
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 11, November 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

A Graph-Based Approach for the Analysis of

Framed Structures in Civil Engineering

Edgar Quispe Ccapacca
1*

, Percy Huata Panca
2
, Hugo David Calderón Vilca

3

1Postgraduate unit of the Faculty of Statistical and Informatics Engineering, Escuela de Posgrado de la Universidad Nacional del Altiplano,

Universidad Nacional del Altiplano de Puno, Puno - Perú.

2Faculty of Statistical and Informatics Engineering, Universidad Nacional del Altiplano de Puno, Puno - Perú.

3Department of Software Engineering, Universidad Nacional Mayor de San Marcos, Lima -Perú.

*Corresponding author. E-mail: edgar.edqc[at]gmail.com

Abstract: Framed structures such as trusses, beams, and frames are used in the construction of buildings, bridges, transmission

towers, etc. The analysis of such structures is necessary as a basis for the design, since it allows knowing the behavior of the structure

subjected to different load conditions. This article presents the computational aspects for the development of an interactive graphical

computer application for the analysis of framed structures. The application was programmed in Java 2D using the stiffness method. For

the programming of the application, a graph approach is proposed, since the models of framed structures are topologically graphs. The

developed application covers the three stages of structure analysis: pre-processing, calculation and post-processing. The results of the

analysis of structures are compared with those obtained by commercial software, obtaining coincidence in the results, for which it is

concluded that the presented approach is useful to develop graphic software for the analysis of framed structures.

Keywords: Framed Structures, Graph Abstract Data Type, Stiffness Method

1. Introduction

A structure is part of a construction whose purpose is to

support the loads to which it is subjected. Framed structures

such as: trusses, beams and frames are formed by prismatic

members joined at their ends. Structural analysis studies the

effects of loads on a structure [1–4].

A real structure presents complex geometry, therefore, its

analysis requires simplifying it through an analytical model

that outlines the structure as a line diagram [2, 3].

Topologically, this line diagram is a graph, where the data is

associated to edges (members) and vertices (nodes).

The analysis of a structure consists of three stages: pre-

processing, calculation and post-processing [5, 6].

In preprocessing, the geometry of the model (coordinates

and connectivity between nodes), member properties and

boundary conditions are defined.

The calculation consists of solving the model using the

stiffness matrix method, which is described by Kassimali

[2]. The stiffness method, in summary, consists of:

 Calculate the stiffness matrix K of the structure

 Calculate the force vector F of the structure.

 Apply boundary conditions on K and F, thus K and F are

reduced.

 Solve the system KU=F to calculate the displacements U

of the nodes of the model.

 Calculate the reaction forces at the supports.

 Calculate the internal forces at the ends of the members.

Post-processing consists of presenting the deformed shape of

the model and the internal force diagrams: axial, shear and

bending moments [7–9].

The analysis of a structure is laborious, therefore, many

studies describe its computer implementation.

For preprocessing, Nogueira and Bezerra [10], Bakošová et

al. [11], Neves et al. [12], Zotkin et al. [13], Barrantes and

Hernández [14] and Barrera [15] describe graphical

interfaces where the user must tabulate the data and the

coordinates and connectivity between nodes to draw the

structure model. Barhate and Ladhane [5] and Francois et al.

[6] describe the data, edited in an m-file. Neiva et al. [8],

Barreto Bezerra et al. [16], Htwe and Khaing [17] and Patil

and Annigeri [18] describe the data, edited in text file.

Pallares M. et al. [19], Chen [20], and Villagómez et al. [9]

describe console applications where data is entered one by

one. Pamnani et al. [21] describe the data input through

Matlab command window. Godoi et al. [22] describe the

data in an Excel spreadsheet. All these procedures are

laborious when the model includes a lot of data, for which

an appropriate data structure is required to facilitate the

geometric representation of models and data storage.

For the calculation, Bakošová et al. [11], Barrantes and

Hernández [14], Chen [20], Neves et al. [12], Neiva et al.

[8], Barhate and Ladhane [5], Htwe and Khaing [17], and

Pamnani et al. [21] describe MATLAB scripts to analyze

structures subjected to certain types of loads. De Oliveira et

al. [23], Nogueira and Bezerra [10] and Godoi et al. [22],

describe the use of spreadsheets to analyze structures

subjected to certain types of loads. This shows the lack of

algorithms to implement a program that deals with various

topics such as: thermal effects, fabrication errors, elastic

supports, trapezoidal distributed loads, point loads, nodal

loads, and support movements.

Paper ID: SR22928042711 DOI: 10.21275/SR22928042711 1309

mailto:edgar.edqc@gmail.com

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 11, November 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

For post-processing, Pamnani et al. [21] present diagrams of

shear forces and bending moments for the specific case of

the analysis of four beams. Neves et al. [12] present the

bending moment diagram corresponding to the analysis of a

beam. Barrantes and Hernández [14] present the deformed

shape of the analysis of three structures. Chen [20] presents

the bending moment diagram of a frame analysis. Francois

et al. [6] present the diagrams corresponding to the analysis

of a frame. Villagomez et al. [9] present the diagrams of

shear forces and bending moment corresponding to the

analysis of a beam. Nogueira and Bezerra [10], Bakošová et

al. [11], Barhate and Ladhane [5], Neiva et al. [8], Barreto

Bezerra et al. [16], Htwe and Khaing [17], Godoi et al. [22],

Barrera [15] and Patil and Annigeri [18] present the

numerical results of the analysis of structures, printed in text

files or on screen. Therefore, algorithms are required to draw

the internal force diagrams and the deformed shape of any

structure.

This research seeks to contribute with computational aspects

to develop graphic and interactive software for the analysis

of trusses, beams and frames. For preprocessing, a Graph

Abstract Data Type (Graph ADT) is defined, which

facilitates the use of the mouse to build the geometric model

on a canvas, assign data to selected members and nodes and

dynamically modify the model. For the calculation and post-

processing, algorithms have been developed to calculate

nodal displacements, internal forces, draw the deformed

shape of the models and the internal force diagrams: axial,

shear and bending moments. The algorithms cover topics

such as: thermal effects, elastic supports, fabrication errors,

imposed displacements, nodal loads, point loads, and

trapezoidal distributed loads. This research is useful for

engineering professionals, who only require basic

programming knowledge to code the algorithms and obtain

software with similar calculation capacity as commercial

software and according to their requirements.

2. Methods

For the development of a program for analysis of framed

structures, a graph-based approach is presented, which

includes: pre-processing, calculation and post-processing, as

illustrated in Fig. 1.

Figure 1: Graph-based approach for the analysis of framed

structures

The computer implementation begins with the definition of

the Graph ADT, which stores all the data, so that the model

is redrawn on the screen each time its data or geometry are

modified. The Graph ADT includes operations to add and

remove vertices and edges, for model building.

Subsequently, algorithms are designed for both calculation

and post-processing. The calculation is performed by the

stiffness method, where the solution of the KU=F system is

obtained by the Gauss-Seidel method, whose algorithm is

described by Chapra and Canale [24]. In the post-processing

stage, the deformed shape of the members and the internal

force diagrams are drawn from expressions formulated in

terms of Macaulay functions. Finally, a graphical user

interface is developed, which facilitates data input. The

graphical interface includes a canvas where the model can

be drawn. The numerical results are compared with those of

the SAP2000 software.

