Proof of $1/0 = \infty$

Maitri Joshi

Main Proof of $1/0 = \infty$ We have,

 $(1+x)^{n} = 1 + \frac{nx}{1!} + \frac{n(n-1)x^{2}}{2!} + \dots \infty$ [From Theory of Binomial Index] Now, putting x = -1 & n = -1, i.e., $(1-1)^{-1} = 1 + \frac{(-1)1}{1!} + \frac{(-1)(-2)1^{2}}{2!} + \frac{(-1)(-2)(-3)1^{3}}{3!} + \dots \infty$ $\therefore \frac{1}{0} = 1 + 1 + 1 + 1 + \dots \infty$ $\therefore \frac{1}{0} = \infty$

Hence Proved

Note: This Proof Includes claiming that the limit of x should be $|x| \le 1$ in Binomial Expansion for any index. \therefore We can say that.

$$\frac{1}{0} = \infty \& \frac{-1}{0} = -\infty$$

Supporting Proofs

Proof of Binomial Expansion for any Index (With the help of Maclaurin's Series):

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} (x)^n$$

$$\begin{split} f(x) &= f(0) + f'(0)x + f^{(0)}x^{2}/2! + \dots \infty \\ \text{Now, let } (1+x)^{n}, n \in Q \\ &\therefore f(x) = (1+x)^{n} \implies f(0) = 1 \\ &f'(x) = n(1+x)^{n-1} \implies f'(0) = n(1+0) = n \\ &f^{(x)} = n(n-1)(1+x)^{n-2} \implies f^{(0)} = n(n-1) \\ &f^{(x)}(0) = n(n-1)(n-2) \& \text{ So on} \dots \\ &\therefore f(x) = 1 + \frac{nx}{1!} + \frac{n(n-1)x^{2}}{2!} + \dots \infty \end{split}$$

Here, if $|\mathbf{x}| > 1$, then fractional power for any -ve number in the base will not be possible, i.e. like for x = -2,

 $(1-2)^{1/2}$ or $(1-100)^{3/2}$ will not be possible for real numbers, its possible in **Complex Region**.

So, they might have taken condition that $|x| \le 1$.

- But, in $(1+x)^n$, if we put x=1 or -1, it satisfies all the values & $(1-1)^{-1}$ gives the proof of $1/0 = \infty$. \Rightarrow The condition should be $|x| \le 1$.
- Also, 1/0 itself is a proof of $1/0 = \infty$, if we see the graph of 1/x.

Conditions to Satisfy $|x| \le 1$:

For x = 1 & x = -1:

Volume 11 Issue 2, February 2022 www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

International Journal of Science and Research (IJSR) ISSN: 2319-7064 SJIF (2020): 7.803

 $\therefore 1 - S_1 = S_1 \Longrightarrow 1 = 2S_1$ $\therefore \mathbf{S}_1 = \mathbf{1/2}$ \rightarrow Result (1) $\therefore (1+1)^{-1} = \frac{1}{2}$ Satisfied $(1-1)^{1} = 1 + \frac{1(-1)}{1!} + \frac{1(1-1)1^{2}}{2!} + \cdots \infty$ = 1 - 1 + 0 + 0 + ... \infty = 0 Satisfied $\frac{(1/2)\left(-\frac{1}{2}\right)(-3/2)(-1)^{3}}{3!} + \cdots \infty$ $:(1-1)^1 = 0$ $(1-1)^{1/2} = 1 + \frac{(1/2)(-1)}{1!} + \frac{(1/2)(-1/2)(-1)^2}{2!} +$ Now, it will become 0, after round about 50 terms, derived from calculations. $(1-1)^{1/2} = 0$ Satisfied $(1+1)^{1/2} =$ $\begin{array}{l} 1+\frac{(1/2)1}{1!}+\frac{(1/2)(-1/2)1^2}{2!}+\frac{(1/2)\left(-\frac{1}{2}\right)(-3/2)1^3}{3!}+\cdots\infty\\ =1+0.5-0.125+0.0625-0.0390625+\ldots\infty\end{array}$ \approx Remains near the value of 1.41 $(1+1)^{1/2} \approx 1.41$ Satisfied $\frac{(-1/2)\left(-\frac{3}{2}\right)(-5/2)1^3}{3!} + \cdots \infty$ $(1+1)^{-1/2} = 1 + \frac{(-1/2)1}{1!} + \frac{(-1/2)(-3/2)1^2}{2!} +$ = 1 - 0.5 + 0.375 - 0.3125 + 0.2734375 - ...∞ \approx Remains near to 0.7 after number of terms $\therefore (1+1)^{-1/2} \approx 0.7 \ (= 1/\sqrt{2})$ Satisfied • $(1+1)^{3/2} = 1 + \frac{(3/2)1}{1!} + \frac{(3/2)(1/2)1^2}{2!} +$ = 1 + 1.5 + 0.375 - 0.0625 + 0.0234375 - ...∞ $\frac{(3/2)(\frac{1}{2})(-1/2)1^3}{2!} + \cdots \infty$ \approx Remains exactly constant near 2.82 & doesn't change $\therefore (1+1)^{3/2} \approx 2.82 \ (=2\sqrt{2})$ Satisfied $(1+1)^{-3/2} = 1 + \frac{(-3/2)1}{1!} + \frac{(-3/2)(-5/2)1^2}{2!} +$ = 1 - 1.5 + 1.875 - 2.1875 + 2.4609375 -...∞ $\frac{(-3/2)\left(\frac{-5}{2}\right)(-7/2)1^3}{3!} + \cdots \infty$ \approx Will slowly decrease to 0.35355 and will become constant to it, after number of terms $\therefore (1+1)^{-3/2} \approx 0.3535$ Satisfied • $(1+1)^{-2} = 1 + \frac{(-2)1}{1!} + \frac{(-2)(-3)1^2}{2!} + \frac{(-2)(-3)(-4)1^3}{3!} + \cdots \infty$ = $1 - 2 + 3 - 4 + 5 - 6 + \dots \infty$ $\begin{array}{ll} \therefore \ S_2 = & 1-2+3-4+5-6+\ldots\infty \\ S_2 = & 1-2+3-4+5-6+\ldots\infty \\ \therefore \ 2S_2 = & 1-1+1-1+\ldots\infty \end{array} \\ \left[\because \ Adding \ S_2 \ twice \right] \end{array}$ $\therefore 2S_2 = \frac{1}{2}$ [From Result (1) (Pg. 03)] \therefore S₂ = 1/4 $\therefore (1+1)^{-2} = 1/4$ Satisfied • $(1-1)^{-1} = 1 + \frac{(-1)1}{1!} + \frac{(-1)(-2)1^2}{2!} + \frac{(-1)(-2)(-3)1^3}{3!} + \dots \infty$ $\therefore \frac{1}{0} = 1 + 1 + 1 + 1 + \dots \infty$ $\therefore \frac{1}{0} = \infty$ Satisfied $\frac{(-1/2)\left(-\frac{3}{2}\right)(-5/2)(-1)^3}{3!} + \cdots \infty$ • $(1-1)^{-1/2} = 1 + \frac{(-1/2)(-1)}{1!} + \frac{(-1/2)(-3/2)(-1)^2}{2!} + \approx \infty$ $\approx \infty$ $\therefore (1-1)^{-1/2} \approx \infty$ Satisfied

