
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 12, December 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Bo-Tree: An Efficient Search Tree

Sumit S Shevtekar
1
, Sayeed Khan

2
, Sanket Jhavar

3
, Harsh Dhawale

4

1Professor, ME Computer Engineering, Department of Computer Engineering, Pune Institute of Computer Technology

ssshevtekar[at]pict.edu

2Department of Computer Engineering, Pune Institute of Computer Technology, Pune, India

khansayeed3664100[at]gmail.com

3Department of Computer Engineering, Pune Institute of Computer Technology, Pune, India

khansayeed3664100[at]gmail.com

4Department of Computer Engineering, Pune Institute of Computer Technology, Pune, India

harshdhawale2404[at]gmail.com

Abstract: Large amounts of data are being produced today using a variety of automated data collection tools. This data management

and processing requires a time-consuming operation that calls for an effective search algorithm. This study introduces the ”BO-Tree, ”

a productive search tree with a balanced ”O” structure. For effective data searching, nodes in the BO-Tree are arranged into a number

of levels, with each level being divided into sections. To find data in a BO-Tree, a Reference array is generated and used. Each level and

its sections’ minimum and maximum values, as well as their corresponding addresses in the BO-Tree, are stored in the reference array.

When using a Reference array, BO-Tree is search-efficient in all circumstances of time complexity.

Keywords: Data collection, data management, data searching, search-efficient, reference array, time complexity

1. Introduction

Developers often struggle with organising vast amounts of

data, but thanks to years of research, this difficult chore has

become easier. In order to create a data structure for this

purpose, numerous techniques are presented. A data

structure is a way to store data in a certain format for

effective data organisation and data retrieval. Data structures

typically fall into one of two categories: Data is stored in

linear data structures in a sequential way, with connections

between elements. Non-linear data structures, such as Trees

and Graphs, store information based on relationships rather

than sequentially. Any data structure should perform the

responsibilities listed below:

1) Data addition and removal should be simple.

2) It should retrieve the necessary information and declare

the search status.

All data structures have a serious problem with algorithm

performance, which is measured on the basis of retrieval

performance, which should be at a minimum. This study

introduces the ”BO-Tree, ” a revolutionary non-linear data

structure that stores vast amounts of data effectively and

speeds up searches.

Identify applicable funding agency here. If none, delete this.

2. Related Work

The capability of a data structure to retrieve the stored data

and the simplicity of accessing the necessary structure pieces

are both considered in its evaluation. In this study, we

introduced the ”BO-Tree, ” a tree that is based on a non-

linear data structure. A BO-tree is a group of nodes arranged

in the following manner among several levels:

1) Data must first be sorted before being placed into nodes.

2) Sorted data is then entered clockwise into nodes, and

data is filled in level order.

Figure 1: Structure of “BO- tree”

1) Terminology used in this paper

a) Node: Five fields make up the structure: one field stores

data, one stores the address of a sibling, and the

remaining three fields point to the structure‟s child

nodes. Figure 2 shows that nodes at all levels have the

same structure.

b) Level 0: Since the fourth child has no siblings, the Data

field is NULL, and the sibling pointer stores the address

of the fourth child. When the level rises, it means that the

node(s) in the previous level are the current level‟s

parents.

Paper ID: SR221202123124 DOI: 10.21275/SR221202123124 273

mailto:khansayeed3664100@gmail.com
mailto:khansayeed3664100@gmail.com

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 12, December 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 2: Structure of Node

c) Level 1: The four nodes in Level 1 are each connected to

a node in Level 0, and the nodes in Level 1 are linked

together. These four Level-1 nodes are children of the

Level-0 node and are seen in Figure 3. The data should

be placed into level 1 in a clockwise direction, with

Node-A holding the data with the lowest value and

Node-D holding the highest value. Level-1 contains 4

nodes, so 4*3(level-1) = 4*3(1-1)

Figure 3: Structure of Level -1 of tree

d) Level- 2: Each Level-1 node has three child nodes, and

Level-2 siblings are connected to one another. Level-2

nodes are the offspring of Level-1 nodes. The insertion of

data is done clockwise, same like in Level-1. The highest

value is kept in the rightmost child of Node-D of Level-

1, whereas the least value of Level-2 is kept in the

leftmost child of Node-A of Level-1. There are 12 Level-

2 nodes, or 4*3(level-1) = 4*3(2-1) = 12.

e) Level- 3: Level-3 nodes are the children of the Level-2

nodes. Each Level-2 node will have 3 child nodes. Node

and sibling nodes of this level are interconnected to each

other. Here also insertion is in a clockwise manner from

left to right. Sample Level-3 tree is shown in fig 4

Number of Level-3 nodes are 36 i.e. 4*3(level-1) =

4*3(3-1)=36

f) Level- K: Each Level-(k-1) node will have 3 child nodes,

making Level-k nodes the offspring of Level-(k-1) nodes.

