a brief recap of the model.

Following this is a relatively long section that examines the

drift rate parameters in a variety of ways. Then we'll look at

each of the other three parameters one by one. The section

on non-decision time will be especially important. As I'll

explain further below, I believe this parameter cannot be

interpreted. Finally, I provide a brief overview of some of

the current model's limitations and how it could be

improved.

3.2 Bayesian Hypothesis Testing

The purpose of this section is to show that there are

differences in parameter estimates between conditions.

Importantly, different methods of producing such evidence

are only meant in a technical sense. In statistical terms, we

will always inspect difference distributions resulting from

linear combinations of cell-wise posterior distributions of

group-level model parameter estimates. The slightly

technical phrase "linear combinations of cell-wise posterior

distributions" is frequently used to simply mean the

difference between two distributions. The difference

distribution, for example, is the result of subtracting the

posterior of the speed condition from the posterior of the

accuracy condition. To recap, a posterior distribution is the

probability distribution of a parameter based on data and

model (where the latter includes the parameter priors). It

provides an answer to the question of which parameters are

most likely given our prior knowledge and data. As a result,

the posterior distribution of the difference answers questions

such as whether the difference values between two

conditions are likely or not. With such a disparity in

distribution, we can do two things as stated below:

 First, we can see if the difference distribution's x percent-

highest posterior density (HPD) or credibility interval

includes 0. If 0 falls within the 95 percent HPD interval,

it may be considered a plausible value. If 0 is outside the

95 percent interval, we may consider it insufficiently

plausible and conclude that there is evidence for a

difference.

 Second, we can determine how much of the difference

distribution is on one side of 0 and how much is on the

other. If this value deviates significantly from 50%, there

is evidence of a difference. For example, if all of the

posterior samples for a particular difference are greater

than zero, this provides strong evidence that the

difference is greater than zero.

The investigation of posterior distributions to assess

differences between conditions is only one method for

hypothesis testing in a Bayesian setting. And, at least in the

psychological literature, it is not the most widely accepted.

Many of the more vocal supporters of Bayesian statistics in

the psychological literature advocate hypothesis testing

using Bayes factors. In general, I agree with many of the

arguments in favour of the Bayes factor, particularly in cases

like this one, where all relevant hypotheses or competing

models are nested within a single large (super) model. The

Paper ID: SR22401092446 DOI: 10.21275/SR22401092446 218

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 4, April 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

main challenge with Bayes factors is their extreme

sensitivity to parameter priors. In the case of nested models,

this is not a major issue. This approach has been extended to

general ANOVA designs. It has been applied to accumulator

models. The general idea is to reparametrize the model using

effect parameters that have been normalised, such as the

residual variance. For a two-sample design, for example,

parameterize the model with a standardised difference.

Then, putting a prior on the standardised effect size measure

is relatively simple and uncontroversial. In the current case,

where the model lacks a residual variance parameter, such a

normalisation could be accomplished by using the variance

estimate of the group-level distribution for each parameter.

Unfortunately, to the best of my knowledge, brms does not

support specifying a parameterization and prior distribution

in accordance with default Bayes factor. And, it's also

unlikely that brms will ever get this ability. As a result, I

believe that brms is not the best tool for model selection

using Bayes factors. While it now technically supports this

capability (via our bridge sampling package), it only

supports models with unnormalized parameterization. I

believe that such a parameterization is inappropriate for

Bayes factors-based model selection in most cases because

the priors cannot be specified in a 'default' manner. As a

result, I am unable to recommend brms for Bayes factor-

based model selection at this time. To summarise, the reason

we are basing our inferences solely on posterior distributions

in this case is due to practical constraints rather than

philosophical considerations.

One final word of caution for the psychological audience.

While Bayes factors are clearly popular in psychology, they

are not in many other scientific disciplines. As far as I can

tell, the difference stems from the different types of data that

different people work with. When working with

observational (or correlational) data, tests for the presence of

effects (or nullity) are either a no-no (e.g., when trying to do

causal inference) or simply uninteresting. We all know that

the real world is full of arbitrary relationships, especially

small ones. So simply increasing N to get effects is not

interesting, and estimation is the more interesting approach.

For experimental data, on the other hand, we frequently have

true null hypotheses, and testing those makes a lot of sense.

However, as far as I can tell, the effect is completely

insignificant. In this case, hypothesis testing is critical.

3.3 Getting Started

We begin by loading some packages for posterior analysis.

Since the beginning of this series, I've grown increasingly

fond of the entire tidyverse, so we've imported it entirely. Of

course, we require brms as well. As shown below, we will

require a few more packages (particularly emmeans and

tidybayes), but these are only loaded when necessary. Then

we'll need the posterior samples, which we can load in the

same way we did in Part II by loading into the Temporary

folder, as shown in Figure 2.2.3.

library("brms")

library("tidyverse")

theme_set(theme_classic()) # theme for ggplot2

options(digits = 3)

tmp <- tempdir()

download.file("https://github.com/binmishr/Weiner-Model-

Analysis/blob/main/brms_wiener_example_fit.rda",

file.path(tmp, "brms_wiener_example_fit.rda"))

load(file.path(tmp, "brms_wiener_example_fit.rda"))

Figure 3.3.1: Loading of R libraries & Data file into Temp Folder

Estimate Est.Error l-95% CI u-95% CI

conditionaccuracy:frequencyhigh -2.944 0.1971 -3.345 -2.562

conditionspeed:frequencyhigh -2.716 0.2135 -3.125 -2.299

conditionaccuracy:frequencynw_high 2.238 0.1429 1.965 2.511

conditionspeed:frequencynw_high 1.989 0.1785 1.626 2.332

bs_conditionaccuracy 1.898 0.1448 1.610 2.186

bs_conditionspeed 1.357 0.0813 1.200 1.525

ndt_conditionaccuracy 0.323 0.0173 0.289 0.358

ndt_conditionspeed 0.262 0.0154 0.232 0.293

bias_conditionaccuracy 0.471 0.0107 0.449 0.491

bias_conditionspeed 0.499 0.0127 0.474 0.524

Warning message:

There were 7 divergent transitions after warmup. Increasing adapt_delta above 0.8 may help.

