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Abstract: A ligand-based pharmacophore model using Catalyst HypoGen algorithm was developed for set of pyrimidine and 

quinazoline analogues as pcDHFR inhibitors with an aim to obtain rational hypothetical image of the primary chemical features 

responsible for activity and this pharmacophore model was used as an in silico screening tool to retrieve novel and potential inhibitors 

against pcDHFR from various databases. The best pharmacophore model for selective pcDHFR inhibitors (Hypo-1) was obtained 

through a Cat-Scramble validation process. The best pharmacophore model (Hypo-1) for pcDHFR inhibitors consisting of one hydrogen 

bond acceptor lipid (HBAl), three hydrophobic (HY) and one ring aromatic (RA) features, with highest correlation coefficient (0.94), cost 

difference (45.1), low RMS (0.72), as well as it shows a high goodness of fit and predictive factor. Hydrophobic interactions are essential 

for ligand pharmacophore interaction. Pharmacophore models have been validated toward a test set containing 8 molecules. To further 

evaluate the model external test set comprising of known pcDHFR inhibitors were mapped on to developed pharmacophoric model which 

also showed five point mapping and estimated values in close range to actual values. The models were used for screening chemical data 

base. The validated pharmacophore model (Hypo-1) was used as a 3D query for virtual screening to retrieve potential inhibitors from the 

Maybridge and National Cancer Institute (NCI) databases. This resulted in identification of three druggable structurally diverse potent 

lead compounds. The results of our study will act as a valuable tool for retrieving potent compounds with desired biological activities and 

designing novel selective pcDHFR inhibitors. 
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1. Introduction 
 
Pneumocystis carinii pneumonia is one of the premier 

causes of morbidity and mortality in patients with acquired 

immunodeficiency syndrome (AIDS).
[1] 

Pneumocystis 

carinii is a eukaryotic microorganism that is found 

worldwide. Its host range is wide and includes humans and 

other mammals such as rabbits, dogs, goats, swine, cats, 

chimpanzees, owl monkeys, and horses. It is generally 

understood that there are two ways by which Pneumocystis 

can begin infection after acquiring the organism: firstly by 

activation of latent organisms present in the host as a result 

of earlier acquisition, and secondly by reinfection. The 

metabolism of folate plays an important role in the 

biosynthesis of nucleic acid precursors. During the 

synthesis of purines and thymidylate, the cofactor 

tetrahydrofolate is oxidised to 7, 8-dihydrofolate and 

subsequently converted back to tetrahydrofolate by the 

enzyme dihydrofolate reductase (DHFR). The inhibition of 

DHFR causes the depletion of tetrahydrofolate and disrupts 

DNA synthesis, leading to cell death. For this reason, 

DHFR inhibitors such as methotrexate have been used as 

antitumor, anti-bacterial and antiprotozoan agents. Because 

MTX and other classical antifolates require an active 

transport mechanism for their uptake, they are not effective 

for the treatment of infections caused by Pneumocystis 

carinii that lack these mechanisms.
[2, 3] 

Pneumocystis carinii 

infections are the principal cause of death in patients with 

AIDS, and also affect patients with other immune 

disorders.
[4] 

Trimetrexate (TMQ) and piritrexim (PTX) are 

potent lipophilic inhibitors of pcDHFR and tgDHFR taken 

up by passive diffusion, but inhibit mammalian DHFR to a 

greater extent.
[5, 6] 

This results in toxicity to mammalian 

tissue and requires that PTX or TMQ be co-administered 

with leucovorin, areduced folate which is taken up by 

active transport and protects the host tissue.
[7]

 Treatment 

with leucovorin is costly and subject to serious side effects 

that may require interruption of treatment. As such, there is 

great interest in developing potent and selective inhibitors 

of Pneumocystis carinii DHFR. 

 
Discovering and bringing one new drug to the public 

typically costs a pharmaceutical or biotechnology company 

nearly $900 million and takes an average of 10 to 12 years 

The application of computer-assisted drug design (CADD) 

methodologies to this problem has the potential to greatly 

decrease the time and effort required to discover new 

medicines or improve current ones in term of their efficacy. 