3. Development of the graph-based approach

3.1 Definition of a Graph ADT to represent analytical

models of framed structures

Figure 2 shows a structure model, which is a graph, whose

vertices correspond to the nodes (joints) and the edges to the

members of the model.

Figure 2: Graph representing a model

For each member, two edges directed in opposite directions

are associated, as illustrated in Fig. 3.

Figure 3: Directed edges of a model

The reason for using directed edges is that they establish two

local x-y coordinate systems for each member, as shown in

Fig. 4. The z
+
 axis is assumed to be perpendicular to the

screen and pointing at the viewer.

Paper ID: SR22928042711 DOI: 10.21275/SR22928042711 1310

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 11, November 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 4: Local coordinate systems of a member given by

its directed edges

Selecting a directed edge to assign loads on a member

avoids ambiguity in the location and sign of the loads. For

example, in Fig. 5 for edge AB, the force P is negative and

is located at a distance a from A, while for edge BA the

force P is positive and acts at a distance b from B.

Figure 5: Load on directed edge

In a similar way, temperatures can be assigned on the

surfaces of a member. In Fig. 6 for edge AB the temperature

T1 acts on the upper surface of the member and T2 on the

lower surface, while for BA, T2 acts on the upper surface

and T1 on the lower surface.

Figure 6: Temperatures on directed edge

To access the nodes of a member, each directed edge (e)

stores a reference to its origin vertex (e.origin) and its

opposite edge (e.opposite), thus the two nodes of a member

are: e.origin and e.opposite.origin, as illustrated in Fig. 7.

Figure 7: Incidence between edges and nodes

Each node v stores a list containing the edges that leave v,

this makes it possible to access the incident members in v

and the adjacent nodes of v.

Attributes related to topics such as: thermal effects,

fabrication errors, elastic supports, trapezoidal distributed

loads, and support movements have been included.

Each vertex v has the following attributes:

Id

Inc

sel

x,y

i,j,k

kx

ky

kθ

tx

ty

rz

Fx

Fy

Mz

u

v

θ

:Vertex identifier.

:List of incident edges leaving v.

:Value that is true if v is selected, default is false.

:Vertex coordinate, default value for z is 0.

:Identifiers for the degrees of freedom in the X and Y

directions and about the Z axis.

:Spring constant in X direction, default value is 0

:Spring constant in Y direction, default value is 0

:Spring constant about the Z axis, default is 0.

:Restraint in X direction, 1: restrained, 0: free, default 0

:Restraint in Y direction, 1: restrained, 0: free, default 0

:Rotational restraint, 1: restrained, 0: free, default is 0.

:Force in X direction, default value is 0.

:Force in Y direction, default value is 0.

:Moment about the global Z axis, default is 0.

:Displacement in X direction, default is 0.

:Displacement in Y direction, default is 0.

:Displacement about the Z axis, default is 0.

Each directed edgee has the following attributes:

opposite

origin

L

cx,cy

sel

E

A

I

Tt

Tb

h

α

ΔL

Ni

Vi

Mi

ui

vi

θi

P

N

M

w

wN

:Edge directed in the opposite direction to e.

:Origin vertex of e.

:Length of the member.

:Direction cosines of the directed edge e

:Value that is true if e is selected, default isfalse.

:Modulus of elasticity.

:Cross-sectional area.

:Moment of inertia.

:Temperature of the top surface of e default is 0.

:Temperature of the bottom surface of e default is 0

:Depth h of the member cross-section.

:Coefficient of thermal expansion.

:Fabrication error, (+) if member is longer, (-) if

member is shorter, default is 0.

:Internal axial force at the beginning of e, default 0.

:Internal shear force at the beginning of e, default 0

:Internal bending moment at the beginning of e,

default is 0.

:Displacement in the local x direction at the

beginning of e.

:Displacement in the local y direction at the

beginning of e.

:Displacement about the Z axis at the beginning of

e.

:Vector of transverse point loads.

:Vector of axial point loads.

:Vector of bending moments.

:Vector of transverse distributed loads.

:Vector of axial distributed loads.

Graph G contains the following attributes:

V

E

:List of vertices in G

:List of directed edges in G

Graph operations are defined for insertion and elimination of

Paper ID: SR22928042711 DOI: 10.21275/SR22928042711 1311

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 11, November 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

vertices and edges, which modify the incidence between

edges and vertices when the model changes its geometry.

a) To insert a vertex, its coordinates (x,y) are required, as

indicated by Algorithm 1.

Algorithm 1 Add a vertex

ADD-VERTEX (x, y)

1

2

3

v = new vertex (x, y)

add v to list V

returnv

b) An edge e1 between v1 and v2 is inserted if e1 does not

exist. Both e1 and its opposite e2 are added in E and in the

lists v1.Inc and v2.Inc respectively. Algorithm 2 returns e1

(the edge coming out of v1), if e1 already exists it returns

null. The length and direction cosines of the directed edges

are calculated and stored when inserting the edge.

Algorithm 2 Add an edge

ADD-EDGE (v1, v2)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

//check if there is already an edge e

for each edge e∈v1.Inc

ife.opposite.origin == v2

return NIL

//create e1 and e2 with origin at v1 and v2

e1 = new edge(v1)

e2 = new edge(v2)

// link both directed edges e1 and e2

e2.opposite = e1

e1.opposite = e2

add e1 to list E

add e2 to list E

// bind e1 to v1 and e2 to v2.

add e1 to list v1.Inc

add e2 to list v2.Inc

// assign length L to e1 and e2

e1.L = e2.L = L = √((v2.x - v1.x)
2
 + (v2.y - v1.y)

2
)

// direction cosines of e1 and e2

e1.cx = (v2.x - v1.x) / L

e1.cy = (v2.y - v1.y) / L

e2.cx = -e1.cx

e2.cy = -e1.cy

returne1

c) Removing a vertex v includes removing the edges coming

out of v and their respective opposite edges, as described by

Algorithm 3.

Algorithm 3 Remove a vertex

REMOVE-VERTEX (v)

1

2

3

4

5

6

7

ifv == NIL

return

// traverse the incident edges coming out of v

for each edge e∈v.Inc

b = e.opposite.origin

remove e.opposite from list b.Inc

remove e from list E

remove e.opposite from list E

remove v from list V

d) Removing a member from the model includes removing

its two directed edges. If the member is isolated, its end

nodes must be removed. If the member has a free end, the

free end node must be removed. If the member has no free

ends, the end nodes are not removed. Algorithm 4 details the

procedure.

Algorithm 4 Remove edges associated with a member

REMOVE-EDGE (e)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

ife == NIL

return

a = e.origin

b = e.opposite.origin

ifb.Inc.size== 1

if a.Inc.size== 1// edge with free ends

REMOVE-VERTEX(a)

REMOVE-VERTEX(b)

else// edge with a free end

remove e from list a.Inc

REMOVE-VERTEX(b)

else ifa.Inc.size== 1 // edge with a free end

remove e.opposite from list b.Inc

REMOVE-VERTEX(a)

else // edge with ends attached to other edges

remove e from list a.Inc

remove e.opposite from list b.Inc

remove e from list E

remove e.opposite from list E

1.1 Design of graph-based algorithms for the analysis of

framed structures

The following nomenclature is used in the algorithms:

K

F

U

k

f

fe

n

u(x)

v(x)

N(x)

V(x)

M(x)

:Structure stiffness matrix.