Figure 3.3.2: Sample data of Group Level Posteriors

As a reminder, we have data from a lexical decision task

(i.e., participants must decide whether presented strings are

words or not), and frequency is the factor determining a

string's true status, with high referring to words and nw_high

referring to non-words. As a result, the frequency factor

determines the sign of the parameter estimates for the drift

Paper ID: SR22401092446 DOI: 10.21275/SR22401092446 219

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 4, April 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

rate (the first four rows in the results table), with the drift

rate for words (rows 1 and 2) being clearly negative (i.e.,

those trials mostly hit the lower boundary for the word

decision) and the drift rate for non-words (rows 3 and 4)

being clearly positive (i.e., those trials mostly hit the upper

boundary for non-word decisions). Furthermore, there may

be differences in drift rates depending on the accuracy or

speed conditions. In particular, drift rates appear to be less

extreme (i.e., closer to 0) in the speed conditions when

compared to the accuracy conditions.

The only difference between the other three parameters is

the condition factor. Given the experimental manipulation of

the accuracy versus speed condition, we anticipate

differences in the boundary separation parameters beginning

with bs_. There appears to be a small effect for the non-

decision time, parameters beginning with ndt_, as the 95

percent overlaps only slightly. However, as discussed in

greater detail below, we must exercise caution in

interpreting this distinction. Finally, there may or may not be

a difference for bias parameters beginning with bias_.

Furthermore, there appears to be a bias for "word"

responses, at least in the accuracy condition.

The hypothesis function in brms can be used to test

differences between conditions. But I couldn't get it to work

with the current model. I believe this is due to the somewhat

unusual parameterizations in which each cell receives one

parameter (in some sense each cell has its own intercept, but

there is no overall intercept). In contrast, a more "standard"

parameterization has one intercept (for either the unweighted

means or one of the cells) and the remaining parameters

capture the differences between the intercept and the cell

means. As a reminder, I chose this unconventional

parameterization in the first place to make it easier to specify

the parameter priors. Furthermore, when programming

cognitive models by hand, this is a common

parameterization.

3.3 Emmeans & tidybayes : Differences In Drift Rate

Another option is to use excellent emmeans package. I am a

huge fan of emmeans and use it frequently when working

with "normal" statistical models (e.g., ANOVAs, mixed

models), regardless of whether I use frequentist (e.g., via

afex) or Bayesian methods (e.g., rstanarm or brms).

Unfortunately, it appears that emmeans can only analyse the

main parameter of the response distribution for models

estimated with brms at the moment, which in our case is the

drift rate. In any case, I strongly advise you to review the

emmeans vignettes to get a sense of what types of follow-up

tests are all possible with this fantastic package.

As I recently discovered, emmeans plays well with

tidybayes, a package that allows you to work with posterior

draws within the tidyverse. tidybayes has an unusually large

package footprint (i.e., it imports a large number of other

packages) for a package with such limited functionality. I

suppose this is a result of being a part of the tidyverse. In

any case, many of the imported packages are already in the

search path as a result of loading the tidyverse above, so

attaching should be quick.

We start with emmeans only to ensure that everything works

as expected. We get the estimated marginal means plus 95

percent -highest posterior density (HPD) intervals that match

the output of the fixed effects for the central tendency

estimate (which is the median of the posterior samples in

both cases). As a reminder, the fact that the cell estimates

match the parameter estimates is due to the unusual

parameterization, which emmeans correctly detects. The

lower and upper bounds of the intervals differ slightly

between the summary outputs of brms and emmeans, as a

result of the different methods for calculating the intervals

(i.e., quantiles versus HPD intervals).

library("emmeans")

library("tidybayes")

Figure 3.3.1: Loading of the R Libraries

fit_wiener %>%

 emmeans(~ condition*frequency)

condition frequency emmean lower.HPD upper.HPD

accuracy high -2.94 -3.34 -2.56

speed high -2.72 -3.10 -2.28

accuracy nw_high 2.24 1.96 2.50

speed nw_high 1.99 1.64 2.34

HPD interval probability: 0.95

Figure 3.3.2: Extracting Data with HPD Interval Probability

3.4 HPD Intervals & Histograms

As a first test, we want to see if there is evidence for a

difference in speed and accuracy conditions for both words

(frequency = high) and non-words (frequency = nw_high).

There are several ways to accomplish this with emmeans,

one of which is through the by argument and the pairs

function. We don't have much evidence that there is a

difference for either stimulus type here, because both HPD

intervals include 0.

fit_wiener %>%

Paper ID: SR22401092446 DOI: 10.21275/SR22401092446 220

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 4, April 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

 emmeans("condition", by = "frequency") %>%

 pairs

frequency = high:

contrast estimate lower.HPD upper.HPD

accuracy - speed -0.225 -0.6964 0.256

frequency = nw_high:

contrast estimate lower.HPD upper.HPD

accuracy - speed 0.249 -0.0647 0.550

HPD interval probability: 0.95

Figure 3.4.1: Difference in speed and accuracy conditions for both (frequency = high) and non-words (frequency = nw_high).