In view of this, the present work applies the development of 

pharmacophore which can help to visualize the potential 

interaction between ligands & target and can be used as a 

query in a 3D data base search to identify new structural 

classes of potential lead compounds. A pharmacophore 

represents the 3D arrangements of chemical features in a 

molecule (ligand) that may be essential for important 

binding interactions with a receptor. In the absence of any 

knowledge of the 3D structure of a receptor, 

pharmacophores may provide such important information 

in the drug design process. The pharmacophores may be 

used in several ways, for example, as a 3D query in 

searching 3D databases containing drug-like organic 

molecules to identify active and specific antagonists or in 

evaluating a new compound for mapping on a known 

pharmacophore.
[8] 

Details of the pharmacophore 

development procedures have been described in the 

literature. The hypothesis generation methods of the 
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Catalyst software have been successfully used in drug 

discovery research and toxicology.
[9-13] 

Our approach of 

pharmacophoric exploration via set of diverse 3D structures 

employing training lists should achieve two importantgoals: 

(i) The pharmacophore could predict and discriminate the 

activities of all the compounds and (ii) could explain the 

difference in activities of those highly active which were 

active in subnanomolar range over the others. 

 

2. Material and Methods 
 

Data set preparation and confirmation analysis 

 
Catalyst 2.0 software (Discovery Studio, version 2.0; 

Accelrys Software Inc.: San Diego, CA 2001) was used to 

generate pharmacophore models. The biological activity 

data, (represented as IC50 in µM) were obtained from the 

studies reported in the literature Gangjee et al., 2003 & 

Gangjee et al., 2008.
[14, 15] 

The present series was chosen in 

view of the established requirement of Catalyst 

pharmacophore generation module that is activity range of 

the compounds should span at least 3.5 orders of 

magnitude. The most active compound should be included 

so that they would provide critical information for 

pharmacophore requirements. 

 
Several moderately active and inactive compounds were 

also included to spread the activity ranges as wide as 

possible. Any redundancy should be avoided in terms of 

structural features or activity range. The important aspect of 

this selection scheme is that each active compound should 

teach something new to the HypoGen module to help it 

uncover as much critical information as possible for 

predicting biological activity.
[16]

 All structures were built 

using a 3D sketcher in catalyst discovery studio and were 

minimized to a local energy minimum using the CHARMm 

force field.
[17] 

To generate 3D pharmacophore, each 

compound should have conformations to cover three-

dimensional spaces. The single conformer 3D structures 

were used as starting point for conformational analysis and 

in the determination of various chemical features for 

QSAR-based pharmacophore modeling. The conformation 

is of great importance for the mode of drug action since it 

relies on the easy accessibility of the reactive groups. The 

conformational space of each inhibitor was extensively 

sampled utilizing the poling algorithm employed within 

Catalyst.
[18] 

Poling promotes conformational variation via 

employing molecular mechanical force field algorithm that 

generates conformers that provide broad coverage of the 

accessible conformational space and achieve maximum 

diversity of a conformational model. Fast generation takes 

less time, but best generation provides more complete 

coverage of conformational space by optimizing the 

conformation in both torsional and cartesian space. 

Conformational models of training-set molecules for 

pcDHFR were generated using the best quality 

conformational search option in Catalyst using a constraint 

of 20 kcal mol-1 energy threshold above the global energy 

minimum and CHARMm force field parameters. A 

maximum of 250 conformations were generated to ensure 

maximum coverage in the conformational space. All other 

settings were kept as default. Instead of using just the 

lowest energy conformation of each compound, all 

conformational model for molecules in each training set 

were used in Catalyst for pharmacophore hypothesis 

generation. All the 28 compounds of the series and their 

different conformations were divided into training set of 20 

compounds and test set of 8 compounds. The test was used 

to ascertain the predictive power of the model. 

 
Feature mapping 

 

A maximum of five features can be considered in the 

pharmacophore generation process using Catalyst hypogen 

algorithm.
[19] 

Accordingly, from the 11 features available in 

the Catalyst features dictionary the features necessary to 

explain the variance in activity of the present pyrimidine 

and quinazoline analogues were identified by using feature 

mapping protocol. The feature mapping protocol generates 

all possible pharmacophore features for the given input 

ligands. In present work, the chemical features optimized 

for exploring the spatial pharmacophore map of series of 

pyrimidine and quinazoline analogues and their ester 

derivatives were hydrophobic, ring aromatic, hydrogen 

bond acceptor, hydrogen bond acceptor-lipid and hydrogen 

bond donor. Using these five features and varying the value 

of these parameters from min 0 to max 5, hypotheses were 

generated. The analysis revealed that hydrogen bond 

acceptor-lipid (0, 5), hydrophobic (0, 5) and ring aromatic 

(0, 5) features are the most important pharmacophoric 

feature for explaining the dependence of anti-pneumocystis 

activity of pyrimidine and quinazoline analogues. 

