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Abstract: This paper presents a comprehensive analysis of enterprise data processing methodologies, tracing the evolution from 

traditional MapReduce-based approaches to contemporary cloud-native architectures. We demonstrate a modernized implementation of 

large-scale data analysis originally conceived using Hadoop ecosystem technologies (Hive, Pig, HBase) but re-engineered with current 

technologies including Apache Spark, Delta Lake, and cloud-native services. Our work includes data processing pipelines, machine 

learning implementations using PySpark and MLlib, and real-time analytics capabilities. We provide comparative analysis showing 

significant performance improvements over legacy approaches and discuss emerging alternatives including serverless architectures, 

data lake houses, and AI-enhanced analytics platforms. The research demonstrates a 3.8x performance improvement in processing 

throughput and 60 
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1. Introduction 
 

The exponential growth of enterprise data has funda- 

mentally transformed how organizations approach data 

processing and analytics. While early big data solutions 

centered around Hadoop and MapReduce provided the 

foundation for large-scale processing, the technological 

landscape has evolved dramatically by 2021-2022. The 

emergence of cloud-native architectures, advanced 

processing frameworks, and machine learning integration 

has created new paradigms for enterprise data analysis. 

 

1) Background and Evolution 

The Hadoop ecosystem, born from Google’s MapReduce 

paper in 2004, dominated big data processing for over a 

decade. However, by 2021, limitations in performance, 

complexity, and operational overhead led organizations to 

seek modern alternatives. The shift from on-premise Hadoop 

clusters to cloud-based serverless architectures represents 

one of the most significant transformations in enterprise data 

management. 

 

Contemporary data platforms now leverage technologies like 

Apache Spark for in-memory processing, Kubernetes for 

container orchestration, and cloud-native services that offer 

superior scalability, cost-efficiency, and developer 

productivity. The integration of machine learning and real- 

time analytics has become standard rather than exceptional. 

 

2) Problem Statement 

Enterprises face mounting challenges in processing 

exponentially growing datasets while extracting timely 

insights. Traditional MapReduce approaches, while 

groundbreaking in their time, suffer from disk I/O 

bottlenecks, complex operational requirements, and limited 

real-time capabilities. This research addresses these 

challenges by implementing and evaluating modern data 

processing architectures that can handle petabyte-scale 

enterprise data while providing advanced analytical 

capabilities. 

3) Contributions 

This paper makes the following contributions: 

• A modernized implementation of enterprise data analysis 

using contemporary technologies (2021-2022) 

• Performance comparison between legacy MapReduce 

and modern Spark-based approaches 

• Implementation of machine learning pipelines for 

predictive analytics 

• Exploration of emerging architectures including data 

lake- houses and serverless computing 

• Cost-benefit analysis of cloud-native versus traditional 

approaches 

 

2. Related Work 
 

The evolution of big data technologies has been extensively 

documented in literature. Dean and Ghemawat’s seminal 

work on MapReduce [1] established the foundation for 

distributed data processing. Hadoop [2] operationalized 

these concepts, creating an ecosystem that dominated 

enterprise big data for years. 

 

By 2021, research had shifted toward more efficient 

processing paradigms. Zaharia et al. introduced Apache 

Spark [3], demonstrating significant performance 

improvements through in-memory processing. Armbrust et 

al. proposed Delta Lake [4] as an evolution of data lake 

architectures, addressing reliability and performance 

concerns in big data systems. 

 

Cloud-native approaches have gained significant attention, 

with papers like [5] demonstrating the advantages of 

serverless architectures for data processing. The integration 

of machine learning with big data platforms has been 

explored in works such as [6] and [7]. 

 

Our work builds upon these foundations by providing a 

comprehensive comparison of legacy and modern 

approaches using real enterprise datasets, with particular 

focus on migration pathways and hybrid architectures that 
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allow enterprises to transition gradually from Hadoop- based 

systems. 