:Nodal load vector of the model.

:Nodal displacements.

:Member stiffness matrix in the global system.

:Nodal load vector of a member in the global system.

:Member local fixed-end force vector at the origin-

node, due to loads, whose axial, shear, and

bendingmoment components are respec-

tively{fab,fsb,fmb}.

:Number of degrees of freedom of the structure.

:Displacement of the member’s centroidal axis in the

local x direction, at a distance x from the origin.

:Deflection of the member’s centroidal axis in the local

y direction, at a distance x from the origin.

:Axial force at the member section at a distance x from

the origin of the local xy coordinate system.

:Shear force at the member section at a distance x from

the origin of the local xy coordinate system.

:Bending moment at the member section at a distance

x from the origin of the local xy coordinate system.

The algorithms deal with the calculation and post-

processing, according to the sequence shown in Fig. 8.

Paper ID: SR22928042711 DOI: 10.21275/SR22928042711 1312

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 11, November 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 6: Diagram of the structural analysis procedure

3.1.1 Calculation of the global stiffness matrix of the

model
The matrix associated with a directed edge of the member is

defined by the submatrix 3x6 given by the upper half of the

stiffness matrix 6x6 of the member, see [2] p. 277, as Eq. 1

illustrates. The terms k1, k2, k3, k4, k5, k6 and k7 of k are

detailed in Algorithm 5.

𝒌 =

𝑘1 𝑘2 𝑘3 −𝑘1 −𝑘2 𝑘3

𝑘2 𝑘4 𝑘5 −𝑘2 −𝑘4 𝑘5

𝑘3 𝑘5 𝑘6 −𝑘3 −𝑘5 𝑘7

𝑠.𝑖 𝑠.𝑗 𝑠.𝑘 𝑒 .𝑖 𝑒 .𝑗 𝑒 .𝑘

𝑠. 𝑖

𝑠. 𝑗

𝑠. 𝑘

(1)

The complete matrix for a frame member can be obtained by

applying Eq. 1 to both directed edges of the member.

The stiffness matrix K of the structure is given by the

contribution of all the matrices k, for which k has associated

labels for rows and columns corresponding to the degrees of

freedom i, j, k of the nodes of the member shown in Fig. 9.

Such labels define the positions in K where the terms of k

should be located.

Figure 7: Degrees of freedom of a member according to the

direction of a directed edge

Algorithm 5 calculates the stiffness matrix K for a frame G.

The list of directed edges of G is traversed. For each edge

visited, the terms of k are added in K at the positions given

by the degrees of freedom of the directed edge. The stiffness

of elastic supports is also included.

Algorithm5 Calculates the stiffness matrix of a frame

COMPUTE-STIFFNESS-MATRIX-FRAME (G)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

n = 3∙G.V.size

let K be a new nxn matrix

// traversing directed edges of G

for each edge curr∈G.E

s = curr.origin;

e = curr.opposite.origin

L = curr.L; cx = curr.cx; cy = curr.cy

E = curr.E ; A = curr.A; I = curr.I;

ki = E ∙ I / L
3

ka = E ∙ A / L

k1 = ka ∙ cx ∙ cx + 12 ∙ ki ∙ cy ∙ cy

k2 = (ka - 12 ∙ ki) ∙ cx ∙ cy

k3 = -6 ∙ ki ∙ L ∙ cy

k4 = ka ∙ cy ∙ cy + 12 ∙ ki ∙ cx ∙ cx

k5 = 6 ∙ ki ∙ L ∙ cx

k6 = 4 ∙ ki ∙ L
2

k7 = 2 ∙ ki ∙ L
2

// add first three columns of k

K[s.i][s.i] += k1;

K[s.i][s.j] += k2;

K[s.i][s.k] += k3;

K[s.j][s.i] += k2;

K[s.j][s.j] += k4;

K[s.j][s.k] += k5;

K[s.k][s.i] += k3;

K[s.k][s.j] += k5;

K[s.k][s.k] += k6;

// add last three columns of k

K[s.i][e.i] += -k1;

K[s.i][e.j] += -k2;

K[s.i][e.k] += k3;

K[s.j][e.i] += -k2;

K[s.j][e.j] += -k4;

K[s.j][e.k] += k5;

K[s.k][e.i] += -k3;

K[s.k][e.j] += -k5;

K[s.k][e.k] += k7;

// traverse vertices of G to add spring stiffness

for each vertex s∈G.V

K[s.i][s.i] += s.kx

K[s.j][s.j] += s.ky

K[s.k][s.k] += s.kθ

returnK

Similarly, stiffness matrices for directed edges of truss and

beam members are defined.

For trusses:

𝒌 =
𝐸𝐴

𝐿

𝑐𝑥2 𝑐𝑥𝑐𝑦 −𝑐𝑥2 −𝑐𝑥𝑐𝑦

𝑐𝑥𝑐𝑦 𝑐𝑦2 −𝑐𝑥𝑐𝑦 𝑐𝑦2

𝑠.𝑖 𝑠.𝑗 𝑒 .𝑖 𝑒 .𝑗

𝑠. 𝑖

𝑠. 𝑗

(2)

For beams:

𝒌 =
𝐸𝐼

𝐿3

12𝑐𝑥2 6𝐿𝑐𝑥 −12𝑐𝑥2 6𝐿𝑐𝑥

6𝐿𝑐𝑥 4𝐿2 −6𝐿𝑐𝑥 2𝐿2

𝑠.𝑗 𝑠.𝑘 𝑒.𝑗 𝑒.𝑘

𝑠. 𝑗

𝑠. 𝑘

(3)

In both cases, algorithms can be formulated following the

Paper ID: SR22928042711 DOI: 10.21275/SR22928042711 1313

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 11, November 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

same approach of Algorithm 5.

3.1.2 Calculation of the fixed-end force vector for a

model member

Loads on a member can act parallel to the member (axial

load) or perpendicular (transverse load), as shown in Fig. 10.

Figure 8 (a): Transverse point load; b Bending moment; c

Transverse distributed trapezoidal load; d Axial point load; e

Axial distributed trapezoidal load

As a result of the action of such loads on a frame member,

forces are generated at the ends of the member. To calculate

such end forces, there are expressions for each type of load

acting on the member [2] p.656. Figure 10 shows the

extreme forces fab, fsb, fmb, corresponding only to the

origin node of the directed edge.

The data of each type of load: magnitude and location, are

stored in the arrays P, M, N, w and wN, which are edge

attributes. In each array, the data of each load is grouped

sequentially considering the signs of the loads and their

locations according to the direction of the directed edge.

a) For each transverse point load, two positions of P:{P1,a1,

…, Pj,aj} are occupied, corresponding to its magnitude and

location.

b) For each bending moment, two positions of M:{M1,a1, …,

Mj,aj} are occupied, corresponding to its magnitude and

location.

c) For each transverse trapezoidal load, four positions of

w:{w1,a1,w2,b2,…,wj,aj,wk,bk} are occupied, corresponding to

their magnitudes w1 and w2 and the distances a, b from the

ends respectively.

d) For each axial point load, two positions of N:{N1,a1, …,

Nj,aj} are occupied, corresponding to its magnitude and

location.

e) For each axial trapezoidal load, four positions of

wN:{w1,a1,w2,b2,…, wj,aj,wk,bk} are occupied, corresponding

to their magnitudes w1 and w2 and the distances a, b from

the ends respectively.

