
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.803

Volume 11 Issue 2, February 2022
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Formulating Operating System Anonymization by

Monolithic Keyring Subsystem Fabrication

Ujas Dhami
1*

, Nisarg Shah
2

1, 2Department of Computer Engineering, Silver Oak University, Ahmedabad-380061, India

*Corresponding Author E-mail: ujasdhami[at]gmail.com

Abstract: The monolithic kernel is a widely used kernel when building ARM architectures and Linux distributions. With all

instructions being in the kernel space, it is insecure, and can easily perform cross-transactions of sensitive information when under a

memory leak, thus, it is vital to lock certain sections of the kernel to confine it from exposing personal information to risk. Investigation:

This paper demonstrates a Volatile Operating System formulated by the authors with the use of Keyring Subsystems for fragmenting the

kernel space into multiple domes using security keys. Method: A kernel is configured and built using security modules, and deployed

with anonymization tools to a bootable USB, to check if memory leaks leave traces of cache into the device drivers or the disk. These

anonymization tools help to clear memory. Principle Result: Less to no information was transmitted to the device memory, leaving

everything as is. The anonymization tools cleared off all the events and cache before shutting down the system, making it challenging for

forensics to acknowledge the use of a volatile OS into the device from a USB stick.

Keywords: Operating System, OS Development, Monolithic Kernel, Kernel Security and Anonymity, Anonymization

1.Introduction

Linus Torvalds discovered the Linux OS in 1991, which

grew to develop the UNIX OS further. He proposed

enhancements yet was dismissed by UNIX architects.

Subsequently, he considered sending off an OS plan to

alter its clients. These days, Linux is the quickest

developing OS. It is utilized from telephones to

supercomputers by practically all significant equipment

gadgets.

Linux is an open-source
1
 working framework like other

working frameworks, like Microsoft Windows, Apple Mac

OS, iOS, Google android, etc. An OS is software that

sanctions the correspondence between PC equipment and

programming. It passes on contribution to handle the

processor and carries results to the hardware devices to

display it. This is the vital capacity of a working

framework. Even though it performs numerous other

significant assignments, threats have always been there to

acknowledge.

1.1 Significance of Anonymity

Regarding examining the significance of Anonymity,

individuals will make statements like, "On the off chance

that you're not doing anything wrong, you have nothing to

fear.” There's a suspicion that the prominent individuals

participating in evil exercises need their personalities to be

protected. In reality, there are many valid justifications to

think often about secrecy, particularly on the web. [1]

Their not coping up with the anonymity of their character

when necessary can create significant issues, like:

- Personality Protection: Sometimes, you don't need

anybody to know who you are, regardless of whether

you're not engaged with anything unlawful or

problematic. There's a degree of social security that

1
Open source software refers to programs which are

distributed for anyone to access, modify and redistribute

accompanies obscurity. Also, that can be genuinely

significant for thoughtful people in web-based networks.

- Individual Harassment: Online namelessness likewise

assumes a significant part in the opportunity of

articulation. A most astonishing aspect of the web is that

it can give voices to effectively being quieted, people.

This permits them to talk unafraid of repercussions.

Online Harassment incorporates Doxing, Swatting, and

revenge pornography.

- Sensitive Issues: There's another significant

classification of individuals who benefit from

namelessness: the people who need more data on a given

theme yet don't have any desire to be discovered

searching out that data. A great many people fall into this

gathering without acknowledging it.

1.2 Research Overview

The NIJAS OS is a Linux-based Operating System made

explicitly for anonymization purposes. This OS consists of

the calibre to provide absolute anonymity to whoever uses

it. It is a live OS, meaning that it does not save any

data/logs/history if not installed and run live. It has no

interference in the threads leading to the Hard Disk Drive

(HDD). Thus, no data can ever be exhilarated from the

session done with the live OS
2
, as everything is operated

from the USB stick.

However, the USB Stick, too, is close to being untraceable

for the sessions done in the OS because the OS contains a

fully-encrypted virtual disk with a 3-layer security

architecture [2]. The OS consists of the LSM encryption

suite, and dynamic memory
3
 relocates to anonymize the

session history through randomized memory locations.

2
https://en. wikipedia.org/wiki/Live_CD

3
Dynamic memory allocation refers to managing system

memory at runtime.