Instead of using emmeans to get the summary of the

distribution, we can use tidybayes to extract the samples in a

tidy manner. The samples are then aggregated based on the

same conditioning variable using one of the handy

aggregation functions included with tidybayes. After

experimenting with a few different options, I believe

emmeans' hpd.summary() function uses the same method for

calculating HPD intervals as tidybayes, as both results

match.

samp1 <- fit_wiener %>%

 emmeans("condition", by = "frequency") %>%

 pairs %>%

 gather_emmeans_draws()

samp1 %>%

 median_hdi()

A tibble: 2 x 8

Groups: contrast [1]

contrast frequency .value .lower .upper .width .point .interval

<fct><fct><dbl><dbl><dbl><dbl><chr><chr>

1 accuracy - speed high -0.225 -0.696 0.256 0.95 median hdi

2 accuracy - speed nw_high 0.249 -0.0647 0.550 0.95 median hdi

Figure 3.4.2: Calculating HPD Intervals with Median

samp1 %>%

 mode_hdi()

A tibble: 2 x 8

Groups: contrast [1]

contrast frequency .value .lower .upper .width .point .interval

<fct><fct><dbl><dbl><dbl><dbl><chr><chr>

1 accuracy - speed high -0.190 -0.696 0.256 0.95 mode hdi

2 accuracy - speed nw_high 0.252 -0.0647 0.550 0.95 mode hdi

Figure 3.4.3: Calculating HPD Intervals with Mode

get_hdi <- function(x, level = 95) {

 tmp <- hdrcde::hdr(x, prob = level)

 list(data.frame(mode = tmp$mode[1], lower = tmp$hdr[1,1], upper = tmp$hdr[1,2]))

}

samp1 %>%

 summarise(hdi = get_hdi(.value)) %>%

 unnest

A tibble: 2 x 5

Groups: contrast [1]

contrast frequency mode lower upper

<fct><fct><dbl><dbl><dbl>

1 accuracy - speed high -0.227 -0.712 0.247

2 accuracy - speed nw_high 0.249 -0.0616 0.558

Figure 3.4.4: Calculating HPD Intervals For Sample Point Estimation with Mode and User Defined Function

samp1 %>%

Paper ID: SR22401092446 DOI: 10.21275/SR22401092446 221

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 4, April 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

 summarise(hdi = get_hdi(.value, level = 80)) %>%

 unnest

A tibble: 2 x 5

Groups: contrast [1]

contrast frequency mode lower upper

<fct><fct><dbl><dbl><dbl>

1 accuracy - speed high -0.212 -0.540 0.0768

2 accuracy - speed nw_high 0.246 0.0547 0.442

Figure 3.4.4: Calculating HPD Intervals For Sample Point Estimation with Mode and User Defined Function with Level 80%

We can now assess whether there is evidence for a drift rate

difference between conditions for both word and non-word

stimuli because we have the samples in a convenient format.

One issue with this is that the direction of the effect varies

between words and non-words. This is due to the fact that

word stimuli necessitate a response at the lower decision

boundary and non-word stimuli necessitate a response at the

upper decision boundary. As a result, for one of the

conditions, we must multiply the effect by -1. Then we can

take the average of both conditions. We accomplish this

using tidyverse magic, and we also add the number of values

aggregated in this manner to the table. This is just a check to

ensure that our logic is correct and that we always aggregate

exactly two values. This is confirmed by the final check.

samp2 <- samp1 %>%

 mutate(val2 = if_else(frequency == "high", -1*.value, .value)) %>%

 group_by(contrast, .draw) %>%

 summarise(value = mean(val2),

 n = n())

all(samp2$n == 2)

[1] TRUE

Figure 3.4.5: Calculation of Drift Rate Difference between conditions for both word and non-word stimuli

The resulting difference distribution can then be

investigated. A histogram is one method for doing so

graphically. It's a good idea to experiment with the number

of bins until the figure looks right. Given the large number

of samples, 75 bins seemed reasonable. There wasn't enough

granularity with fewer bins, and there were too many small

peaks with more bins.

ggplot(samp2, aes(value)) +

 geom_histogram(bins = 75) +

 geom_vline(xintercept = 0)

Figure 3.4.6: Code Plot of the Histogram of Drift Rate

Difference between conditions for both word and non-word

stimuli

Figure 3.4.6: Histogram of Drift Rate Difference between

conditions for both word and non-word stimuli

The above histogram in figure 3.4.6 demonstrates that, while

a significant portion of the posterior mass is to the right of 0,

a significant portion is still to the left. So there is some

evidence for a difference, but it is not very strong, even

when words and non-words are considered together. The

HPD intervals can also be used to investigate this difference

distribution. To get a better picture, consider the following

interval sizes. This demonstrates that 0 is excluded only for

the 85 percent interval and smaller intervals. To get a

graphical overview of the output, use hdrcde::hdr.den

instead of hdrcde::hdr.den.

hdrcde::hdr(samp2$value, prob = c(99, 95, 90, 80, 85, 50))

$`hdr`

[,1] [,2]

99% -0.1825 0.669

95% -0.0669 0.554

90% -0.0209 0.505

85% 0.0104 0.471

80% 0.0333 0.445

50% 0.1214 0.340

$mode

[1] 0.225

$falpha

1% 5% 10% 15% 20% 50%

0.116 0.476 0.757 0.984 1.161 1.857

Figure 3.4.7: Difference Distribution via Different HPD

Intervals

3.5 Bayesian P-values

Calculating the actual proportion of samples below 0 is a

method that requires fewer arbitrary cutoffs than HPDs (for

which the width must be defined).As previously stated, if

Paper ID: SR22401092446 DOI: 10.21275/SR22401092446 222

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 4, April 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

this proportion is small, this would be evidence of a

difference. In this case, the proportion of samples that are

less than 0 is.067. Unfortunately,.067 is slightly higher than

the magical cutoff of.05, which is universally accepted as

distinguishing small from large numbers, or, perhaps more

accurately, likely from unlikely probabilities.