Algorithm 6 calculates the total magnitudes of the end forces

fab, fsb, fmb at the origin of the edge curr, which are

obtained by adding the end forces corresponding to all types

of loads acting on a member.

Algorithm 6 Calculates the end forces at the origin of a

directed edge

COMPUTE-END-FORCES-FRAME-BAR (curr)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

L=curr.L

fab = 0, fsb = 0, fmb = 0

// transverse point load

for j = 1 to curr.P.length /2

P = curr.P[2 ∙ j-1]

a = curr.P[2 ∙ j]

b = L - a;

fsb += P ∙ b
2
 ∙ (3 ∙ a + b) / L

3

fmb += P ∙ a ∙ b
2
 / L

2

// bending moment

forj = 1 tocurr.M.length/ 2

M = curr.M[2 ∙ j-1]

a = curr.M[2 ∙ j]

b = L - a;

fsb += -6 ∙ M ∙ a ∙ b / L
3

fmb += M ∙ b ∙ (b - 2 ∙ a) / L
2

// transverse trapezoidal load

forj = 1 tocurr.w.length/ 4

w1 = curr.w[4 ∙ j-1]

a = curr.w[4 ∙ j]

w2 = curr.w[4 ∙ j + 1]

b = curr.w[4 ∙ j + 2]

d = L - a;

fsb += w1∙d
3
∙(7∙L + 8∙a - b∙(3∙L + 2∙a) / d∙(1 + b/d +

b
2
/d

2
) + 2∙b

4
 / d

3
) / (20∙L

3
)+w2∙d

3
∙((3∙L

+2∙a)∙(1+b/d+b
2
/d

2
)-b

3
/d

2
∙(2+(15∙L-8∙ b)/d))/(20∙L

3
)

fmb += w1∙d
3
∙(3∙(L+4∙a)-b∙(2∙L+3∙a) /

d∙(1+b/d+b
2
/d

2
)+3∙b

4
 /d

3
) / (60∙L

2
)

+w2∙d
3
∙((2∙L+3∙a)∙(1+b/d+b

2
/d

2
)

-3∙b
3
/d

2
∙(1+(5∙L-4∙ b)/d))/(60∙L

2
)

// axial point load

forj = 1 tocurr.N.length/ 2

P = curr.N[2 ∙ j-1]

a = curr.N[2 ∙ j]

b = L - a

fab += P ∙ b / L

// axial trapezoidal load

forj = 1 tocurr.wN.length/ 4

w1 = curr.wN[4 ∙ j-1]

a = curr.wN[4 ∙ j]

w2 = curr.wN[4 ∙ j + 1]

b = curr.wN[4 ∙ j + 2]

d = L - a - b

c = L - a

fab += w1/(2∙L)∙c
2
 + (w2 - w1) / (6∙d∙L)∙(c

3
-b

3
)

 - w2∙b
2
 / (2∙L)

// temperature variation

fab += -curr.E∙curr.A∙curr.α ∙(curr.Ts + curr.Ti) / 2

fmb += curr.E ∙curr.I ∙curr.α ∙(curr.Ts - curr.Ti) /curr.h

// error in member length

fab += -curr.E ∙ curr.A ∙ curr.ΔL / curr.L

returnfe = {fab, fsb, fmb}

Paper ID: SR22928042711 DOI: 10.21275/SR22928042711 1314

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 11, November 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

For beams, Algorithm 6 is valid, but the action of axial

forces should not be considered, that is, fab=0.

For trusses the procedure is similar to Algorithm 6but

consider fmb=0 and fsb is calculated using the following

expressions for load types a, b and c from Fig. 10.

a) For transverse point load

𝑓𝑠𝑏 =
𝑃 ⋅ 𝑏

𝐿

(

4)

b) For bending moment

𝑓𝑠𝑏 = −
𝑀

𝐿

(

5)

c) For transverse trapezoidal load

𝑓𝑠𝑏 =
 𝐿 − 𝑎 − 𝑏

6 ⋅ 𝐿
⋅ [𝑤1 2𝐿 − 2𝑎 + 𝑏 + 𝑤2(𝐿 − 𝑎

+ 2𝑏)]

(

6)

3.1.3 Calculation of the vector of nodal loads of the

model

Algorithm 7 returns the vector of nodal loads F of the model,

for which the fixed-end forces at the origin node of each

directed edge of a frame model G are calculated. Such forces

are rotated to the global system and stored in F in the

positions corresponding to the degrees of freedom of the

origin node of the respective directed edge.

Algorithm 7 Calculate the vector of nodal forces for a frame

model

Compute-Global-Vector-Frame (G)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

n = 3∙G.V.length

let F be a new vector of length n

for each edge curr∈G.E

s = curr.origin;

e = curr.opposite.origin

L = curr.L

 cx = curr.cx

 cy = curr.cy

fe=COMPUTE-END-FORCES-FRAME-BAR (curr)

// rotar a global

F[s.i] += fe[0]∙ cx – fe[1] ∙ cy

F[s.j] += fe[0]∙ cy + fe[1] ∙ cx

F[s.k] += fe[2]

// traverse vertices of G to add nodal loads

for each vertex s∈G.V

F[s.i] += s.Fx

F[s.j] += s.Fy

F[s.k] += s.Mz

returnF

For trusses and beams, the procedure is similar to Algorithm

7, but for trusses, bending moments are not considered and

for beams, axial loads are not considered.

3.1.4 Calculation of the internal forces in the

members of the model

At each end of the members the internal forces Ni, Vi and Mi

are calculated. Figure 11 shows the internal forces at the

origin end of a directed edge. The internal forces at the other

end can be calculated from the opposite edge. The sign of

the internal forces is interpreted according to the local

coordinate system of the directed edge.

Figure 9: Internal forces at the origin end of a directed edge

The internal forces at the origin of a directed edge are

calculated by applying the following matrix expression:

𝑁𝑖

𝑉𝑖

𝑀𝑖

 =

𝐸𝐴

𝐿
0 0 −

𝐸𝐴

𝐿
0 0

0
12𝐸𝐼

𝐿3

6𝐸𝐼

𝐿2 0 −
12𝐸𝐼

𝐿3

6𝐸𝐼

𝐿2

0
6𝐸𝐼

𝐿2

4𝐸𝐼

𝐿
0 −

6𝐸𝐼

𝐿2

2𝐸𝐼

𝐿

⋅

𝑐𝑥 𝑐𝑦 0 0 0 0
−𝑐𝑦 𝑐𝑥 0 0 0 0

0 0 1 0 0 0
0 0 0 𝑐𝑥 𝑐𝑦 0
0 0 0 −𝑐𝑦 𝑐𝑥 0
0 0 0 0 0 1

⋅

𝑢1

𝑣1

𝜃1

𝑢2

𝑣2

𝜃2

−

𝑓𝑎𝑏

𝑓𝑠𝑏

𝑓𝑚𝑏

(7)

Algorithm 8 calculates the internal forces at the origin of

each member, using simplified Equation 7. Such forces are

stored in the attributes Ni, Vi and Mi of each directed edge.