Now, according to result of $(1+1)^{-2}$, all the results for **negative integral power** of (1+1) i.e., for power of 2, can be proved. And for positive integral power, Binomial Theorem is always applicable & can be proved by the same method of Binomial Index.

Therefore, now, basically we can say that, the condition or limit of x as $|x| \le 1$ also satisfies the Binomial Expansion for any index. Hence, Proof of $1/0 = \infty$ can be also given.

Graphical Interpretation

 \rightarrow The Graph of 1/x itself explains that $1/0 = \infty$

DOI: 10.21275/MR22222170559

International Journal of Science and Research (IJSR) ISSN: 2319-7064 SJIF (2020): 7.803

Here, the graph of 1/x does not intersect at x=0. But approaches higher values.

Now, ∞ is something greater than any highest imagination. It is higher than any highest number one can imagine.

 ∞ is larger than limit of Imagination.

So, basically in this graph, we can deduce that, f(x) = 1/x intersects x = 0 at ∞ OR approaches ∞ , if x>0 and f(x) approaches to $-\infty$ if x<0 (i.e., $-1/0 = -\infty$).

Theoretically & Practically "1/0"

→ 1/4 = 0.25 i.e., "4th part of 1".

Similarly, $\frac{1}{2} = 0.5$ i.e., "2nd part of 1".

Also, by definition, "1/x is the x^{th} part of 1".

 \rightarrow Now, Similarly, if we apply 1/0.5 = 2, then we can say "2 is a number whose $(0.5)^{\text{th}}$ part is 1". Also, for 1/0.25 = 4, we can say, "4 is a number whose $(0.25)^{\text{th}}$ part is 1".

 \rightarrow Now, 1/x, x \in N, then this is applicable in real life or it makes practical sense.

- Like if we divide 1 pen in 2 parts, it makes 0.5(half) pen i.e., $\frac{1}{2}$ pen = 0.5 pen.
- → But, in the same way, if we apply this to 1/x, x ∈ Q, then it doesn't make any sense or it is impractical. Like, if we divide 1 pen in 0.25 parts, it wont make 4 pens i.e., 1/(0.25) pen = 4 pens.
- \rightarrow So, as we can see, 1/x, x \in Q doesn't make any sense in practical life.
 - Similarly, if we do $1/0 = \infty$, it means "0th part of ∞ is 1".

It shows that ∞ is too large that its 0th part is 1.

 \rightarrow So, if we see, 1/0 is not undefined. It has some meaning like $\frac{1}{2}$, $\frac{1}{4}$, $\frac{1}{0.5}$, etc.

 \rightarrow Therefore, basically, we can conclude that 1/x, x \in Q & 1/0 both of them don't (and also do) have a practical meaning. But they do possess a theoretical meaning.

 \rightarrow At last, I want to conclude that behaviour of 0 & ∞ is highly similar upto great extent in Mathematics.

 $(0^*x = 0 \Longrightarrow \infty^*x = \infty, x - 0 = x \Longrightarrow \infty - x = \infty,$

 $x+0 = x \Longrightarrow \infty + x = \infty, 0/x = 0 \Longrightarrow \infty/x = \infty)$

So, as operations with 0 are considered in Mathematics, operations of ∞ should also be considered.

And Proof of $1/0 = \infty$ should be considered.

Being inexperienced, I will very highly value any piece of advice you give me.

Volume 11 Issue 2, February 2022 www.ijsr.net

Licensed Under Creative Commons Attribution CC BY