 
Generation of pharmacophore hypotheses 

 

Hypogen algorithm 

 

In particular, here we report a study that applies a ligand 

based drug design (predictive pharmacophore generation) 

technique to rationalize the relationships between of 

pyrimidine and quinazoline analogues structures and their 

affinity data towards the pcDHFR that is to model drug 

receptor interactions using information derived from the 

drug structure. HypoGen identifies a 3D array of a 

maximum of five chemical features common to active 

training molecules, which provides a relative alignment for 

mapping of each molecule. The HypoGen run is divided 

into three phases. During the first one, known as the 

constructive phase, all the pharmacophore models, which 

are common to the most active compounds, are created. 

The second, called the subtractive phase, removes all the 

generated pharmacophore models in which the inactive 

compounds can fit. Finally, the third one, known as the 

optimization phase, makes some random modifications in 

the generated hypothesis’s moving features, rotating 

vectors, or adding or removing features. Finally, correlation 

values are obtained by linear regression of the geometric fit 

index. The correlation coefficient is based on linear 

regression derived from the geometric fit index.
[16, 20] 

In our 

pharmacophore exploration strategy, the pharmacophoric 

spaces of the selected training set were explored under 

reasonably imposed boundaries . The software was limited 

to search pharmacophoric models incorporating from zero 

to three features of any particular selected feature type 

instead of the default range of zero to five. With the default 
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setting (weight variation) of 0.302, the represented orders 

of magnitude were kept as close to 0.2 as possible. Drawing 

on the characteristic features of the training-set molecules, 

hydrogen bond acceptor-lipid (HBAl), hydrophobic (HY) 

and ring aromatic (RA) were selected from the feature 

dictionary of Catalyst to form the crucial basis for the 

hypothesis development. HypoGen process returned ten 

pharmacophore models with top ranking scores. These 

models were then evaluated and validated against the 

training and test sets. The quality of the generated 

pharmacophore models was evaluated using a cost function 

analysis and Fisher’s randomization test. 

 
Quality assessment of pharmacophore hypothesis 

 

Cost function analysis  

 

The HypoGen module in Catalyst performs two important 

theoretical cost calculations that determine the success of 

any pharmacophore hypothesis. One is known as the fixed 

cost, which represents the simplest model that fits all data 

perfectly, and the second one is known as null cost, which 

represents the highest cost of a pharmacophore with no 

features and which estimates activity to be the average of 

the activity data of the training-set molecules. Because the 

null hypothesis is an empty hypothesis with no features, 

there is no contribution of the weight and configuration 

costs. All of these cost values are represented in bits, and 

Catalyst analyzes the pharmacophore models using the 

Occam’s razor principle; that is, among equivalent 

possibilities (hypotheses), the simplest (less bits cost) is the 

best. Two other parameters that also determine the quality 

of any pharmacophore hypothesis with possible predictive 

values are the configuration cost, which is also known as 

the entropy cost and depends on the complexity of the 

pharmacophore hypothesis space, and the error cost, which 

is dependent on the RMS differences between the estimated 

and the actual activities of the training-set molecules. 