Algorithm 8 Calculate the internal forces in the members of

a frame

Compute-Internal-Forces-Vector-Frame (G)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

for each edge curr∈G.E

s = curr.origin

e = curr.opposite.origin

L = curr.L; cx = curr.cx; cy = curr.cy

// local matrix of a frame member

E = curr.E; A = curr.A; I = curr.I;

ki = E ∙ I / L
3
;

k1 = E ∙ A / L

k2 = 12 ∙ ki

k3 = 6 ∙ ki ∙ L

k4 = 4 ∙ ki ∙ L
2

k5 = 2 ∙ ki ∙ L
2

// get displacements of the end nodes s and e

u1 = s.u; v1 = s.v; θ1 = s.θ;

u2 = e.u; v2 = e.v; θ2 = e.θ;

fe=COMPUTE-END-FORCES-FRAME-BAR (curr)

// internal forces

curr.Ni=k1∙(u1∙cx+v1∙cy)-k1∙(u2∙cx+v2∙cy)-fe[0]

curr.Vi= k2∙(-u1∙cy+v1∙cx)+k3∙(θ1+θ2)

-k2∙(-u2∙cy +v2∙cx)-fe[1]

curr.Mi=k3∙(-u1∙cy+v1∙cx)+k4∙θ1

-k3∙(-u2∙cy +v2∙cx)+k5∙θ2-fe[2]

For trusses and beams, the procedure is similar, but in each

case use the corresponding matrices and consider Mi=0 for

trusses and Ni=0 for beams.

3.1.5 Diagram of internal forces in the members of the

Paper ID: SR22928042711 DOI: 10.21275/SR22928042711 1315

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 11, November 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

model

Once Ni, Vi and Mi have been calculated, expressions N(x),

V(x) and M(x) are formulated for each member according to

the local coordinate system defined for the member. For

each type of load in Figure 12, there are expressions N(x),

V(x) and M(x) formulated in terms of the Macaulay function

whose definition is:

〈𝑥 − 𝑎〉𝑛 =
0 ∀ 𝑥 < 𝑎

(𝑥 − 𝑎)𝑛 ∀ 𝑥 ≥ 𝑎
 (8)

Figure 10: Types of load on a member

a) For transverse point load

𝑀 𝑥 = 𝑃〈𝑥 − 𝑎〉1 (9)

b) For bending moment

𝑀 𝑥 = −𝑀〈𝑥 − 𝑎〉0 (10)

c) For transverse trapezoidal load

𝑀 𝑥 = 𝑤2

〈𝑥 − 𝑎1〉
2

2
− 𝑤2 − 𝑤1

〈𝑥 − 𝑎1〉

2

2

+ 𝑤2 − 𝑤1
〈𝑥 − 𝑎1〉

6 ⋅ 𝑑

3

− 𝑤2 − 𝑤1
〈𝑥 − 𝑎2〉

6 ⋅ 𝑑

3

− 𝑤2

〈𝑥 − 𝑎2〉
2

2

(11)

Where:

a2 = L – b; d = a2 - a1

For load types a, b and c, the expressions for V(x) are ob-

tained from V(x) = dM(x)/dx.

d) For axial point load

𝑁 𝑥 = −𝑁〈𝑥 − 𝑎〉0 (12)

e) For axial trapezoidal load

𝑁 𝑥 = −𝑤2〈𝑥 − 𝑎1〉
1 + 𝑤2 − 𝑤1 〈𝑥 − 𝑎1〉

1

− 𝑤2 − 𝑤1
〈𝑥 − 𝑎1〉

2 ⋅ 𝑑

2

+ 𝑤2 − 𝑤1
〈𝑥 − 𝑎2〉

2 ⋅ 𝑑

2

+ 𝑤2〈𝑥 − 𝑎2〉
1

(13)

The values of P, N, w1, and w2 are substituted with signs

according to the direction of the directed edge of the

member. M is positive if it acts counterclockwise.

A member can be subjected to a combination of the loads in

Fig. 12, for which the Macaulay expressions must be

accumulated.

To evaluate N(x) the Macaulay expressions N(x) of the loads

(d) and (e) in Fig. 12 are added as indicated in Eq. 14.

𝑁 𝑥 = −𝑁𝑖 + 𝑁(𝑥)𝑗

𝑗

 (14)

Algorithm 9 evaluates N(x) at a point x of a member,

according to the direction of the directed edge e.

Algorithm 9 Calculate the axial force on a member

EVAL-AXIAL-FORCE-X (x, e)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Nx = -e.Ni

L = e.L

// axial point load

forj = 1 toe.N.length/ 2

N = e.N[2 ∙ j-1]

a = e.N[2 ∙ j]

Nx = Nx - N ∙ 〈x - a〉0

// axial trapezoidal load

forj = 1 toe.wN.length/ 4

w1 = e.wN[4 ∙ j-1]

a1 = e.wN[4 ∙ j]

w2 = e.wN[4 ∙ j + 1]

b = e.wN[4 ∙ j + 2]

a2 = L - b

d = a2 - a1

Nx = Nx - w2∙〈x - a1〉1
 + (w2-w1)∙〈x - a1〉1

- (w2 - w1)∙〈x - a1〉2
 / (2 ∙ d)

+ (w2 - w1) ∙ 〈x - a2〉2
 / (2 ∙ d) + w2 ∙ 〈x - a2〉1

returnNx

To evaluate V(x), the Macaulay expressions V(x) of loads (a)

and (c) in Fig. 12 are added as indicated in Eq. 15.

𝑉 𝑥 = 𝑉𝑖 + 𝑉(𝑥)𝑗

𝑗

 (15)

Algorithm 10 evaluates V(x) at a point x of a member,

according to the direction of the directed edge e.

Algorithm 10 Calculate the shear force on a member

EVAL-SHEAR-FORCE-X (x, e)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Vx = e.Vi

L = e.L

// transverse point load

forj = 1 toe.P.length/ 2

P = e.P[2 ∙ j-1]

a = e.P[2 ∙ j]

Vx = Vx + P ∙〈x - a〉0

// transverse trapezoidal load

forj = 1 toe.w.length/ 4

w1 = e.w[4 ∙ j-1]

a1 = e.w[4 ∙ j]

w2 = e.w[4 ∙ j + 1]

b = e.w[4 ∙ j + 2]

a2 = L - b

d = a2 - a1

Vx = Vx + w2∙〈x - a1〉1
 - (w2 - w1)∙〈x - a1〉1

Paper ID: SR22928042711 DOI: 10.21275/SR22928042711 1316

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 11, November 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

15

+ (w2 - w1)∙〈x - a1〉2
 / (2∙d)

- (w2 - w1) ∙ 〈x - a2〉2
 / (2 ∙ d) - w2 ∙ 〈x - a2〉1

returnVx

To evaluate M(x) the Macaulay expressions M(x) of the

loads (a), (b) and (c) of Fig. 12 are added as indicated in Eq.

16.

𝑀 𝑥 = 𝑉𝑖 ⋅ 𝑥 − 𝑀𝑖 + 𝑀(𝑥)𝑗
𝑗

 (16)

Algorithm 11 evaluates M(x) at a point x of a member,

according to the direction of the directed edge e.