From left to right, data is saved and inserted in a

clockwise direction. There are 4*3(k-1) nodes in Level-k.

g) Reference Array: A reference array keeps a record of the

nodes‟ addresses, minimum and maximum values in a 2-

D array structure. Fig. 5 depicts the array‟s structure. The

number of columns in an array is equal to 2*the number

of tree levels. Two columns are used to represent each

level: one to record the lowest or maximum value, and

the other to store the reference address of the node that

has that value. Pair of each two rows in the Reference

array, starting at the top, denotes the heritage of Level-1

Nodes.

INode A values, as well as the lowest and maximum values

of its children, are stored in row 0 of the above array. The

Node-B in Level-1 and its children‟s minimum and

maximum values are stored in Rows 2 and 3. The Node-C in

Level-1 and its children are stored in Rows 4, 5 and 6,

respectively, while the Node-D in Level-1 and its children

are stored in

Rows 6, 7. The address values of the nodes corresponding to

columns 0, 2, 4 are stored in columns 1, 3, 5.

2) Operations in “BO- Tree” 1. kth–Level tree traversal:

A way of sequentially accessing the data in the tree from

Level-0 to the last node is known as traversing the tree. Take

into account a Kth-Level tree where L is the level

incremental variable and the method loops from L to K. A

node pointer is used to navigate a tree.

Algorithm

Node *tmp;

while (L¡=k)

Paper ID: SR221202123124 DOI: 10.21275/SR221202123124 274

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 12, December 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

while(i¡8)

tmp=reference array[i][j];

while(tmp != NULL)

print(tmp→data);

tmp = tmp→sibiling;

end while

i=i+2;

end while

j=j+2;

i=0;

end while

2. Search operation in “BO-Tree”.

The search function is the “BO- Tree‟s” key benefit. The

steps listed below can be used to retrieve the search element.

1. Determining the search element‟s level.

3) Determining the level and section of the search

element.

4) Determining the parent node of the preceding level’s

search element.

5) Finding the search element among the children of the

previously found parent node.

The rightmost children of Level-1‟s Node-D store the

maximum value elements of a level, and the same values are

also stored in the Reference array along with their addresses.

The level of the search element can be determined by

comparing the maximum values of each level from the

reference array with the search element. Once the level of

the search element has been determined, we can use that

level‟s maximum values for the sections of the tree to

determine which section the search element may be present

in.

Once the section has been located, its parent level is

recognised and its data in the child-3 of each node of its

parent level is compared with the lookup element. The child

node whose data exceeds the search element is chosen. The

child of the chosen node is now compared to the search

element. Display ”Element is found” in the tree if the search

element is discovered; else, display ”Element is not found.”

The outcomes section of this procedure is taught with a

condensed example. In Fig. 6, the search process in BO-Tree

is shown.

Algorithm

Let „s‟ be the search element in a K-level tree. while

(s>reference array[7, i] i<2k)

i=i+2;

end while

while (reference array[j, i] j<8)

j=j+2;

Paper ID: SR221202123124 DOI: 10.21275/SR221202123124 275

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 12, December 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

end while

if (i>2k j>8)

print (“not found”);

end if

Node *ptr = reference array[j, i+1]; Node *ptr1= reference

array[j-1, i+1]; if(ptr→data == s || ptr1→data ==s)

print(“found element”); else

ptr= reference array[j-1, i-1];

while (ptr != NULL)

ptr1= ptrchild3;

if (ptr1data <=s)

search 3childs of ptr for search element if (found)

display (“found element”),

else

display (“not found”);

break;

end if

ptr=ptrsibiling;

end if

end while

end if

The maximum number of comparisons needed to locate a

search element in a K-Level tree is K+4*3 (k-1) +2, where K

is the level of the element, 4*3 (k-1) is to locate the parent

node of the search element, and two comparisons in the

children of the parent node are required because one child

has already been compared.

In level 2 Section C, compare 207 to the rightmost child of

each node.

4. Since the rightmost child of 207 is 209, which is higher

than 207, we can determine that parent of 207 is 70.