Paper ID: SR22131160746 DOI: 10.21275/SR22131160746 148

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.803

Volume 11 Issue 2, February 2022
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Furthermore, the Operating System itself destroys all

evidence upon shutdown, including RAM clearance,. bash

history clearance, deleting logs and terminal history, and

demolishing everything which ever used the device's

resources for functioning.

1.3 Scaling

NIJAS OS can be used to perform covert communications,

research on anonymity and stealth, for maintaining privacy,

and for escaping espionage from other organizations, since

individual users’ privacy is on stake nowadays, as depicted

in Graph 1.

Moreover, the OS can be used exclusively by Intelligence

Agencies, Law Enforcement, Reporters, Scientists, and

Researchers.

2.Literature Review [3] [4] [5]

Title: Monitors: An Operating System Structuring Concept

This paper creates Brinch Hansen's idea of a screen to

organize a working framework. It presents a type of

synchronization, depicts a potential strategy for execution

as far as semaphores, and gives an appropriate evidence

rule. Illustrative models incorporate a solitary asset

scheduler, limited support, a morning timer, a cradle pool,

a circle head streamlining agent, and an adaptation of the

issue of peruses and writers.

An essential point of a working framework is to divide a

PC establishment between many projects setting

unpredictable expectations upon its resources. An essential

undertaking of its originator is in this manner to construct

resource allocation (or scheduling) calculations for

resources of different sorts (entire store, drum store,

magnetic tape overseers, consoles, etc.). To work on his

errand, he should attempt to construct separate schedules

for each resource day.

Title: The JX Operating System

This paper depicts the engineering and execution of the JX

working framework. JX is a working framework written in

Java and a runtime framework for Java applications. Our

work exhibits that it is feasible to construct a

comprehensive working framework in Java, accomplish a

decent presentation, and still advantage from the advanced

programming innovation of this article arranged, type-safe

language.

They clarify how a working framework can be organized

that is never again expanded on MMU assurance yet on

type security. JX depends on a bit of microkernel, which is

answerable for framework introduction, CPU setting

exchanging, and low-level assurance space on the board.

The Java code is coordinated in parts stacked into areas,

checked, and meant local code. Rooms can be disengaged

from one another.

Title: Corey: An Operating System for Many Cores

Multiprocessor application execution can be restricted by

the working framework when the application utilizes the

operational framework often. The working framework

administrations use information structures shared and

altered by various handling centers. If the application

needn't bother with the sharing, then, at that point, the

working framework will turn into an excessive bottleneck

to the application's performance.

This paper contends that applications should control

sharing: the piece should orchestrate every information

structure. Hence, just a solitary processor needs to update

it, except if coordinated in any case by the application. This

plan standard directs this paper. It proposes three working

framework deliberations (address ranges, part centers, and

offers) that permit applications to control between center

sharing and exploit the possible overflow of centers by

devoting centers to explicit working framework functions.

Measurements of microbenchmarks on the Corey model

operational framework, which epitomizes the new

reflections, show how to command over-sharing can

further develop execution. Application benchmarks,

utilizing Map Reduce and a Web server, show that the

upgrades can be massive for by and large commission:

Map Reduce on Corey performs 25% quicker than on

Linux when utilizing 16 centers. Equipment occasion

counters affirm that these upgrades are expected to keep

away from costly activities on multicore machines. The

outcomes above ought to be considered a case for the rule

that applications should control sharing rather than an

indisputable "confirmation. " Corey needs many highlights

of product working frameworks, for example, Linux, which

impacts exploratory outcomes both decidedly and

adversely.

3.Methodology

Developing an Operating System required a collective

knowledge on Kernels, low-level instructions and the

libraries required to build up the roots. Thus, we started

researching about it and about how Linux Kernels are

configured and compiled.

3.1 Formulation Prerequisites

As the NIJAS Operating System was built based on the

libraries of the Linux Mint Operating System, hence, at the

initial phase, we downloaded the Linux Kernel. After

downloading the Kernel, we studied the different essential

components of Linux. That is, we learned about Linux

Keyrings and instructions. Keyrings allow you to group all

Paper ID: SR22131160746 DOI: 10.21275/SR22131160746 149

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.803

Volume 11 Issue 2, February 2022
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

the passwords and keep them in one place. After reviewing

different Keyrings, we then jumped towards the integration

and the compilation of other Linux components.