Algorithm 11 Calculates the bending moment on a member

EVAL-BENDING-MOMENT-X (x, e)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Mx = e.Vi ∙ x - e.Mi

L = e.L

// transverse point load

forj = 1 toe.P.length/ 2

P = e.P[2 ∙ j-1]

a = e.P[2 ∙ j]

Mx = Mx + P ∙ 〈x - a〉1

// bending moment

forj = 1 toe.M.length/ 2

M = e.M[2 ∙ j-1]

a = e.M[2 ∙ j]

Mx = Mx - M ∙ 〈x - a〉0

// transverse trapezoidal load

forj = 1 toe.w.length/ 4

w1 = e.w[4 ∙ j-1]

a1 = e.w[4 ∙ j]

w2 = e.w[4 ∙ j + 1]

b = e.w[4 ∙ j + 2]

a2 = L - b

d = a2 - a1

Mx = Mx + w2∙〈x - a1〉2
 /2 - (w2 - w1)∙〈x – a1〉2

 / 2 +

(w2 - w1)∙〈x - a1〉3
 / (6∙d) - (w2 - w1) ∙ 〈x - a2〉3

 / (6 ∙ d) -

w2 ∙ 〈x - a2〉2
 / 2

returnMx

The signs for N(x), V(x) and M(x), are interpreted according

to the direction of the directed edge.

The points (x, N(x)) or (x, V(x)) are drawn according to the

local coordinate systems of Fig. 13.

Figure 11: Sign convention for diagrams of axial and shear

forces according to the direction of the directed edge.

If M(x) is positive the points (x, M(x)) are drawn on the

negative y-axis as shown in Fig. 14, so if the member is

horizontal, the positive moments are drawn downwards.

Figure 12: Sign convention for bending moment diagrams

3.1.6 Deformed shape of model members

To draw the deformed shape of a member, its axial

deformation u(x) and deflection v(x) are drawn as ordered

pairs (x+u(x), v(x)) as illustrated in Fig. 15.

Figure 13: Deformed shape of a model member

Previously, the local displacements 𝑢 𝑖 , 𝑣 𝑖 at the origin of

each member are required, for which the displacements

𝑢𝑖 , 𝑣𝑖 of the origin nodes of the members are transformed by

applying Eq. 17.

𝑢 𝑖

𝑣 𝑖
 =

𝑐𝑥 𝑐𝑦

−𝑐𝑦 𝑐𝑥

𝑢𝑖

𝑣𝑖

 (17)

The axial deformation of a member is obtained from Eq. 18.
𝑑𝑢

𝑑𝑥
=

𝑁 𝑥

𝐸𝐴
, 𝑢 0 = 𝑢 𝑖 (18)

Whose solution is:

𝑢 𝑥 = 𝑢 𝑖 +
1

𝐸𝐴
 𝑁(𝑥)𝑑𝑥 (19)

To the previous solution is added the deformation due to

temperature changes and the deformation due to error in the

length of the member.

𝑢 𝑥 = 𝑢 𝑖 +
1

𝐸𝐴
 𝑁(𝑥)𝑑𝑥 +

𝛼 ⋅ (𝑇𝑡 + 𝑇𝑏)

2
⋅ 𝑥 +

Δ𝐿

𝐿
⋅ 𝑥

(20)

Algorithm 12 evaluates the axial deformation at a point x on

a member, according to the directed edge direction e.

Algorithm 12 Calculates the axial deformation in a frame

member

Eval-Ux (x, e)

1

2

3

4

Ux = e.ui - e.Ni ∙ x /(e.E ∙ e.A) + e.α ∙(e.Tt + e.Tb)∙x/2

+ e.ΔL ∙ x / e.L

// axial point load

forj = 1 toe.N.length/ 2

P = e.N[2 ∙ j-1]

a = e.N[2 ∙ j]

Paper ID: SR22928042711 DOI: 10.21275/SR22928042711 1317

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 11, November 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

5

6

7

8

9

10

11

12

13

14

Ux = Ux + (-P ∙ 〈x - a〉1
) / (e.E ∙ e.A)

// axial trapezoidal load

forj = 1 toe.wN.length/ 4

w1 = e.wN[4 ∙ j-1]

a1 = e.wN[4 ∙ j]

w2 = e.wN[4 ∙ j + 1]

b = e.wN[4 ∙ j + 2]

a2 = e.L - b

d = a2 - a1

Ux = Ux +(-w2∙〈x - a1〉2
 /2 + (w2-w1)∙〈x - a1〉2

/2-

(w2-w1)∙〈x - a1〉3
 / (6∙d) + (w2 - w1)∙〈x - a2〉3

 / (6∙d)

+ w2 ∙ 〈x - a2〉2
 / 2) / (e.E ∙ e.A)

returnUx

For beams u(x)=0.

For trusses, Algorithm 12 is valid but the temperature must

be considered uniform, that is, Tt=Tb.

The deflection of a member is obtained from Eq. 21.

𝑑2𝑣

𝑑𝑥2
=

𝑀 𝑥

𝐸𝐼
, 𝑑𝑣

𝑑𝑥

𝑥=0

= 𝜃𝑖 𝑣 0 = 𝑣 𝑖 (21)

Whose solution is

𝑣 𝑥 = 𝑣 𝑖 + 𝜃𝑖𝑥 +
1

𝐸𝐼
 𝑀(𝑥)𝑑𝑥𝑑𝑥 (22)

To the previous solution is added the deformation due to

temperature changes.

𝑣 𝑥 = 𝑣 𝑖 + 𝜃𝑖𝑥 +
1

𝐸𝐼
 𝑀(𝑥)𝑑𝑥𝑑𝑥

−
𝛼 ⋅ (𝑇𝑡 − 𝑇𝑏)

2 ⋅ ℎ
⋅ 𝑥2

(23)

Algorithm 13 evaluates the deflection at a point x on a

member, according to the direction of the directed edge e.

Algorithm 13 Calculates the deflection in a frame member

EVAL-YX (x, e)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Yx = e.vi + e.θi∙x + (e.Vi∙x
3
/6 - e.Mi∙x

2
/2)/(e.E∙e.I) -

e.α∙(e.Tt - e.Tb)∙x
2
/ (2∙e.h)

// transverse point load

forj = 1 toe.P.length/ 2

P = e.P[2 ∙ j-1]

a = e.P[2 ∙ j]

Yx = Yx + (P ∙ 〈x - a〉3
 / 6) / (e.E ∙ e.I)

// bending moment

forj = 1 toe.M.length/ 2

M = e.M[2 ∙ j-1]

a = e.M[2 ∙ j]

Yx = Yx + (-M ∙ 〈x - a〉2
 / 2) / (e.E ∙ e.I)

// transverse trapezoidal load

forj = 1 toe.w.length/ 4

w1 = e.w[4 ∙ j-1]

a1 = e.w[4 ∙ j]

w2 = e.w[4 ∙ j + 1]

b = e.w[4 ∙ j + 2]

a2 = e.L - b

d = a2 - a1

Yx = Yx + (w2∙〈x - a1〉4
/ 24 - (w2- w1)∙〈x - a1〉4

 /24 +

(w2-w1)∙〈x - a1〉5
 / (120∙d) - (w2-w1)∙〈x - a2〉5

 / (120∙d)

 - w2∙〈x - a2〉4
 / 24) / (e.E ∙ e.I)

18 returnYx

To draw the diagrams, all members are assumed to be

horizontal with origin at (0,0) as shown in Fig. 16a. The

points (x+u(x),v(x)), (x, N(x)), (x, V(x)), (x, M(x)), must be

rotated around the origin (0,0) an angle θ according to the

direction of the directed edge and translate such rotated

points, a distance (x1, y1), corresponding to the origin

coordinate of the member. In this way the diagram is as

shown in Fig. 16b.