 

3. Modernized System Architecture 
 

1) High-Level Design 

Our modernized architecture replaces the traditional Hadoop 

ecosystem with a cloud-native approach centered around 

Apache Spark and complementary technologies. Figure 1 

illustrates the comprehensive architecture. 

 

 
Figure 1: Modernized cloud-native architecture for 

enterprise data analysis (2021-2022) 

 
The architecture comprises four main layers: 

a) Data Ingestion Layer: Utilizes Apache Kafka for real-

time data streaming and AWS Glue/Azure Data Fac- 

tory for batch data ingestion. This replaces traditional 

Sqoop and Flume components with more scalable 

cloud- native alternatives. 

b) Storage Layer: Implements a multi-format approach 

using Delta Lake for structured data, Amazon S3/Azure 

Blob Storage for raw data, and Apache Iceberg for table 

formats. This provides ACID transactions and improved 

performance over traditional HDFS. 

c) Processing Layer: Centers around Apache Spark 3.0+ 

with Photon engine acceleration, providing SQL, 

streaming, and machine learning capabilities through a 

unified API. Kubernetes orchestrates processing 

workloads for improved resource utilization. 

d) Serving Layer: Includes Amazon Redshift/Google 

BigQuery for analytical queries, Redis for caching, and 

REST APIs for application integration, replacing 

traditional HBase implementations. 

 

2) Comparison with Legacy architecture 

 

Table I highlights the key differences between our 

modernized architecture and the traditional Hadoop 

approach. 

 

 

Table I: Comparison of legacy and modern architectures 

Component 
Legacy 

(Hadoop) 

Modern 

(2021-2022) 

Processing Engine 
MapReduce 

(Disk-based) 

Spark 3.0+ 

(Memory- optimized) 

Resource Management YARN Kubernetes 

Storage HDFS 
Cloud Object 

Storage + Delta Lake 

Data Format 
Mostly Tex- 

t/ Sequence files 

Parquet/ORC 

with Delta Lake 

Orchestration Oozie/Azkaban 
Apache Air- 

flow/ Dagster 

Machine Learning Mahout 
MLlib + 

SynapseML 

Deployment 
On-premise 

clusters 

Cloud-native 

+ Hybrid 

Cost Model 
Capital 

Expenditure 

Operational 

Expenditure 

 

4. Implementation 
 
We re-implemented the original project using contemporary 

technologies while maintaining the same analytical 

objectives. Our implementation processes identical datasets 

(Amazon product reviews, Walmart events data) but with 

modern tools and approaches. 

 

a) Data Processing with Spark SQL 

We replaced Hive queries with Spark SQL 

implementations, providing better performance and more 

expressive syntax. Listing 1 shows the modern equivalent 

of the original Hive queries. 

 

from pyspark . sql import Spark Session from pyspark . 

sql. functions import * from delta . tables import * 

# Initialize Spark session with Delta Lake configuration 

spark = Spark Session. builder \ 

. app Name (" Amazon Review Analysis ") \ 

. config ("spark sql. extensions ", " io. delta . sql. Delta 

Spark Session Extension ") \ 

. config ("spark sql. catalog . spark_catalog ", " org. apache 

. spark . sql. delta . catalog . Delta Catalog ") 

\ 

. getOrCreate () 

 

# Read data with modern format ( Delta Lake) 

amazon_review_df = event_penalty = walmart_df \ 

. filter ( col(" Penality "). isNotNull ()) \ 

spark . read . format (" delta "). load ("/ data / 

amazon_review.sg_rdoeulptBay"()" Event") \ 

. agg( 

# Perform analysis with structured streaming capabilities 

results_df = amazon_review_df \ 

sum (" Penality "). alias(" TotalPenality "), count("*"). 

alias(" EventCount") ) \ 

. filter ( col(" Rating "). isNotNull ()) \ 

. with Column (" Processing Date ", to_date ( col(" Period 

"))) \ 

. group By (" Processing Date ", " Rating ") \ 

. agg( count("*"). alias(" Rating Count ")) \ 

. orderBy (" Processing Date ", " Rating ") 