mean(samp2$value < 0)

[1] 0.0665

Figure 3.5.1: Calculating Actual proportion of samples

below 0

Let's take a closer look at this proportion. If two posterior

distributions are stacked exactly on top of each other, the

resulting difference distribution is centred on 0, with exactly

half of the difference distribution on either side of 0. As a

result, a proportion of 50% corresponds to the least evidence

for a difference or, alternatively, the strongest evidence for

the absence of a difference. Another implication is that both

values near 0 and values near 1 indicate a difference, albeit

in opposite directions. To facilitate interpretation of these

proportions, I recommend that they be calculated in such a

way that small values represent evidence for a difference

(e.g., by subtracting the proportion from 1 if it is above

.5).But what exactly does this proportion tell us? It denotes

the likelihood of a difference in a specific direction. As a

result, it is one-sided evidence for a difference. In contrast,

for a 95% HPD, we subtract 2.5 percent from both sides of

the difference distribution. We must multiply this proportion

by 2 to ensure that it has the same two-sided property as our

HPD intervals. Another advantage of this multiplication is

that it extends the range to the entire probability scale (i.e.,

from 0 to 1).

As a result, the resulting value is a probability (ranging from

0 to 1), with values close to zero indicating evidence for a

difference and values close to one indicating evidence

against a difference. Thus, unlike a traditional p-value, it is a

continuous measure of evidence for (when near 0) or against

(when near 1) a difference in parameter estimates. Given its

superficial resemblance to classical p-values (low values are

regarded as evidence for a difference), we could refer to it as

a Bayesian p-value, or pB for short. In this case, we could

say: The pB value for a difference in drift rate between

speed and accuracy conditions across word and non-word

stimuli is.13, indicating that the evidence for a difference is

at best weak. Of course, Bayesian p-values can be abused in

the same way that classical p-values can. For example, you

could introduce arbitrary cutoff values, such as.05. Consider

for a moment that we want to see if there are any differences

in the absolute amount of evidence as measured by drift rate

for any of the four cells in the design (I am not suggesting

that is particularly sensible). This would necessitate

transforming the posterior for all drift rates onto the same

side (note, we do not want to take the absolute values as we

still want to retain the information of switching from

positive to negative drift rates or the other way around). For

instance, multiply the drift rate for words by -1. We do so,

and then we examine what the cell means. According to an

examination of the four cell means, the drift rate values for

words are greater than the values for non-words.

samp3 <- fit_wiener %>%

 emmeans(~ condition*frequency) %>%

 gather_emmeans_draws() %>%

 mutate(.value = if_else(frequency == "high", -1 * .value, .value),

 intera = paste(condition, frequency, sep = "."))

samp3 %>%

 mode_hdi(.value)

A tibble: 4 x 8

Groups: condition [2]

condition frequency .value .lower .upper .width .point .interval

<fct><fct><dbl><dbl><dbl><dbl><chr><chr>

1 accuracy high 2.97 2.56 3.34 0.95 mode hdi

2 accuracy nw_high 2.25 1.96 2.50 0.95 mode hdi

3 speed high 2.76 2.28 3.10 0.95 mode hdi

4 speed nw_high 2.00 1.64 2.34 0.95 mode hdi

Figure 3.5.2: Inspection of the four cell means of drift rate values for words and non-words

I wrote two functions that return a compact letter display of

all pairwise comparisons in order to get an overview of all

pairwise differences using an arbitrary cut-off value. The

functions require data in a wide format, with each column

representing one parameter's draws. It's worth noting that the

compact letter display is calculated by another package,

multcompView, which must be installed before you can use

these functions.

get_p_matrix <- function(df, only_low = TRUE) {

 # pre-define matrix

 out <- matrix(-1, nrow = ncol(df), ncol = ncol(df), dimnames = list(colnames(df), colnames(df)))

 for (i in seq_len(ncol(df))) {

 for (j in seq_len(ncol(df))) {

 out[i, j] <- mean(df[,i] < df[,j])

 }

 }

 if (only_low) out[out > .5] <- 1- out[out > .5]

Paper ID: SR22401092446 DOI: 10.21275/SR22401092446 223

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 4, April 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

 out

}

cld_pmatrix <- function(model, pars, level = 0.05) {

 p_matrix <- get_p_matrix(model)

 lp_matrix <- (p_matrix < (level/2) | p_matrix > (1-(level/2)))

 cld <- multcompView::multcompLetters(lp_matrix)$Letters

 cld

}

samp3 %>% ungroup() %>% ## to get rid of unneeded columns

 select(.value, intera, .draw) %>%

 spread(intera, .value) %>%

 select(-.draw) %>% ## we need to get rid of all columns not containing draws

 cld_pmatrix()

accuracy.high accuracy.nw_high speed.high speed.nw_high

"a" "b" "a" "b"

Figure 3.5.3: Using Functions to Find Compact Letter Display of all Pairwise Comparisons

Conditions that share a common letter in a compact letter

display do not differ based on the criterion. Conditions that

do not share a common letter differ based on the criterion.

The compact letter display in this case is not very

informative and simply repeats what we saw above. The

drift rates for words are divided into two groups, and the

drift rates for non-words are divided into two groups.