Figure 14: Rotation and translation of diagrams

The transformation matrix that rotates a point (x, y) around

the origin and translates it a distance (x1, y1) is:

𝑥 ′

𝑦′

1

 =

cos 𝜃 − sen 𝜃 𝑥1

sen 𝜃 cos 𝜃 𝑦1

0 0 1

𝑥

𝑦

1

 (24)

4. Program developed

From the programming of the TAD Grafo and the

algorithms, GBSA (Graph-Based Structural Analysis) is

obtained, whose graphical interface allows interaction in the

three stages of structural analysis, as illustrated in Fig. 17.

Figure 15: Interaction with the graphical user interface

The graphical user interface includes a canvas where the

user can draw a model using the mouse and view the

diagrams associated with the model. It also includes a

context menu to perform each stage of the structural

analysis.

Figure 18 shows the options for inserting and deleting

members and nodes are available for preprocessing. The

user can assign data to groups of selected nodes or members.

Paper ID: SR22928042711 DOI: 10.21275/SR22928042711 1318

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 11, November 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 16: Options for preprocessing

For the calculation, the Run option is available, as shown in

Fig. 19, which integrates the set of algorithms corresponding

to this stage.

Figure 17: Option for calculation

For post-processing, Figure 20 shows the options to view the

diagrams. It is possible to select the members on which to

display the diagrams.

Figure 18: Options for post-processing

5. Results and Discussion

Using GBSA, a truss, a beam and a frame have been

analyzed, whose results are compared with those of the

SAP2000 program. The data are taken from Table 1.

Table 1: Data collected for member attributes
Attribute Truss Beam Frame

A 0.005 m2 ------------ 0.075 m2

I ----------- 0.0005625 m4 0.0005625 m4

∆L -0.01 m ------------ -----------

h ----------- ----------- 0.30 m

E 2e8 kN/m2 2e8 kN/m2 2e8 kN/m2

Tt ----------- ----------- +24 °C

Tb ----------- ----------- +15 °C

α ----------- ----------- 1.2e-5 /°C

As a result of the analysis of each model, the nodal

displacements, the deformed shape of the models and the

internal force diagrams are presented. To visualize the

internal force diagrams, only some members of the model

have been selected, in order to avoid overloading the

diagrams.

5.1 Analysis of a truss

Figure 21 shows a truss loaded at node 4, point loads at

member 6-7, and trapezoidal distributed loading at member

1-2. Member 3-5 is considered to have been made 0.01

shorter. The truss was drawn on a grid with 1m spacing.

Paper ID: SR22928042711 DOI: 10.21275/SR22928042711 1319

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 11, November 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 19: Truss model subjected to nodal load, point loads,

trapezoidal distributed load and member length error

Table 2 presents the nodal displacements from the truss

analysis.

Table 2: Comparison of nodal displacements with SAP2000

Node Direction
DISPLACEMENTS (m)

GBSA SAP2000 % Error

2
x 0.00598211 0.005982 0.000000

y -0.00145667 -0.001457 0.000000

3
x 0.00706941 0.007069 0.000000

y -0.00037879 -0.000379 0.000000

4
x 0.00206919 0.002069 0.000000

y 0.00390949 0.003909 0.000000

5
x -0.00225948 -0.002259 0.000000

y 0.00113656 0.001137 0.000000

6 x -0.00467529 -0.004675 0.000000

7
x -0.00088487 -0.000885 0.000000

y -0.00084333 -0.000843 0.000000

Table 2 shows that when rounding the GBSA values to 6

decimal places, an error of 0.000000% is obtained for the

displacements.

The deformed shape of the truss is consistent with the nodal

displacements obtained as shown in Fig. 22.

Figure 20: Deformed shape of the truss

Figure 23 shows the axial force diagram for members 1-3, 6-

5, 6-7 and 4-7 according to the direction shown on such

members. Members 6-7 and 4-7 are in compression (negati-

ve sign), while members 1-3 and 6-5 are in tension (positive

sign).

Figure 21: Axial force diagram for the truss

Figure 24 shows the shear force diagram for members 1-2

and 6-7. In all other members, the shear force is zero.

Figure 22: Shear force diagram for the truss

Figure 25 shows the bending moment diagram for members

1-2 and 6-7. In all other members the bending moment is

zero.

Figure 23: Bending moment diagram for the truss

5.2 Analysis of a beam

The beam in Fig. 26 is subjected to a trapezoidal distributed

load in member 1-2 and a point load in member 2-3. In addi-

tion, node 2 is on an elastic support. The beam was drawn on

a grid with 1m spacing.

Figure 24: Beam model subjected to trapezoidal distributed

load, point load and elastic support

Paper ID: SR22928042711 DOI: 10.21275/SR22928042711 1320

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 11, November 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Table 3 presents the nodal displacements for nodes 2 and 3

of the beam.

Table 3: Comparison of nodal displacements with SAP2000

Node Direction
DISPLACEMENTS (m)

GBSA SAP2000 % Error

2
y -0.00129600 -0.001296 0.000000

z -0.00016066 -0.000161 0.000000

3 z 0.00067744 0.000677 0.000000

Table 3 shows that when rounding the GBSA values to 6

decimal places, an error of 0.000000% is obtained for the

displacements.

Figure 27 shows the deformed shape of the beam, which is

consistent with the displacements obtained for nodes 2 and

3.

Figure 25: Deformed shape of the beam

Figure 28 shows the shear force diagram for the members of

the beam. Positive shear forces are drawn upwards.

Figure 26: Shear force diagram for the beam

Figure 29 shows the bending moment diagram for the beam

members. Positive bending moments are drawn downward.

Figure 27: Bending moment diagram for the beam

5.3 Analysis of a frame

Figure 30 presents a frame subjected to trapezoidal

distributed loading at member 3-4 and loads at nodes 2 and

3. Member 2-5 is subjected to temperature variation and

point loading. In addition, node 6 is subject to a settlement

of 0.01 m. The frame was drawn on a grid with 1m spacing.

Figure 28: Frame model subjected to trapezoidal

distributed load, nodal loads, point load, temperature

variation and settlement

Table 4 presents the nodal displacements from the frame

analysis.

Table 4: Comparison of nodal displacements with SAP2000

Node Direction
DISPLACEMENTS (m)

GBSA SAP2000 % Error

2

x 0.00776380 0.007764 0.000000

y -0.00000430 -0.000004 0.000000

z -0.00183260 -0.001833 0.000000

3

x 0.01686238 0.016862 0.000000

y -0.00001025 -0.000010 0.000000

z -0.00246757 -0.002468 0.000000

5

x 0.00962186 0.009622 0.000000

y -0.01002904 -0.010029 0.000000

z -0.00215871 -0.002159 0.000000

6

x 0.01685199 0.016852 0.000000

y -0.01003909 -0.010039 0.000000

z -0.00099437 -0.000994 0.000000

Table 4 shows that when rounding the GBSA values to 6

decimal places, an error of 0.000000% is obtained for the

displacements.