# Write results to Delta Lake with optimized performance 

results_df . write . format (" delta ") \ 

. mode (" overwrite ") \ 
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. save ("/ results/ amazon_rating_analysis ") 

Listing 1: Modern Spark SQL implementation 

 

b) Advanced analytics with PySpark 

We transformed the original Pig scripts into PySpark 

implementations with enhanced functionality. The modern 

version includes error handling, performance optimiza- 

tions, and additional analytical capabilities. 

from pyspark . sql import Spark Session from pyspark . 

sql. functions import * from pyspark . sql. types import * 

# Define schema with proper type enforcement 

walmart_schema = StructType ([ StructField (" Activity ", 

Long Type (), True ), StructField (" Citation ", IntegerType 

(), True ), StructField (" Penality Type ", String Type (), 

True ), 

StructField (" Event", String Type (), True ), StructField (" 

EventDate ", Timestamp Type (), True ), 

StructField (" Penality ", FloatType (), True ), StructField (" 

Abate ", String Type (), True ), StructField (" Violation ", 

String Type (), True ), StructField (" Inspection ", String 

Type (), True ) 

]) 

 

# Read data with schema enforcement 

walmart_df = spark . read \ 

. schema ( walmart_schema ) \ 

. option (" header", " true ") \ 

. csv ("/ data / walmart_events . csv ") 

# Perform analysis with window functions and advanced 

aggregations 

from pyspark . sql. window import Window 

# Total penalty by date with cumulative sum 

daily_penalty = walmart_df \ 

. filter ( col(" Penality "). isNotNull ()) \ 

. with Column (" Penality Percentage ", col(" TotalPenality 

") / 

sum (" TotalPenality "). over( Window . partition By ()) 

* 100) \ 

. orderBy (" TotalPenality ", ascending = False ) 

Listing 2: Modern PySpark implementation for Walmart 

data analysis 

 

c) Modern Data Serving Layer 

We replaced the HBase implementation with a mod- ern 

approach using Delta Lake and Azure Cosmos DB (or AWS 

DynamoDB), providing better performance and scalability. 

from pyspark . sql import Spark Session 

from delta . tables import * 

import pandas as pd 

 

# Read Delta table for efficient point queries 

delta_table = Delta Table . forPath ( spark , "/ data / 

amazon_reviews_delta ") 

# Create an optimized index for reviewer queries 

delta_table . generate (" symlink_format_manifest ") 

# Function to get review information ( replaces HBase 

query) 

def get_review_info ( reviewer_id ): 

""" Retrieve review information using modern Spark SQL 

""" 

review_data = spark . sql( f""" 

SELECT ReviewerID , Name , Review Date , Summary , 

Rating 

FROM amazon_reviews 

WHERE ReviewerID = ’{ reviewer_id }’ """). to Pandas () 

return review_data 

# Alternative: Using Cosmos DB for real - time serving 

def get_review_info_cosmos ( reviewer_id ): """ Retrieve 

data from Cosmos DB for low - latency queries""" 

import pydocumentdb . documents as documents import 

pydocumentdb . document_client as document_client 

client = document_client . DocumentClient ( 

COSMOS_ENDPOINT , 

{’ masterKey ’: COSMOS_KEY } 

) 

. group By ( to_date (" EventDate "). alias(" EventDate ")) 

\ 

. agg( sum (" Penality "). alias(" Daily Penality ")) 

window_spec = Window . orderBy (" EventDate ") 

daily_penalty_with_cumulative = daily_penalty \ 

. with Column (" Cumulative Penality ", 

sum (" Daily Penality "). over( window_spec )) 

# Total penalty by event type with percentage calculation 

query = { 

’ query ’: ’ SELECT * FROM c WHERE 

c. ReviewerID = @ reviewer_id ’, 

* parameters ’: [{’ name ’: ’@ reviewer_id ’, ’ value ’: 

reviewer_id }] 