Compact letter displays can be quite informative in cases

with more conditions or more complicated difference

patterns. We could have also used tidybayes' functionality to

inspect all pairwise comparisons. It is critical to use ungroup

before calling the compare levels function. Otherwise, we

get a difficult-to-understand error (the grouping appears to

be a consequence of using emmeans).

samp3 %>%

 ungroup %>%

 compare_levels(.value, by = intera) %>%

 mode_hdi()

A tibble: 6 x 7

intera .value .lower .upper .width .point .interval

<fct><dbl><dbl><dbl><dbl><chr><chr>

1 accuracy.nw_high - accuracy.high -0.715 -1.09 -0.351 0.95 mode hdi

2 speed.high - accuracy.high -0.190 -0.696 0.256 0.95 mode hdi

3 speed.nw_high - accuracy.high -0.946 -1.46 -0.526 0.95 mode hdi

4 speed.high - accuracy.nw_high 0.488 0.0879 0.876 0.95 mode hdi

5 speed.nw_high - accuracy.nw_high -0.252 -0.550 0.0647 0.95 mode hdi

6 speed.nw_high - speed.high -0.741 -1.12 -0.309 0.95 mode hdi

Figure 3.5.4: Using Tidybayes to Find Compact Letter Display of all Pairwise Comparisons

3.6 Differences In Other Parameters

As previously discussed, we appear to be unable to use

emmeans to examine the differences in the other parameter.

Fortunately, tidybayes still allows you to extract posterior

samples in a tidy manner by using either gather_draws or

spread_draws. It appears that you must pass the specific

variable names you want to extract for either of those. We

obtain them using get variables:

get_variables(fit_wiener)[1:10]

[1] "b_conditionaccuracy:frequencyhigh" "b_conditionspeed:frequencyhigh"

[3] "b_conditionaccuracy:frequencynw_high" "b_conditionspeed:frequencynw_high"

[5] "b_bs_conditionaccuracy" "b_bs_conditionspeed"

[7] "b_ndt_conditionaccuracy" "b_ndt_conditionspeed"

[9] "b_bias_conditionaccuracy" "b_bias_conditionspeed"

Figure 3.6.1: Extract Posterior Samples in Tidy Manner

Paper ID: SR22401092446 DOI: 10.21275/SR22401092446 224

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 4, April 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

3.7 Boundary Separation

Spread_draws will be used to analyse the boundary

separation. We begin by extracting the draws and then

immediately compute the difference distribution between the

two.

samp_bs <- fit_wiener %>%

 spread_draws(b_bs_conditionaccuracy,

b_bs_conditionspeed) %>%

 mutate(bs_diff = b_bs_conditionaccuracy -

b_bs_conditionspeed)

samp_bs

A tibble: 2,000 x 6

.chain .iteration .draw b_bs_conditionaccuracy

b_bs_conditionspeed bs_diff

<int><int><int><dbl><dbl><dbl>

1 1 1 1 1.73 1.48 0.250

2 1 2 2 1.82 1.41 0.411

3 1 3 3 1.80 1.28 0.514

4 1 4 4 1.85 1.42 0.424

5 1 5 5 1.86 1.37 0.493

6 1 6 6 1.81 1.36 0.450

7 1 7 7 1.67 1.34 0.322

8 1 8 8 1.90 1.47 0.424

9 1 9 9 1.99 1.20 0.790

10 1 10 10 1.76 1.19 0.569

... with 1,990 more rows

Figure 3.7.1: Analysis of Boundary Separation of the

Samples

Of course, we can now use the same tools as before. Take a

look at the histogram, for example. I chose 75 bins once

more. Of course, we can now use the same tools as before.

Take a look at the histogram, for example. I chose 75 bins

once more. Overall, we can be fairly certain that varying the

speed versus accuracy conditions affects the boundary

separation in the current data set. Everything went exactly as

planned.

samp_bs %>%

 ggplot(aes(bs_diff)) +

 geom_histogram(bins = 75) +

 geom_vline(xintercept = 0)

Figure 3.7.2: Histogram Code of Boundary Separation of

the Samples

Figure 3.7.3: Histogram Plot Of Boundary Separation of the

Samples

sum(samp_bs$bs_diff < 0)

[1] 2

mean(samp_bs$bs_diff < 0) *2

[1] 0.002

Figure 3.7.4: Sample Data of Boundary Separation of the

Samples below 0

3.8 Non-Decision Time

We use gather_draws to compare differences in non-

decision time. One advantage of this function over

spread_draws is that it makes obtaining marginal estimates

simple. As previously stated, the HPD intervals overlap only

very slightly, indicating that there is a difference between

the conditions. The resulting marginal estimates are saved

for later use in new data.frame. ndt_mean is a data frame.

samp_ndt <- fit_wiener %>%

 gather_draws(b_ndt_conditionaccuracy,

b_ndt_conditionspeed)

(ndt_mean <- samp_ndt %>%

 median_hdi())

A tibble: 2 x 7

.variable .value .lower .upper .width .point

.interval

<chr><dbl><dbl><dbl><dbl><chr><chr>

1 b_ndt_conditionaccuracy 0.323 0.293 0.362 0.95

median hdi

2 b_ndt_conditionspeed 0.262 0.235 0.295 0.95

median hdi

Figure 3.8.1: Accessing Differences in Non-decision time to

obtain Marginal Estimates

To calculate the difference, it appears to me that the simplest

approach is to spread the two variables across rows and then

calculate the difference (similar to starting with spread

draws in the first place). The resulting difference distribution

can then be plotted again.

samp_ndt2 <- samp_ndt %>%

 spread(.variable, .value) %>%

 mutate(ndt_diff = b_ndt_conditionaccuracy -

b_ndt_conditionspeed)

samp_ndt2 %>%

 ggplot(aes(ndt_diff)) +

 geom_histogram(bins = 75) +

 geom_vline(xintercept = 0)

Figure 3.8.2: Calculating the spread of two variables across

rows and then calculate the difference from results of Figure

3.8.1

Paper ID: SR22401092446 DOI: 10.21275/SR22401092446 225

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 4, April 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 3.8.3: Plotting Histogram of the results from Figure

3.8.2

As previously speculated, there appears to be compelling

evidence for a distinction. We can confirm this further using

the Bayesian p-value:

mean(samp_ndt2$ndt_diff < 0) * 2

[1] 0.005

Figure 3.8.4: Confirming Evidence of Difference of results

of Figure 3.8.3 via Bayesian p-values

So far, it appears that we discovered another significant

difference in parameter estimates as a result of the

manipulation. This, however, would be a hasty conclusion.

