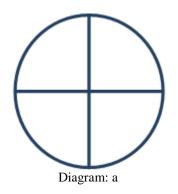

International Journal of Science and Research (IJSR) ISSN: 2319-7064

SJIF (2022): 7.942

Big Bang of the Universe


Koumarya

Composition of two opposite ideal thing is Bang for instance bell metal (Love).

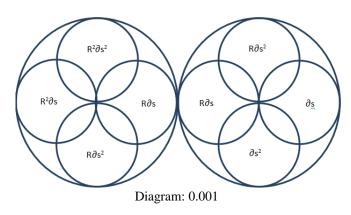
ds and Rds are two opposite where, R is reflection. $\cos\theta$ completes a complete thing. (Duality complete theorem i.e., diagram: a)

Diagram: 0.0001

Theorem 02: Duality complete when there exist in between another two opposite element.

Let, $\xi \in IN$

Then, I = $(\xi - \epsilon, \xi + \epsilon) \in IR$, where, $\epsilon \in IN$


Conversely, we know opposite numbers are equal.

Therefore, $(\xi - \epsilon) + (\xi + \epsilon) = 0$

$$=>2 \xi = 0$$

 $=> \xi = 0$ -----> (i)

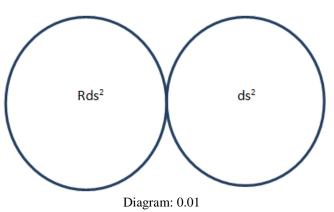
 $\boldsymbol{\xi}$ and 0 is equal to each other therefore opposite and zero is complete.

The math

 $\partial s.R\partial s.R\partial s^2 tan\theta = \partial s^2 - (i)$

 $R\partial s.R^2\partial s.R^2\partial s^2tan\theta = R\partial s^2$ ----->(ii)

- $\Rightarrow \quad \partial s.R\partial s.R \ \partial s^2 tan\theta = R \ \partial s.R^2 \ \partial s.R^2 \ \partial s^2 tan\theta$
- $\Rightarrow R^2 \partial s^4 \tan = R^5 \partial s^4 \tan \theta$
- $\Rightarrow R^2 \partial s^4 \frac{\tan \theta}{\tan \theta} = R^5 \partial s^4$
- $\Rightarrow R^2 \partial s^4 \tan \theta = R^5 \partial s^4.$
- $\Rightarrow R^3 = \tan\theta. ----> (b)$


 $[\tan\theta$ is continuous movements and it does possible for R³]

- $\Rightarrow \quad \partial s.R\partial s.R\partial s^2 \frac{\cos\theta}{\cos\theta} = \partial s^2$
- $\Rightarrow \quad \partial s.R\partial s.R\partial s^2.1 = \partial s^2.$
- $\Rightarrow \quad \partial s.R\partial s.R\partial s^2 \tan\theta = \partial s^2.$ $\tan\theta \text{ is continuous.}$

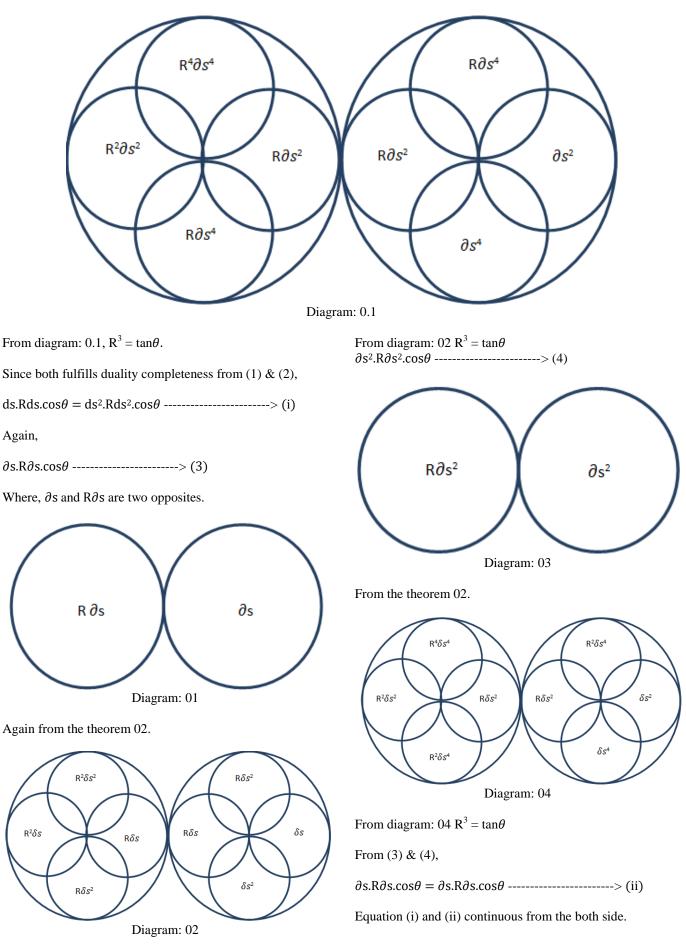
From diagram: 0.001 $R^3 = tan\theta$.

Similarly, $ds^2 Rds^2 cos\theta$ -----> (2)

Where, ds² and Rds² two opposite.

Volume 11 Issue 3, March 2022

www.ijsr.net

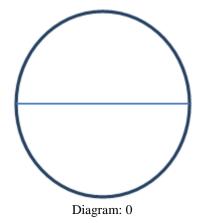

Licensed Under Creative Commons Attribution CC BY

DOI: 10.21275/SR22328101057

International Journal of Science and Research (IJSR) ISSN: 2319-7064

SJIF (2022): 7.942

Diagram 0.01 is and from theorem 02.


Volume 11 Issue 3, March 2022

<u>www.ijsr.net</u>

Licensed Under Creative Commons Attribution CC BY

DOI: 10.21275/SR22328101057

Therefore,

Referential math for the diagram: 0

 $4 \times 4 = 16$

Conclusion of the diagram: 0 is Continuous movement of two opposite side is 180° and the ' θ ' is - $\cos^2\theta$

4 5 , "45" indicates "tanθ". × 4 180

The equation is,

 $ds.Rds.cos\theta = ds^2.Rds^2.cos\theta \ \partial \underline{s.R} \partial s.cos\theta = \partial s^2.R\partial s^2.cos\theta$ ------> (d)

'-, ve is a force for the movement

And $\cos^2\theta$ is for cancellation incompleteness procedure.

Stability form of the diagram:0 is A = A, where A 'is reflection. Equation (d) is the result.

Referential math:

 $\delta s^2 . R \delta s^2 . R \delta s^4 tan \theta = \delta s^4 (\alpha)$

 $R \,\delta s^2 R^2 \delta s^2 R^4 \delta s^4 tan\theta = R^2 \,\delta s^4 (\beta)$

 $\frac{\tan\theta}{\tan\theta} = \tan\theta$

(α) & (β) => tan θ = R⁴; for the zero character with tan θ , δ s⁴ = R² δ s⁴

= tan θ = R

So, $R^3 = tan\theta$

And, ds, ∂ s and δ s are spaces

Volume 11 Issue 3, March 2022

<u>www.ijsr.net</u>

Licensed Under Creative Commons Attribution CC BY