 
The RMS deviations represent the quality of the correlation 

between the estimated and the actual activity data. The 

error cost is the most important part of the total cost and 

increases as the root mean-square (RMS) difference 

between the estimated and the actual affinity for the 

training set increases. The RMS value is related to the 

quality of prediction of the hypothesis. The weight cost is a 

value that increases in a gaussian form as the difference 

between the actual and ideal weights of the features 

deviates. According to the documentation, the ideal value 

of the weight is 2 because higher weight values tend to 

force unrealistic conformations of the compounds to fit 

such features. The configuration cost is a constant cost that 

depends on the complexity of the hypothesis space to be 

optimized. It describes the entropy of the hypothesis space 

and is related to the number of hypotheses that have been 

created in the constructive phase. The configuration is 

log2P, where P is the number of initial hypotheses created 

in the constructive phase and that survived the subtractive 

phase. In standard HypoGen mode, the configuration 

should not be greater than 17.0
. 
In each run, the resulting 

binding hypotheses were automatically ranked according to 

their corresponding total cost value, which is defined as the 

sum of error cost, weight cost, and configuration cost. Error 

cost provides the highest contribution to total cost and it is 

directly related to the capacity of the particular 

pharmacophore as 3D QSAR model, i.e., in correlating the 

molecular structures to the corresponding biological 

responses. Accordingly, the greater the difference from the 

null hypothesis cost, the more likely that the hypothesis 

does not reflect a chance correlation. Each feature of a 

hypothesis represents certain orders of magnitude of the 

compounds activity. 

 
Validation of best pharmacophore model  

 

Test set prediction  

 

The ability of the models to predict the biological activity 

of compounds outside the model development procedure is 

a common method of validation. Test set was employed to 

assess statistical significance of the developed model.
[21, 22] 

Here in this case, test set prediction was measured in terms 

of squared correlation coefficient. 

 
Cat-scramble program 

 

In order to assess the statistical significance of the 

generated pharmacophore hypotheses, a validation 

procedure based on Fischer’s randomization test was 

performed. This was carried out by randomizing the 

activity data associated with the training set compounds 

using the Cat-scramble technique, available in the 

Catalyst/hypogen module. These randomized training sets 

were then used to generate pharmacophore hypotheses, 

employing the same features and parameters as used in the 

development of the original pharmacophore hypothesis. 

The number of spreadsheets generated depends on the level 

of statistical significance selected. Thus 19, 49, or 99 

random spreadsheets have to be generated for attaining 

95%, 98%, or 99% confidence level respectively.
[23, 12] 

If 

the randomized data set results in generation of 

pharmacophoric models with similar or better cost values 

and correlation then the original hypothesis is considered to 

be generated by chance. 

 

External validation set 

 

To produce a strong validation of this model which can be 

utilized for virtual screening purposes, the external 

validations set comprising of twelve compounds with 

known pcDHFR inhibitory activity were taken from the 

reported literatures (Gangjee et al., 1995).
[24]

 Various 

conformers of the compounds were generated and mapped 

on to the pharmacophoric features obtained from both 

ligand and structure based approach. The pcDHFR 

inhibitory activity was estimated and compared with the 

actual activity. This further supported the essential binding 

requirement for pcDHFR inhibitory activity of the 

pyrimidine and quinazoline analogues. 

 
Database search for new hits 

 

After generating a validated pharmacophore model 

containing pharmacophore features, shapes etc., National 

Cancer Institute (NCI) and MiniMaybridge 3D database 

search was performed to identify new molecules which 
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share its features and can thus exhibits the desired 

biological response. The screened compounds were 

subjected to drug-like property calculation by applying 

Lipinski’s rule-of-five 
[25]

, which is a simple model to 

predict the absorption and intestinal permeability of a 

compound. According to the rule, compounds are well-

absorbed when they possess Log P less than 5, molecular 

weight less than 500, number of H-bond donors less than 5, 

number H-bond acceptors less than 10 and number of 

rotable bonds less than 10. 

 

3. Results and Discussion 
 

A set of ten hypotheses were generated by the implemented 

algorithm on the basis of the activities and structures of the 

training compounds. The best pharmacophore hypothesis, 

named Hypo-1, was marked by the best correlation 

coefficient (0.94) and the highest cost difference (45.1) as 

shown in [Table 1]. The fixed cost of the best hypothesis 

was 176.9, and the cost of the null hypothesis is 242.3. The 

cost ranges between the best hypothesis (total cost: 197.2), 

the null hypothesis amount to 45.1. Because of the fact that 

the best hypothesis’ total cost is much closer to the fixed 

cost than to the null cost and difference between total and 

fixed costs for the best hypothesis was only 11.58 bits, the 

correlation coefficient of 0.94 and the RMS value of 0.72 

indicates a reliable ability of the generated pharmacophore 

model to predict training-set compounds activities and 

confirms that it does not show chance correlation. 