In fact, examining the non-decision time estimated by the 4-

parameter Wiener model in this manner is completely

misleading. The non-decision time parameter is only

sensitive to a few data points, rather than capturing a

meaningful feature of the response time distribution. In

particular, the non-decision time reflects a specific feature of

the distribution of minimum response times per participant

and condition or cell for which it is estimated. For our

example data, I will demonstrate this in the following.We

must first load the data in the same manner as described in

previous posts. The minimum RTs are then calculated for

each participant and condition.

data(speed_acc, package = "rtdists")

speed_acc <- droplevels(speed_acc[!speed_acc$censor,]) #

remove extreme RTs

speed_acc <- droplevels(speed_acc[speed_acc$frequency

%in%

 c("high", "nw_high"),])

min_val <- speed_acc %>%

 group_by(condition, id) %>%

 summarise(min = min(rt))

Figure 3.8.5: Calculating Minimum RTs per participant and

Conditions

To investigate the issue, we want to compare the distribution

of minimum RTs with non-decision time estimates

graphically. To accomplish this, we must add a condition

column with matching condition names to the ndt_mean

data.frame that we created earlier. Then we can combine

them into a single plot. We also include a few summary

statistics on the distribution of individual minimum RTs.

The black points represent the individual minimum RTs for

each of the two conditions; the blue + and blue x represent

the median and mean of the individual minimum RTs; the

blue circle represents the midpoint between the largest and

smallest value of the minimum RT distributions; and the red

square represents the point estimate of the non-decision time

parameter with corresponding 95 percent HPD intervals.

ndt_mean$condition <- c("accuracy", "speed")

ggplot(min_val, aes(x = condition, y = min)) +

 geom_jitter(width = 0.1) +

 geom_pointrange(data = ndt_mean,

 aes(y = .value, ymin = .lower, ymax = .upper),

 shape = 15, size = 1, color = "red") +

 stat_summary(col = "blue", size = 3.5, shape = 3,

 fun.y = "median", geom = "point") +

 stat_summary(col = "blue", size = 3.5, shape = 4,

 fun.y = "mean", geom = "point") +

 stat_summary(col = "blue", size = 3.5, shape = 16,

 fun.y = function(x) (min(x) + max(x))/2,

 geom = "point")

Figure 3.8.6: Comparison of the distribution of Minimum

RTs with Estimates for Non-Decision Times

Figure 3.8.7: Graph Plot of the distribution of Minimum

RTs with Estimates for Non-Decision Times

This graph in Figure 3.8.7 shows that the estimated non-

decision time almost perfectly matches the midpoint

between the largest and smallest minimum RT (i.e., the blue

dot). To put this into context, consider comparing the

number of minimum data points (i.e., the number of

participants) to the total number of data points.

speed_acc %>%

 group_by(condition) %>%

 summarise(n())

A tibble: 2 x 2

condition `n()`

<fct><int>

1 accuracy 5221

2 speed 5241

length(unique(speed_acc$id))

Paper ID: SR22401092446 DOI: 10.21275/SR22401092446 226

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 4, April 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

[1] 17

17 / 5000

[1] 0.0034

Figure 3.8.8: Comparing the Number of data points with

Total number of data points

This demonstrates that the non-decision time parameter, one

of only four model parameters, is largely determined by less

than.5% of the data. If any of these minimum RTs is an

outlier (which seems likely in the accuracy condition), a

single response time can have a huge impact on the

parameter estimate. In other words, it is unlikely that the

non-decision time parameter reflects an actual latent process

with the current implementation. Instead, it simply reflects

the midpoint between the smallest and largest minimum RTs

per participant and condition, slightly weighted toward the

mass of the minimum RT distribution. This parameter

estimate should not be used to draw any meaningful

conclusions.

In the present case, this blunder does not appear to be too

significant. If only one of the data points in the accuracy

condition is an outlier and the other data points are faithful

representations of the response time distribution's leading

edge (which is essentially what the non-decision time is

supposed to capture), the current parameter estimates

understate the true difference. This conclusion is supported

further by using a more robust ad hoc measure of the leading

edge, specifically the 10% trimmed mean of the 40 fastest

RTs per participant and condition plotted below. This graph

also no longer contains any obvious outliers. The non-

decision time estimates are still included for reference.