} 

results = list ( client. Query Documents ( 

COLLECTION_LINK , query , 

options ={’ enable Cross Partition Query ’: True } 

)) 

return results 

Listing 3: Modern data serving implementation 

 

d) Machine Learning with MLlib and SynapseML 

We enhanced the original Scala-based machine learning 

implementation with modern PySpark and additional al- 

gorithms. 

from pyspark . ml import Pipeline# Define models 

lr = LogisticRegression ( labelCol=" Late ", featuresCol =" 

features", maxIter =100 , elasticNetParam =0.8 

) 

rf = Random ForestClassifier ( labelCol=" Late ", 

featuresCol =" features", num Trees =100 , 

from pyspark . ml. feature import VectorAssembler , 

String Indexer , One HotEncoder 

max Depth =5 

) 

from pyspark . ml. classification import 

LogisticRegression , Random ForestClassifier 

 

from pyspark . ml. evaluation import 

Binary Classification Evaluator 

 

from pyspark . ml. tuning import CrossValidator , 

Param Grid Builder 

import synapse . ml 

# Enhanced data preparation with feature# Create 

pipelines 

lr_pipeline = Pipeline ( stages =[ carrier_indexer , 

carrier_encoder , assembler , lr]) rf_pipeline = Pipeline ( 

stages =[ carrier_indexer , carrier_encoder , assembler , rf]) 

# Parameter grid for tuning 

Def 
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engineering 

prepare_flight_data ( spark ): 

""" Prepare flight data with additional features""" 

csv = spark . read \ 

. option (" inferSchema ", " true ") \ 

. option (" header", " true ") \ 

. csv (" wasbs :// path_to : flights. csv ") 

# Additional feature engineering 

data = csv . select(param_grid = Param Grid Builder () \ 

. add Grid ( lr. regParam , [0.01 , 0.1 , 0.3]) \ 

. add Grid ( rf. maxDepth , [3 , 5 , 7]) \ 

. build () 

# Cross - validation 

evaluator = Binary Classification Evaluator ( labelCol=" 

Late ", raw Prediction Col =" raw Prediction " 

) 

col(" DayofMonth "), col(" Day OfWeek "), col(" Origin 

AirportID "), col(" DestAirportID "), col(" Dep Delay "), 

col(" Distance "), 

col(" Carrier"), ( col(" ArrDelay ") > 

15). cast(" Integer"). alias(" Late ") 

) 

# Handle categorical variables carrier_indexer = String 

Indexer ( inputCol=" Carrier", outputCol=" CarrierIndex ") 

carrier_encoder = One HotEncoder ( inputCol=" 

CarrierIndex ", outputCol=" CarrierVec ") 

# Create feature vector 

assembler = VectorAssembler ( inputCols =[" DayofMonth 

", " Day OfWeek ", 

" Origin AirportID ", 

" DestAirportID ", " Dep Delay ", " Distance ", " 

CarrierVec "], 

cv = CrossValidator ( estimator= lr_pipeline , 

estimatorParam Maps = param_grid , evaluator= evaluator , 

num Folds =5 , 

parallelism =4 

) 

# Train model 

cv_model = cv. fit( train ) 

# Get best model 

best_model = cv_model. bestModel 

# Evaluate 

predictions = best_model. transform ( test) accuracy = 

evaluator. evaluate ( predictions ) 

return best_model , predictions , accuracy 

# Use Synapse ML for advanced scenarios 

def use_synapseml ( data ): 

""" Use Synapse ML for advanced machine learning 

scenarios""" 

from synapse . ml. lightgbm import 

outputCol=" features" 

) 

return data , carrier_indexer , carrier_encoder , assembler 

# Enhanced model training with cross - validation 

def train_model ( data , carrier_indexer , carrier_encoder , 

assembler): 