Linux components included the Kernel, System Libraries,

System Utility, Basic Input Output System (BIOS), Master

Boot Record (MBR), etcetera. The Kernel is the core part

of the Linux Operating System and is responsible for

carrying out all the different activities in the operating

system. System libraries are special functions that access

Kernel's features. System Utility is a program that carries

out individual tasks. BIOS Menu searches and executes the

bootloader from the MBR. It acts as a bridge between the

hardware and the software.

At the same time, the Master Boot Recorder is located in

the first sector of the boot disk. Init Processes are the

processes that halt Single/Multi-User mode. We integrated

everything into the Kernel and performed couple

dependency checks.

3.2 Compartmentalizing Keyrings

After Integrating/Compiling the Linux Components, one

needs to secure its inbound keyrings
4
. These include

securing the authentication keys, encryption keys, and

other data present in the Kernel. Keyrings have attributes

like Serial Number, Type, Description, and the Payload,

Access Rights, the Expiration Time, and the reference

count responsible for various Linux operations.

Compartmentalizing them will isolate them from exposing

memory leaks to the device.

Moreover, we took the libraries and the themes of the

Linux Mint operating system, including its package

manager. All these things are used to give a better User

Interface to the user. We specifically took two package

managers, namely apt and snap. Snap is a software package

and deployment system that uses self-contained packages

called snaps to deliver software to users, while APT mainly

obtains packets from a distribution's official repositories.

Snap enables developers to access their apps via the Snap

Store directly.

We, then, flashed the KDE Plasma environment
5
 as a

Window Manager. The desktop environment gives a more

compatible user facility to navigate between different parts

of the operating system [6]. Then comes the final part of

the installation, i.e., installing the GRUB bootloader. The

GRUB Bootloader is capable of managing various

operating systems on a single machine.

3.3 Configuring Anonymization

Then, we installed anonymity tools as our Operating

System depends substantially on anonymization. We

installed the drivers and adjusted cron jobs for engaging

with the RAM, Port Usage events, and

4
https://man7.org/linux/man-pages/man7/keyrings.7.html

5
KDE Plasma 5 is the fifth generation of the graphical

workspaces environment created by KDE for Linux

systems.

Memory Clearance. As an example, we installed the

sdmem tool, which wipes out the RAM after the system

boots or during runtime.

Moreover, we also configured a log cleaning script, which

clears out all the logs stored in the system. We then

compiled all the source files and tested them in a loop for

the bugs and errors. After all the debugging and

troubleshooting was completed, we converted it into an

ISO file. With the help of open-source image burners, we

burnt it to an USB Stick. The stick was used to flash the

OS into the device using the same.

4.Outcomes and Analysis

After scrutinizing the compilation, the files were then

encompassed by a PKZIP codec to form compressed

blocks of scattered compartmentalized data for packing it

linearly to formulate an ISO file. The packing took a long

time for processing streamlined data, and because of the

compression, the final output of the file was reduced from

7.42 GiB to 3.11 GiB with less to no compression loss.

4.1 Booting

When the Operating System was booted up, it used GRUB

as a bootloader, to prompt for a live session. Upon

affirmation, ring 3 of the kernel elevated instructions to

itself, and loaded blocks of the BIOS to initialize the

Window Manager for flashing the KDE Plasma GUI

environment. Proc/Systemd initiated, along with other

daemons to complete the loading of the system, and Cron

Jobs were allocated to running daemons.

The Linux File System (LFS) got loaded along with the

default tools installed by us earlier in the system

configuration phase. Since sdmem was in the cron jobs, it

ran periodically, clearing off memory traces from the

RAM. The LSM locked several memory components of the

USB Stick, to prevent any memory flushing of the same to

the system disks. Drivers for interfacing hardware devices

were loaded, and the network adapter, along with the

media drivers could be accessible from the desktop

environment itself. We integrated Linux Mint KDE drivers

for faster loading and functioning.

4.2 Memory Leaks and Flushing

Memory leaks were checked by opening resourceful

applications and monitoring their status of running.

Consecutive running and terminating of apps took place,

with applications leaking close to zero bytes of memory

from the Dynamic Memory Allocation (DMA) unit.

Moreover, the driver cache which is natively dumped into

the system for efficient driver interaction is also restricted,

and cannot form cache on its own. The system runs on

complete volatility and leaves no checksums or headers of

the memory chunks directing to the Operation System.