Moreover, despite of limitations on the extent of evaluated 

pharmacophore space, the weight costs of Hypo1 was high 

and exceeded the maximum limit of 2. Nevertheless, the 

reasonable cost and confidence criteria of pharmacophore 

model should overshadow any drawbacks related to the 

lessthan optimal weight costs. HypoGen generates 

hypotheses whose features contain a certain tolerance and 

weight that fit to the features of the training set and that 

correlate to the activity data. The Hypo1 model was utilized 

to predict the activities of all 21 training compounds. The 

estimated activities as predicted by Hypo1, the 

experimental activities are listed in [Table 2]. It is clear that 

the IC50 values were well predicted demonstrating the 

good predictive quality of Hypo1. Hypotheses included one 

hydrogen bond acceptor-lipid (HBAl), three hydrophobic 

(HY) and one ring aromatic (RA) features. On visual 

inspection of the hypotheses ‘best’ hypothesis was selected 

for the qualitative comparison was Hypo1. The features 

present in each hypothesis are shown in [Table 2]. 

 
Mapping of compounds 6, 08 and on the best 

 

Pharmacophore In order to evaluate the predictive ability of 

Hypo1, the features of training-set compounds were 

mapped using Hypo1. The most active compound, 6, 08, 

mapped well to all the features of Hypo1. Most active 

compound of the series aligned to the developed 

pharmacophore is illustrated in [Figure 1]. One HY mapped 

to that ring of naphthalene which is connected with the 

quinazoline nucleus and one RA feature mapped to the 

terminal ring of naphthalene. second hydrophobic feature 

mapped to the ethyl group of side chain and third 

hydrophobic feature mapped at side chain bearing ring of 

quinazoline nucleus, one HBAl mapped to the 1' nitrogen of 

terminal ring of quinazoline nuclus, with a fit value of 9.20 

(actual activity 2.5 nM and 1.65 nM) and is shown in 

[Table 2]. 

 
Mapping of compounds 6a, 03 and 13a, 03 

 

Least active compound 6a, 03 of the series aligned with the 

developed pharmacophore is depicted in [Figure 2a]. One 

HY mapped to the phenyl ring of side chain and second 

hydrophobic feature mapped at side chain bearing ring of 

pyrimidine nucleus and one HBAl mapped to the 1' 

nitrogen of pyrimidine nucleus with a fit value of 6.24 

(actual activity 6100 nM and estimated 1486.49 nM). 

Missing of one hydrophobic feature and one RA can be 

easily interpretated as no alkyl group substitution at 

nitrogen of side chain and absence of naphthalene ring in 

side chain in this compound [Table 2] thus fails to map this 

feature. To further investigate compounds with lower 

activity in the training set, the moderately active compound 

13a, 03 [Figure 2b] was mapped on Hypo1. The mapping 

revealed that this compound missed one hydrophobic and 

one HBAl features. The compound with lower activity 

clearly missed one hydrophobic and one RA features of 

Hypo1 and compound with moderate activity missed one 

hydrophobic and one HBAl features, demonstrating the 

importance of these features in maintaining high potency. 

 
Test set predictions  

 

To evaluate the ability of Hypothesis 1 to identify pc DHFR 

inhibitors, a test set consisting of 8 ligands was submitted 

to phramcophore mapping analysis using the developed 

model. Objective of test set prediction is to verify whether 

generated pharmacophore models are capable of predicting 

the activities of compounds not included in training set and 

classifying them correctly as actives or inactives. Finally, 

the compounds were mapped onto the best hypothesis using 

the best fit and a conformational energy constraint of 10 

kcal mol
-1

. A correlation coefficient of 0.83 generated using 

the test set compounds indicates a good correlation between 

the actual and estimated activities, which means the 

Hypothesis 1 is convictive. 

 
The estimated activities of test set were scored using 

hypothesis 1 as the pharmacophore and shown in [Table 2]. 

Three least active compounds were assigned least active by 

Hypothesis 1 [Table 2]. All highly active compounds (≤ 13 

nM) were predicted to be highly active except compound 

1b, 03 which was inaccurately predicted as moderately 

active. Among the moderately active compounds (42-84 

nM) all were correctly predicted as moderately active. 