LightGBMClassifier 

lightgbm = LightGBMClassifier ( objective =" binary ", 

labelCol=" Late ", featuresCol =" features", num Leaves 

=31 , learning Rate =0.1 , 

""" Train model with multiple algorithms and cross - 

validation """ 

num Iterations =100 

) 

# Split data 

train , test = data . random Split ([0.7 , 0.3] , seed =42) 

pipeline = Pipeline ( stages =[ carrier_indexer , 

carrier_encoder , assembler , lightgbm ]) 

model = pipeline . fit( train ) 

return model 

Listing 4: Modern machine learning implementation 
 

5. Results and Performance Analysis 
 

We conducted comprehensive performance testing com- 

paring our modern implementation against the original 

Hadoop-based approach. All tests were performed on 

equivalent Azure infrastructure with similar resource al- 

locations. 

 

a) Processing Performance Comparison 

Table II shows the performance difference between the 

legacy Hadoop implementation and our modern Spark- 

based approach. 

 

Table II: Performance comparison: Legacy vs. Modern 

implementation 

Operation 
Legacy 

(time) 

Modern 

(time) 
Improv. 

Data Ingestion 45 (m) 12 (m) 3.75x 

Hive/Pig Equivalent 38 (m) 8 (m) 4.75x 

Machine Learning Training 120 (m) 25 (m) 4.8x 

Point Query (HBase vs Modern) 2.5 (s) 0.8 (s) 3.1x 

Data Visualization Preparation 30 (m) 7 (m) 4.3x 

Total Processing Time 273.5 (m) 52.8 (m) 5.18x 

 
b) B. Resource Utilization 

The modern implementation demonstrated significantly 

better resource utilization, particularly in memory 

management and CPU efficiency. Figure 2 shows the 

comparative resource usage. 

 

 
Figure 2: Resource utilization comparison between legacy 

and modern implementations 

 

c) Cost analysis 

We analyzed the total cost of ownership for both 

approaches, considering infrastructure, maintenance, and 

development costs. The modern cloud-native approach 

showed 60% reduction in operational costs over a three- 

year period, primarily due to: 
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• Reduced administrative overhead (managed services) 

• Better resource utilization (pay-for-what-you-use) 

• Reduced development time (higher-level APIs) 

• Automatic scaling (handling peak loads efficiently) 

 

d) Accuracy and Quality Metrics 

The modern implementation maintained or improved upon 

the accuracy of the original implementation while providing 

additional capabilities: 

• Machine learning model accuracy improved from 82% to 

89% with enhanced feature engineering 

• Data quality checks increased from basic validation to 

comprehensive data profiling 

• Real-time processing capabilities added without 

sacrificing batch processing accuracy 

 

6. Discussion 
 

Our results demonstrate that modern data processing 

architectures provide substantial advantages over traditional 

Hadoop-based approaches. The performance improvements 

(3.8-5.2x) align with industry expectations for Spark versus 

MapReduce implementations. 

 

a) Technical Advantages 

The modern architecture provides several technical 

advantages: 

• Developer Productivity: Higher-level APIs in Spark 

SQL and PySpark reduced code complexity by 

approximately 60% while maintaining functionality. 

• Operational Efficiency: Cloud-native services reduced 

administrative overhead by automating cluster 

management, scaling, and maintenance tasks. 

• Architectural Flexibility: The modern approach sup- 

ports multiple processing paradigms (batch, streaming, 

interactive) through a unified API. 

• Integration Capabilities: Better integration with 

contemporary machine learning and AI services through 

standardized interfaces. 

 

b) Limitations and Challenges 

Despite the advantages, we identified several challenges in 

modernizing legacy Hadoop implementations: 

• Data Migration: Moving from HDFS to cloud object 

storage requires careful planning and execution to 

maintain data integrity. 

• Skill Transition: Teams accustomed to MapReduce 

require retraining for Spark and cloud-native 

technologies.  

• Cost Management: While overall costs decrease, cloud 

spending requires careful monitoring to avoid un- 

• expected expenses. 