5. Now contrast 70‟s other two children with 207. The

display element is finally located. Figure 6 illustrates the

comparison of the BO-tree and B+-tree, and it is very

evident that our data structure works better. all cases of time

complexity.

A. Best Case Analysis

The ideal situation is when the time complexity is O and the

needed data item can be found at either the minimum or

maximum entry of the kth level (1). For instance, in Fig. 3,

searching for every element in the Reference array has an O

(1) +level number-1 time complexity.

B. Average Case Analysis

The typical situation is when the necessary data item is

located at the level‟s lowest node or maximum node,

respectively, and the temporal complexity is O(log3(n/4).

For instance, searching for items in fig. 3‟s level 3 external

nodes of sections results in time complexity of O(log3(n/4)).

Figure

3. Results

Java experimentation was done to gauge the suggested data

structure‟s computational complexity. Let‟s look at an

illustration of the BO-Tree search operation; Section 3.2

describes how to search an element in the BO-Tree. Let 207

be the search element in the Fig. 4‟s 3-level BO- Tree. The

steps of this technique are illustrated as follows:

1) To begin with, compare level 207 to each member in the

last row of the reference array in figure 5.

2) Since 207 is less than 247, we may determine that 207

is at level 3. Now to locate the level 3 section of the

207. In column 5, compare 207 to the odd number of

rows.

3) Because 207 is less than 219, we may determine that

Section-C contains it. Now to locate the 207‟s parent

node.

Worst Case Analysis

The worst case scenario is when the necessary data item is

located between the maximum and minimum nodes of the

appropriate level and time complexity O(log3(n/4))

For instance, searching for items in fig. 3‟s internal node of

sections at level yields an O(log3(n/4))-time complexity.

The data structure discussed above has many uses since it

can quickly search through a huge amount of data to find the

specific data item that is needed. Where there is a need for

both massive data storage and an effective search method,

such as in the share market database, BO-tree can be

employed.

The data structure introduced above has several applications,

as it has efficient time complexity for searching the required

Paper ID: SR221202123124 DOI: 10.21275/SR221202123124 276

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 12, December 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

data item from a large amount of data. BO–tree can be used,

where there is the necessity to store a huge amount of data

and for an efficient search technique, such as in the share

market database

4. Conclusion

This work introduced a novel, effective search tree called

”BO- Tree, ” which is level-structured with sections at each

level. To hold the maximum and minimum values of each

level and its sections, BO-Tree uses a Reference array. The

search operation uses a reference array, which reduces the

worst-case and best-case time complexity to O. (1). When

compared to B+-tree, BO-tree has a more effective search

operation algorithm. Research fields with large datasets,

such as Big Data analytics and Data Science, can use BO-

tree.

References

[1] Cormen, Thomas H., Leiserson, Charles E., Rivest,

Ronald L., Stein Clif-ford (2009). Introduction to

Algorithms, Third Edition (3rd ed.). The MIT Press.

ISBN 978-0262033848.

[2] Black, Paul E. ”data structure”. Dictionary of

Algorithms and Data Structures. National Institute of

Standards and Technology, 2004.

[3] J. Harris and A. Greca, ”The evolution of data

structures, ” 34th Annual Frontiers in Education

Savannah, GA, 2004, pp. S3H/9-S3H1Vol.3.doi:

10.1109/FIE.2004.140879050.

[4] K. Kumar, M “Y-Trees: An extending non-linear data

structure for better organization of large-sized data”,

2017 Third International Conference on Research in

Computational Intelligence and Communication

Networks (ICRCICN), Kolkata, 2017

[5] R. Bhavani Yerram, Jaya Krishna Bhonagiri, ” An

Efficient Sorting Algorithm for binary data”, 11th

International Conference on Computing,

Communication and Networking Technologies

(ICCCNT), IIT Kharagpur, 2020.

[6] Y. Chandramouli, B., Prasaad, G., Kossmann, D.,

Levandoski, J., Hunter, J., and Barnett, M., “Faster: an

embedded concurrent key-value store for state

management, ” Proceedings of the VLDB Endowment,

vol. 11, no. 12, pp. 1930–1933, 2018.

[7] Atiyah, A., Jusoh, S., and Almajali, S., “An efficient

search for context-based chatbots, ” in Proceedings of

the 8th International Conference on Computer Science

and Information Technology. IEEE, 2018.

Paper ID: SR221202123124 DOI: 10.21275/SR221202123124 277