Figure 31 shows the deformed shape of the frame, which is

consistent with the displacements obtained for nodes 2, 3,5

and 6 of the frame.

Figure 29: Deformed shape of the frame

Figure 32 shows the axial force diagram for members 1-2, 4-

5 and 3-6 of the frame.

Paper ID: SR22928042711 DOI: 10.21275/SR22928042711 1321

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 11, November 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 30: Axial force diagram for the frame

Figure 33 shows the shear force diagram for members 1-2,

4-5 and 3-6 of the frame.

Figure 31: Shear force diagram for the frame

Figure 34 shows the bending moment diagram for members

1-2, 4-5 and 3-6 of the frame.

Figure 32: Bending moment diagram for the frame

6. Discussions

The analysis of three structures with different geometries

and subjected to different types of loads has been presented,

obtaining in all cases that the results coincide with those of

the SAP2000 software.

For each model, a combination of the following topics has

been included: thermal effects, fabrication errors, elastic

supports, trapezoidal distributed loads, point loads, nodal

loads, and support movements.

Data was quickly assigned to models by selecting their

nodes and members.

In order to visualize the internal force diagrams, the user can

select a member or a set of members with their respective

directions.

7. Conclusions

The representation of models by directed edges is useful,

since it allows greater interactivity with the user, by

allowing him to choose the direction of a member to view

the diagrams and assign loads and temperatures.

The Graph ADT facilitated the implementation of a canvas

where the user can draw the models using the mouse, in this

way the user does not need to type one by one coordinates

and connectivity between nodes.

The operations of the Graph ADT allows a model to be built

and modified dynamically, that is, the number of members

and nodes of the model is not restricted.

The algorithms presented can analyze structures subjected to

topics such as: thermal effects, fabrication errors, elastic

supports, trapezoidal distributed loads, point loads, nodal

loads, and support movements.

The presented algorithms produce correct results, therefore,

they are useful for the development of software for the

analysis of trusses, beams and frames.

References

[1] Da Fonseca, Z. (2016) Análisis matricial de estructuras

reticulares, Primera. Fondo Editorial Biblioteca, Mara-

caibo

[2] Kassimali, A. (2012) Matrix analysis of structures, 2nd

ed. Cengage Learning, Carbondale

[3] Kassimali, A. (2015) Análisis estructural, 5th ed. Cen-

gage Learning, Carbondale

[4] Cervera, M., Blanco, E. (2014) Mecánica de estructu-

ras. Centro Internacional de Métodos Numéricos en In-

geniería, Barcelona

[5] Barhate, PG., Ladhane, KB. (2016) Development of

structural analysis program for truss structure using

MATLAB. Int J Technol Res Eng 3:2460–2465

[6] François, S., Schevenels, M., Dooms, D., Jansen, M.,

Wambacq, J., Lombaert, G., Degrande, G., De Roeck,

G.(2021) Stabil: An educational Matlab toolbox for

static and dynamic structural analysis. Comput Appl

Eng Educ 29:1372–1389.

https://doi.org/10.1002/cae.22391

[7] Martínez-Pañeda, E.(2016) MATLAB : Una her-

ramienta para la didáctica del Método de los Elementos

Finitos. Rev Iberoam Educ Matemática 242–268

[8] Neiva, PHG., Vieira, GD., Batista, S., Dos Prazeres,

PGC. (2018) Desenvolvimento de programa didático

para análise de vigas pelo método dos elementos fini-

tos. In: XLVI COBENGE

[9] Villagómez, M., Calderón, RR., López, L., Arbesú,

RS.(2015) SAE Software de Análisis Estructural. In:

Revista del Congreso Internacional de Innovación

Educativa. pp 426–430

[10] Nogueira, LGO., Bezerra, EMF. (2017) Ferramenta em

ambiente excel para análise estrutural de treliças

espaciais pelo método dos elementos finitos. Proc

XXXVIII Iber Lat Am Congr Comput Methods Eng.

https://doi.org/10.20906/cps/cilamce2017-1280

Paper ID: SR22928042711 DOI: 10.21275/SR22928042711 1322

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 11, November 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

[11] Bakošová, A., Krmela, J., Handrik, M. (2020) Comput-

ing of truss structure using MATLAB. Manuf Technol

20:279–285. https://doi.org/10.21062/mft.2020.059

[12] Neves, NS., Pinheiro, VP., Camargo, RS.(2019) De-

senvolvimento de uma interface gráfica educacional

para ensino de elementos finitos aplicado a problemas

de viga sob base elástica. In: X Encontro Científico de

Física Aplicada

[13] Zotkin, SP., Blokhina, NS., Zotkina, IA.(2015) About

development and verification of software for finite

element analysis of beam systems. Procedia Eng

111:902–906.

https://doi.org/10.1016/j.proeng.2015.07.045

[14] Barrantes, FD., Hernández, ÁG.(2020) Modelo compu-

tacional para el análisis matricial de estructuras reticu-

lares. Universidad Peruana de Ciencias Aplicadas

[15] Barrera, JA.(2018) Desarrollo de software para el

análisis de casos indeterminados y específicos de vigas,

pórticos y armaduras denominado ECHELON. Univer-

sidad Distrital Francisco José de Caldas

[16] Barreto Bezerra, AA., Sousa Da Silva, LM., Lima,

AW.(2018) Desenvolvimento de um programa compu-

tacional para análise de vigas Euler-Bernoulli utili-

zando a linguagem Pytho. Rev Principia - Divulg

Científica e Tecnológica do IFPB 1:54.

https://doi.org/10.18265/1517-03062015v1n38p54-60

[17] Htwe, T., Khaing, SY.(2014) Analysis of Beam Struc-

ture with Matlab Software. Int J Sci Eng Technol Res

03:2064–2069

[18] Patil, IS., Annigeri, SA.(2016) Introduction to PSA as a

Free Structural Analysis Software. Bonfring Int J Man

Mach Interface 4:116–120.

https://doi.org/10.9756/bijmmi.8167

[19] Pallares, M., Calderón, WR., García,Deg.(2020) An

educational computer program for matrix analysis of

plane trusses in civil engineering. ARPN J Eng Appl

Sci 15:570–576

[20] Chen, X (2020) Programming for solving plane rigid

frame based on MATLAB. MATEC Web Conf

319:09003.

https://doi.org/10.1051/matecconf/202031909003

[21] Pamnani, G., Rajput, DS., Tiwari, N., Gajendra, A.

(2014) Beam Analysis in Matlab Specify design char-

acteristic. Adv Phys Lett 1:27–36

[22] Godoi, R., Vanalli, L., Da Silva, S.(2017) Análise de

estruturas utilizando o software Excel através do

método da rigidez direta. In: 26 Encontro Anual de Ini-

ciação Científica

[23] De Oliveira, CJ., Steffen, LO., Vogel, GM., Nunes,

RB., Dos Santos, GM.(2019) Aplicação do software

Excel como ferramenta de ensino para resolução de

treliças planas utilizando elementos finitos de barras.

Rev Tecnol 40:1–13.

https://doi.org/10.5020/23180730.2019.9903

[24] Chapra, SC., Canale, RP.(2007) Métodos numéricos

para ingenieros, 5th ed. McGraw-Hill, México, D.F.

Paper ID: SR22928042711 DOI: 10.21275/SR22928042711 1323