Even if the drivers leave cache to the memory, the

systemctl command can be used to clear the driver and

memory cache from the system.

Paper ID: SR22131160746 DOI: 10.21275/SR22131160746 150

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.803

Volume 11 Issue 2, February 2022
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

To delete the cache, the command is as follows:

sudo systemctl vm. drop=caches=3

3 is the signal for clearing PageCache, Dentries and Inodes.

Importing this command inside the cron jobs might

perform the cache clearance periodically.

4.3 Anonymity Control

The anonymity tools installed by us provide anonymization

for several synchronous services, which include DNS

rotations, IP masking, MAC spoofing, User-agent

rotations, Browser Cache Control, RAM and memory

clearance, Anonymous File Transfer and Server Hosting,

Traffic Tunneling, Device ID Randomization, etcetera.

With everything entirely functional and automated, the

system gains enough anonymity to mask any user surfing

the web or use the system for interpersonal

communications.

Upon execution, the tools initialized successfully,

performing what they were obliged to do. The consecutive

vectors got rotated/spoofed and could be verified by

comparing the headers and checksums of the rotated and

the original files. All the tools are security and privacy

centric, meaning, that they do not let web engines crawl

them or the user operating them, keeping the transmissions

private and tunneled [7]. However, some of the tools are

operated by remote servers of their respective company,

and any breach is likely to give out information about this

system or the window properties, such as resolution,

beacons, and more. Thus, only those tools are chosen

which have less to none breaches occurred in their history.

4.4 System Crashes

NIJAS OS is an extensively versatile and flexible system

which can adjust its resources and capabilities by studying

the system architecture. The system is very lightweight,

and carries everything with a minimal resource usage and

higher efficiency.

Otherwise, all the debugging errors in the system have

been resolved during the development phase, and the

volatile system is tested on devices satisfying every

resource range, from 8 GiB of RAM and a quad-core

processor, to 2 GiB of RAM with a dual-core processor.

Both yield down the system with little to no lags or

memory leaks.

5.Conclusion

The NIJAS OS is a privacy-centric, volatile system which

holds the responsibility to make the operator near to

absolute anonymous by its construction and rotation

techniques. This operating system, however, has its own

disadvantages of being used by cyber criminals for

breaches and other operations. Thus, it is designed solely

for research purposes and its usage is only authorized to a

few private groups for transmitting confidential

information from one node to another.

The OS has one stable release and has all necessities for

different purposes, used by people prioritizing security

over everyday surveillance and supervision. The simple

plug-and-play operating system also leaves no port events

populated by its presence. It holds the task to clear those

when shutting down, making the tracing almost unfeasible.

References

[1] Smith, H. & Dinev, Tamara & Xu, Heng. (2011).

Information Privacy Research: An Interdisciplinary

Review. MIS Quarterly.35.989-

1015.10.2307/41409970.

[2] Ullah, Shamsher & Li, Yang & Hussain, Muhammad

Tanveer & Lan, Zhang. (2019). Kernel homomorphic

encryption protocol. Journal of Information Security

and Applications.48.10.1016/j. jisa.2019.102366.

[3] Hoare C. A. R. (1974) Monitors: An Operating System

Structuring Concept. In: Hansen P. B. (eds) The Origin

of Concurrent Programming. Springer, New York,

NY. https://doi.org/10.1007/978-1-4757-3472-0_10

[4] Golm, Michael & Felser, Meik & Wawersich,

Christian & Kleinöder, Jürgen. (2002). The JX

Operating System. .45-58.

[5] Boyd-Wickizer, S., Chen, H., Chen, R., Mao, Y.,

Kaashoek, M. F., Morris, R. T., Pesterev, A., Stein, L.,

Wu, M., Dai, Y., Zhang, Y., & Zhang, Z. (2008).

Corey: An Operating System for Many Cores. OSDI.

[6] Petersen, Richard. (2014). The K Desktop

Environment: KDE.10.1007/978-1-4842-0067-4_10.

[7] Sardá, Thais & Natale, Simone & Sotirakopoulos,

Nikos & Monaghan, Mark. (2019). Understanding

online anonymity. Media, Culture &

Society.41.016344371984207.10.1177/016344371984

2074

Paper ID: SR22131160746 DOI: 10.21275/SR22131160746 151