 
Compound 9a, 08 [Figure 3a] mapped all five features of 

the hypothesis quite well with a fit value of 7.89 (actual 

activity 6.9 nM and estimated 33.84 nM). Only highly 

active compounds mapped all the five features in the test 

set. The poorly active compound, 10a, 03 [Figure 3b] 

misses one of the HY and one HBAl completely. As all the 

highly active compounds with fit value 7.64–7.89 mapped 

five features, this suggested that presence of five features is 

minimum essential for the highly active compounds and 

three feature hypothesis missing HY is sufficient to account 

Paper ID: MR22213165325 DOI: 10.21275/MR22213165325 665 



International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2020): 7.803 

Volume 11 Issue 2, February 2022 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

for the least active compounds. The results of the activity 

prediction of these compounds are shown in [Table 2]. 

 
Fisher’s cross-validation test 

 

To further evaluate the statistical relevance of the model, 

the Fischer validation method at the confidence level of 

99% was applied to the developed Hypogen. The 

experimental activities in the training set were scrambled 

randomly using CatScramble program, and the resulting 

training set was used for a HypoGen run. In this manner, all 

parameters were taken from the initial HypoGen 

calculation. The experimental activities of the molecules in 

the training set were scrambled 99 times to obtain 

spreadsheets with randomized activity data as illustrated in 

[Figure 4]. None of the outcome hypotheses had a lower 

cost score than the initial hypothesis. We have also 

performed rigorous cross validation analysis of the 

developed pharmacophore model using external test set 

prediction. 

 
External validation 

 

The results of the actual and estimated biological IC50 

values of these twelve external test set compounds 

estimated by the Hypo-1 model are presented in [Table 3]. 

We took approximately 70% of compounds of the total 

dataset into our test set. These values do not match exactly 

in numerical terms because the evaluation of the test set 

compounds was carried out at a different location under 

different conditions compared with those used in the 

building of our model. Hence the validation of the Hypo-1 

was based on the correlation of the predictive and observed 

values where the obtained predictive R
2
 value [R

2 
pred = 

0.75] and the graph drawn between the actual and estimated 

activities for the external test set compounds using the best 

hypotheses Hypo-1 clearly show the strong validation of 

the model. 

 
Database search 

 

495 and 989 compounds were retrieved from the 

MiniMaybride and NCI data base respectively. The 

parameters included in Lipinski’s rule of 5, were calculated 

for three compounds obtained from 3D data base search, 

which indicates that there is no violation to Lipinski rule 

and it is highly likely that these three compounds will have 

favorable pharmacokinetics profile. The screened lead 

compounds needs further evaluation in order to produce 

newer compounds for Pneumocystis crainii pneumoninia. 

 

4. Conclusion 
 

Our results suggest that pharmacophore modeling of 

pcDHFR inhibitors can be a useful tool for finding potential 

antipneumocystis agents. The exploration of the 

pharmacophoric features of pyrimidine and quinazoline 

analogues was done through the use of Catalyst-HypoGen 

to identify high-quality binding model. Pharmacophore 

models generated for pcDHFR inhibitors in this study 

highlight the structural requirements for antagonistic 

activity of pyrimidine and quinazoline analogues. All 

features in the model are essential for antagonistic activity. 

Compounds that can map all features in the pharmacophore 

model will be considered as potent pcDHFR inhibitors. 

External validation set of known pcDHFR inhibitors were 

also used to evaluate the derived pharmacophore features 

necessary for inhibitory activity of pyrimidine and 

quinazoline analogues. 

 
The validated pharmacophore model was used for 

searching new lead compounds and we obtained three 

compounds with promising activity. The new lead 

candidate compounds were checked for druggable 

properties by applying Lipinski’s rule. Thus, our 

pharmacophore model was able to retrieve few leads which 

had good estimated inhibitory activity with acceptable 

calculated drug-like properties and therefore they are 

subjected to further optimization. 
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Table 1: Performance of different pharmacophoric hypotheses generated with training set of molecules using the HypoGen 

algorithm 

Hypothesis no. Total cost Correlation RMS Weight Configration Maximum fit 

1 197.23 0.89 0.94 1.23 14.13 8.60 

2 197.66 0.88 1.01 1.31 14.13 6.49 

3 200.53 0.85 1.11 1.28 14.13 6.48 

4 201.47 0.85 1.11 1.76 14.13 6.69 

5 201.86 0.83 1.18 1.19 14.13 6.43 

6 202.41 0.82 1.21 0.94 14.13 5.76 

7 202.41 0.83 1.19 2.10 14.13 6.81 

8 203.90 0.79 1.30 1.14 14.13 6.56 

9 204.70 0.78 1.31 0.84 14.13 6.96 

10 205.49 0.78 1.32 0.92 14.13 6.20 

 