However, having a parameter that is essentially driven by

very few data points appears to be completely at odds with

the general concept of cognitive modelling, and the

interpretation of non-decision times obtained with such a

model is not recommended.

min_val2 <- speed_acc %>%

 group_by(condition, id) %>%

 summarise(min = mean(sort(rt)[1:40], trim = 0.1))

ggplot(min_val2, aes(x = condition, y = min)) +

 geom_jitter(width = 0.1) +

 stat_summary(col = "blue", size = 3.5, shape = 3,

 fun.y = "median", geom = "point") +

 stat_summary(col = "blue", size = 3.5, shape = 4,

 fun.y = "mean", geom = "point") +

 stat_summary(col = "blue", size = 3.5, shape = 16,

 fun.y = function(x) (min(x) + max(x))/2,

 geom = "point") +

 geom_point(data = ndt_mean, aes(y = .value), shape = 15,

 size = 2, color = "red")

Figure 3.8.9: Plotting of Data Points with 10% trimmed

mean of the 40 fastest RTs per participant and condition of

Samples

Figure 3.8.10: Graph of Data Points with 10% trimmed

mean of the 40 fastest RTs per participant and condition Of

Samples

It is important to note that this confound does not apply to

all model implementations, but only to the 4-parameter

Wiener model as implemented here. There are solutions to

this problem, two of which I'd like to highlight here. To

begin, one could add trial variability in non-decision time

across trials. This variability is frequently assumed to follow

a uniform distribution, which can capture outliers at the

response time distribution's leading edge. Second, rather

than fitting only a model, one could assume that some of the

responses are contaminants from a different process, such as

random responses from a uniform distribution ranging from

the absolute minimum to the maximum RT. Technically, this

is a mixture model of the process and a uniform distribution

with either a free or fixed mixture/contamination rate. It

should be relatively simple to implement such a mixture

model in brms using a custom_family, and I hope to find the

time to do so at some point in the future.

Of course, I am not the first to notice this behaviour of the 4-

parameter Wiener model. However, this problem appears to

be particularly prevalent in a Bayesian setting because the 4-

parameter model variant is readily available while model

variants dealing with this problem are not. I found some

time ago what would be the best way to address this issue,

and one thing I remember that using the 4-parameter Wiener

model, we can simply ignore the non-decision time

parameter. That still appears to be the best option to me.

I hope there aren't too many papers that use the 4-parameter

model in this manner to interpret differences in the non-

decision time parameter.

3.9 Starting Point / Bias

Finally, we can examine the starting point or bias. We repeat

this process with spread_draws and plot the resulting

difference distribution.

samp_bias <- fit_wiener %>%

 spread_draws(b_bias_conditionaccuracy,

b_bias_conditionspeed) %>%

Paper ID: SR22401092446 DOI: 10.21275/SR22401092446 227

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 4, April 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

 mutate(bias_diff = b_bias_conditionaccuracy -

b_bias_conditionspeed)

samp_bias %>%

 ggplot(aes(bias_diff)) +

 geom_histogram(bins = 100) +

 geom_vline(xintercept = 0)

Figure 3.9.1: Examining the Starting Point or Bias of

Sampling Data Distribution

Figure 3.9.2: Histogram of Starting Point or Bias of

Sampling Data Distribution

The difference distributions imply that there could be a

difference. As a result, we compute the Bayesian p-value

next. This time, we calculate the difference in the opposite

direction, so evidence for a difference is represented by

small values.

mean(samp_bias$bias_diff > 0) *2

[1] 0.046

Figure 3.9.3: Calculating the Bayesian p-values of

Sampling Data Distribution

Together with the evidence for a difference, we can now

more confidently postulate that there is a bias toward the

lower boundary and "word" responses in the accuracy

condition, whereas evidence accumulation begins unbiased

in the speed condition. We are fortunate in that our Bayesian

p-value is just below.05, leading us to believe that the

difference is real. To wrap things up, here are some more

estimates:

fit_wiener %>%

 gather_draws(b_bias_conditionaccuracy,

b_bias_conditionspeed) %>%

 summarise(hdi = get_hdi(.value, level = 80)) %>%

 unnest

A tibble: 2 x 4

.variable mode lower upper

<chr><dbl><dbl><dbl>

1 b_bias_conditionaccuracy 0.470 0.457 0.484

2 b_bias_conditionspeed 0.498 0.484 0.516

Figure 3.9.4: Estimating the Starting Point or Bias of

Sampling Data Distribution

For the current data, we find a specific pattern that is

commonly perceived as typical. In the accuracy condition,

error RTs are significantly slower than correct RTs, as

shown below. This effect does not exist in the speed

condition, where error RTs are faster than correct RTs.

speed_acc %>%

 mutate(correct = stim_cat == response) %>%

 group_by(condition, correct, id) %>%

 summarise(mean = mean(rt),

 se = mean(rt)/sqrt(n())) %>%

 summarise(mean = mean(mean),

 se = mean(se))

A tibble: 4 x 4

Groups: condition [?]

condition correct mean se

<fct><lgl><dbl><dbl>

1 accuracy FALSE 0.751 0.339

2 accuracy TRUE 0.693 0.0409

3 speed FALSE 0.491 0.103

4 speed TRUE 0.513 0.0314

Figure 3.9.5: Examining of Error RTs & Correct RTs

Given the difference in the relative speeds of correct and

error responses in the accuracy condition, it may come as no

surprise that the accuracy condition also has a measurable

bias. Specifically, a preference for word responses.

However, as can be seen by inserting stim cat into the above

group by call, the difference in relative error rate is

especially pronounced for non-words, where a bias toward

words should result in faster errors. As a result, it appears

that the current model variant does not fully account for

some of the more subtle effects in the data.

The standard method for dealing with differences in the

relative speed of errors in weiner modelling is to use across-

trial variability in model parameters. Variability in the

starting point enables errors to be faster than correct RTs.

Error RTs can be slower than correct RTs due to drift rate

variability. However, as will be discussed further below,

introducing these variables into a Bayesian framework has

its own set of issues.

4. Conclusion

Overall, the fit is better for accuracy than for speed

conditions, according to the results. Fit is also better for the

common response (i.e., nw_high for upper and high for

lower responses). This latter observation is, once again,

unsurprising. When the fit for the different quantiles is

compared, it appears that at least the median (i.e., 50%)

shows acceptable values for the common response.