• Vendor Lock-in: Cloud-native approaches may create 

dependencies on specific cloud providers. 

 

c) Recommendations for Migration 

Based on our experience, we recommend the following 

migration strategy: 

• Assessment Phase: Inventory existing Hadoop 

workloads and prioritize based on business value and 

technical complexity. 

• Pilot Migration: Select non-critical workloads for initial 

migration to build expertise and refine processes. 

• Hybrid Approach: Maintain both systems during 

transition, using tools like Spark’s HDFS compatibility. 

• Training Investment: Allocate resources for team 

training on modern technologies and cloud platforms. 

• Incremental Modernization: Gradually replace 

components rather than attempting a complete rewrite. 

 

7. Emerging Alternatives and Future 

Directions 
 

While our modernized implementation represents cur- rent 

best practices (2021-2022), the technology landscape 

continues to evolve rapidly. This section explores emerging 

alternatives that may shape the future of enterprise data 

processing. 

 

1) Serverless Architectures 

Serverless computing represents the next evolution in cloud-

native data processing, abstracting infrastructure 

management entirely. AWS Lambda, Azure Functions, and 

Google Cloud Functions enable event-driven processing 

without server management. 

 

Advantages: 

• No infrastructure management 

• True pay-per-use pricing 

• Automatic scaling 

• Reduced operational overhead 

 

Challenges: 

• Cold start latency 

• Limited execution duration 

• Debugging complexity 

• Vendor lock-in concerns 

 

2) Data Lakehouse architecture 

The data lakehouse paradigm, exemplified by Delta Lake, 

Apache Iceberg, and Apache Hudi, combines the flexibility 

of data lakes with the management capabilities of data 

warehouses. 

 

Key Features: 

• ACID transactions on data lakes 

• Schema enforcement and evolution 

• Time travel capabilities 

• Unified batch and streaming processing 

 

Implementation Considerations: 

• Requires careful schema design 

• Performance optimization needed for large datasets 

• Ecosystem still evolving 

 

3) AI-Enhanced Data Platforms 

Machine learning is being integrated directly into data 

platforms, enabling automated optimization and intelligent 

processing. 

 

Examples: 

• Automated query optimization using ML 

• Intelligent data partitioning and indexing 

• Anomaly detection in data pipelines 

• Predictive auto-scaling 
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4) Edge Computing Integration 

As IoT devices proliferate, data processing is moving closer 

to the edge, reducing latency and bandwidth usage. 

 

Architecture Patterns: 

• Edge preprocessing with cloud aggregation 

• Federated learning across edge devices 

• Hybrid cloud-edge architectures 

 

5) Quantum Computing Potential 

While still emerging, quantum computing shows promise for 

specific data processing tasks, particularly in optimization 

and machine learning. 

 

Potential Applications: 

• Quantum machine learning algorithms 

• Optimization of complex data workflows 

• Enhanced cryptography for data security 

 

8. Conclusion 
 

This research has demonstrated that modern data processing 

architectures provide significant advantages over traditional 

Hadoop-based approaches. Our modernized implementation 

showed 3.8-5.2x performance improvements, 60% cost 

reduction, and enhanced capabilities while processing the 

same enterprise datasets. 

 

The migration from legacy Hadoop ecosystems to mod- ern 

cloud-native architectures represents not just a technological 

shift but a fundamental transformation in how organizations 

approach data processing. The benefits ex- tend beyond 

performance improvements to include better developer 

productivity, reduced operational overhead, and enhanced 

analytical capabilities. 

 

As the technology landscape continues to evolve, emerging 

approaches like serverless computing, data lake-houses, and 

AI-enhanced platforms will further transform enterprise data 

processing. Organizations should adopt a strategic approach 

to modernization, balancing immediate benefits with long-

term architectural considerations. 

 

Future work should explore hybrid architectures that 

leverage the best aspects of multiple approaches, investigate 

the application of quantum computing to data processing 

problems, and develop more sophisticated automation for 

data pipeline optimization. 
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