Table 2: Experimental and predicted activity and feature mapping of training and test set compounds using the hypo1 model 

Name Actual IC50 (µM) 
Predicted 

IC50 (µM) 
Fit value 

Mapped feature 

HBAl HY HY HY RA 

1a, 03 86 42.958 7.787 - 1 1 1 1 

1b, 03* 13 58.994 7.649 1 1 1 1 1 

2a, 03 1500 926.83 6.453 1 - 1 1 1 

2b, 03* 240 594.271 6.646 1 1 1 1 - 

3a, 03* 84 127.855 7.313 1 1 1 1 - 

4a, 03 2220 2237.8 6.07 1 - 1 1 - 

5a, 03 520 834.919 6.498 - - 1 1 1 

6a, 03 6100 1486.49 6.248 1 - 1 1 - 

7a, 03 430 835.388 6.498 1 - 1 1 1 

8a, 03 440 1099.67 6.379 - 1 1 1 - 

9a, 03 250 1123.41 6.369 - - 1 1 1 

10a, 03* 350 1151.55 6.359 - - 1 1 1 

11a, 03 70 204.569 7.109 1 - 1 1 1 

12a, 03 2000 2169.39 6.084 1 - 1 1 - 

13a, 03 100000 35701.5 4.867 - - 1 1 1 

14a, 03* 131 1316.33 6.301 - 1 1 1 - 

15a, 03 196 563.935 6.669 1 1 1 1 - 

1, 08 3800 628.921 6.621 - 1 1 1 - 

3, 08 4600 1164.28 6.354 1 - 1 1 - 

4, 08 87 49.91 7.722 1 1 1 1 - 

5, 08 21 32.157 7.913 1 1 1 1 - 

6, 08 2.5 1.652 9.202 1 1 1 1 1 

8, 08 9.9 20.305 8.112 1 1 1 1 1 

9, 08* 6.9 33.864 7.89 1 1 1 1 1 

10, 08 38 24.62 8.029 - 1 1 1 1 

11, 08 27 33.412 7.896 1 1 1 1 1 

12, 08 25 25.962 8.006 - 1 1 1 1 

13, 08* 42 70.649 7.571 1 1 1 1 - 

*Compounds included in Test set. 
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Table 3: Experimental and estimated IC50 values of the thirty external test set compounds based on the pharmacophore model 

Hypo-1. 

Comp. Actual activity Estimated activity 
Actual activity 

(-log value) 

Estimated activity (-log 

value) 

2a 46 88.903 -1.662 -1.948 

2b 22.9 49.611 -1.359 -1.695 

2c 316 145.982 -2.499 -2.164 

2d 44 108.268 -1.643 -2.034 

2e 76.7 471.098 -1.643 -2.034 

3a 216 78.462 -1.643 -2.034 

3b 130 23.4 -1.643 -2.034 

3c 510 270.389 -2.707 -2.431 

3d 320 159.488 -2.505 -2.202 

3e 3100 259.835 -3.491 -2.414 

5a 573 134.611 -2.758 -2.129 

5b 41 76.241 -1.6127 -1.882 

 

 
Figure 1: Best conformation of compound 6, 08 fit to the Catalyst generated pharmacophore model of pc DHFR inhibitor 

 

 
Figure 2a: Best conformation of compound 6a, 03 fit to the Catalyst generated pharmacophore model of pc DHFR inhibitors 
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Figure 2b: Best conformation of compound 13a, 03 fit to the Catalyst generated pharmacophore model of pc DHFR inhibitors 

 

 
Figure 3a: Best conformation of compound 9a, 08 fit to the Catalyst generated pharmacophore model pc DHFR inhibitors 

 

 
Figure 3b: Best conformation of compound10a, 03 fit to the Catalyst generated pharmacophore model of pc DHFR inhibitors 
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Figure 4: Graph of the catscrambled data generated from training set scrambled 99 times to obtain spreadsheets with 

randomized activity data. 

 
None of the outcome hypotheses had a lower cost score than the initial hypothesis 
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