However, especially in the speed condition, the other

quantiles are not well taken into account. Nonetheless,

dramatic misfit is only seen in rare responses. The

comparatively low variances in some of the cells could

explain some of the low CCCs in the speed conditions. For

example, for both common speed conditions (i.e., speed and

nw_high for upper responses and speed and high for lower

responses), a visual inspection of the plot suggests an

acceptable account while some CCC values are low (i.e.,.5).

Only in the speed conditions do we see systematic

Paper ID: SR22401092446 DOI: 10.21275/SR22401092446 228

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 4, April 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

deviations for the 90 percent quantile (and slightly less for

the 75 percent quantile). The model predicts slower RTs

than what has been observed.

As I've mentioned several times throughout this series, the

model used here is the 4-parameter Wiener model. While

this allows for estimation in the first place, it does have a

few drawbacks. One of them has been extensively discussed

in this section. The non-decision time parameter estimate

essentially captures a feature of the distribution of minimum

RTs. If these are contaminated by responses that cannot be

assumed to be the result of the same process as the other

responses (which I believe a priori to be quite likely), the

estimate loses its meaning. I believe that the risks far

outweigh the benefits. Another feature of the 4-parameter

Wiener model is that it predicts equal mean response times

for correct and error responses in the absence of a bias for

any of the response options. This is possibly the most

important theoretical constraint that has led to the

development of many of the more highly parameterized

model variants, such as the full (i.e., 7-parameter) model.

While this series concludes here, there are a few more things

that appear to be important, interesting, or viable. Here they

are:

 We haven't yet looked at the estimates of the group-level

parameters, which is a crucial step (i.e., standard

deviations and correlations). They may contain important

information about the specific data set and research

question, but they may also contain information about the

model parameters' trade-offs.

 To interpret the non-decision time, replace the pure

Wiener process with a mixture of a Wiener and a

uniform distribution. As previously stated, this should be

possible with a custom family in brms.

 As previously stated, differences in the relative speed of

error and correct RTs were one of the driving forces

behind modern response time models. Variabilities in

model parameters are typically used to explain these. The

hierarchical structure is a relatively simple way to

implement these variables in a Bayesian setting. For

example, for the drift rate, each participant receives a by-

trial random intercept, + (0+id||trial) (the double bar

notation should ensure that these are uncorrelated across

participants). While this appears to be a simple concept, I

doubt such a model will converge in a reasonable

timeframe. Given the theoretical significance of this

approach, it appears to be an extremely important angle

to investigate.

 It takes a long time to fit the Wiener model. It would be

interesting to compare the fit using full Bayesian

inference (i.e., sampling as done here) with variational

Bayes (i.e., posterior parametric approximation), which

is also implemented in Stan. I expect it to be ineffective,

but the comparison would be fascinating. Diagnostics for

variational Bayes were recently introduced.

References

[1] Bürkner, P.-C. (2017). brms: An R Package for

Bayesian Multilevel Models Using Stan. Journal of

Statistical Software, 80(1), 1–28.

https://doi.org/10.18637/jss.v080.i01

[2] Hoffman, M. D., & Gelman, A. (2014). The No-U-

turn Sampler: Adaptively Setting Path Lengths in

Hamiltonian Monte Carlo. J. Mach. Learn. Res.,

15(1), 1593–1623.

http://dl.acm.org/citation.cfm?id=2627435.2638586

[3] Klauer, K. C. (2010). Hierarchical Multinomial

Processing Tree Models: A Latent-Trait Approach.

Psychometrika, 75(1), 70–98.

https://doi.org/10.1007/s11336-009-9141-0

[4] Monnahan, C. C., Thorson, J. T., & Branch, T. A.

(2016). Faster estimation of Bayesian models in

ecology using Hamiltonian Monte Carlo. Methods in

Ecology and Evolution, n/a-n/a.

https://doi.org/10.1111/2041-210X.12681

[5] Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J.

(2013). Random effects structure for confirmatory

hypothesis testing: Keep it maximal. Journal of

Memory and Language, 68(3), 255–278.

https://doi.org/10.1016/j.jml.2012.11.001

[6] Rouder, J. N., Morey, R. D., Speckman, P. L., &

Province, J. M. (2012). Default Bayes factors for

ANOVA designs. Journal of Mathematical

Psychology, 56(5), 356–374.

https://doi.org/10.1016/j.jmp.2012.08.001

[7] Ratcliff, R. (1978). A theory of memory retrieval.

Psychological Review, 85(2), 59–108.

[8] Ratcliff, R., & Smith, P. L. (2004). A Comparison of

Sequential Sampling Models for Two-Choice

Reaction Time. Psychological Review, 111(2), 333–

367. https://doi.org/10.1037/0033-295X.111.2.333

[9] Jones, M., & Dzhafarov, E. N. (2014). Unfalsifiability

and mutual translatability of major modelling

schemes for choice reaction time. Psychological

Review, 121(1), 1–32.

https://doi.org/10.1037/a0034190

[10] Rouder, J. N., Haaf, J. M., & Vandekerckhove, J.

(2018). Bayesian inference for psychology, part IV:

parameter estimation and Bayes factors. Psychonomic

Bulletin & Review, 25(1), 102–113.

https://doi.org/10.3758/s13423-017-1420-7

[11] Kruschke, J. K. (2015). Doing Bayesian Data

Analysis: A Tutorial Introduction with R, JAGS and

Stan. Academic Press.

Paper ID: SR22401092446 DOI: 10.21275/SR22401092446 229

