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Abstract: Framed structures such as trusses, beams, and frames are used in the construction of buildings, bridges, transmission 

towers, etc. The analysis of such structures is necessary as a basis for the design, since it allows knowing the behavior of the structure 

subjected to different load conditions. This article presents the computational aspects for the development of an interactive graphical 

computer application for the analysis of framed structures. The application was programmed in Java 2D using the stiffness method. For 

the programming of the application, a graph approach is proposed, since the models of framed structures are topologically graphs. The 

developed application covers the three stages of structure analysis: pre-processing, calculation and post-processing. The results of the 

analysis of structures are compared with those obtained by commercial software, obtaining coincidence in the results, for which it is 

concluded that the presented approach is useful to develop graphic software for the analysis of framed structures. 
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1. Introduction 
 

A structure is part of a construction whose purpose is to 

support the loads to which it is subjected. Framed structures 

such as: trusses, beams and frames are formed by prismatic 

members joined at their ends. Structural analysis studies the 

effects of loads on a structure [1–4]. 

 

A real structure presents complex geometry, therefore, its 

analysis requires simplifying it through an analytical model 

that outlines the structure as a line diagram [2, 3]. 

Topologically, this line diagram is a graph, where the data is 

associated to edges (members) and vertices (nodes). 

 

The analysis of a structure consists of three stages: pre-

processing, calculation and post-processing [5, 6]. 

 

In preprocessing, the geometry of the model (coordinates 

and connectivity between nodes), member properties and 

boundary conditions are defined. 

 

The calculation consists of solving the model using the 

stiffness matrix method, which is described by Kassimali 

[2]. The stiffness method, in summary, consists of:  

 
 Calculate the stiffness matrix K of the structure 

 Calculate the force vector F of the structure. 

 Apply boundary conditions on K and F, thus K and F are 

reduced. 

 Solve the system KU=F to calculate the displacements U 

of the nodes of the model. 

 Calculate the reaction forces at the supports. 

 Calculate the internal forces at the ends of the members. 

 

Post-processing consists of presenting the deformed shape of 

the model and the internal force diagrams: axial, shear and 

bending moments [7–9]. 

 
The analysis of a structure is laborious, therefore, many 

studies describe its computer implementation. 

 

For preprocessing, Nogueira and Bezerra [10], Bakošová et 

al. [11], Neves et al. [12], Zotkin et al. [13], Barrantes and 

Hernández [14] and Barrera [15] describe graphical 

interfaces where the user must tabulate the data and the 

coordinates and connectivity between nodes to draw the 

structure model. Barhate and Ladhane [5] and Francois et al. 

[6] describe the data, edited in an m-file. Neiva et al. [8], 

Barreto Bezerra et al. [16], Htwe and Khaing [17] and Patil 

and Annigeri [18] describe the data, edited in text file. 

Pallares M. et al. [19], Chen [20], and Villagómez et al. [9] 

describe console applications where data is entered one by 

one. Pamnani et al. [21] describe the data input through 

Matlab command window. Godoi et al. [22] describe the 

data in an Excel spreadsheet. All these procedures are 

laborious when the model includes a lot of data, for which 

an appropriate data structure is required to facilitate the 

geometric representation of models and data storage. 

 

For the calculation, Bakošová et al. [11], Barrantes and 

Hernández [14], Chen [20], Neves et al. [12], Neiva et al. 

[8], Barhate and Ladhane [5], Htwe and Khaing [17], and 

Pamnani et al. [21] describe MATLAB scripts to analyze 

structures subjected to certain types of loads. De Oliveira et 

al. [23], Nogueira and Bezerra [10] and Godoi et al. [22], 

describe the use of spreadsheets to analyze structures 

subjected to certain types of loads. This shows the lack of 

algorithms to implement a program that deals with various 

topics such as: thermal effects, fabrication errors, elastic 

supports, trapezoidal distributed loads, point loads, nodal 

loads, and support movements. 
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For post-processing, Pamnani et al. [21] present diagrams of 

shear forces and bending moments for the specific case of 

the analysis of four beams. Neves et al. [12] present the 

bending moment diagram corresponding to the analysis of a 

beam. Barrantes and Hernández [14] present the deformed 

shape of the analysis of three structures. Chen [20] presents 

the bending moment diagram of a frame analysis. Francois 

et al. [6] present the diagrams corresponding to the analysis 

of a frame. Villagomez et al. [9] present the diagrams of 

shear forces and bending moment corresponding to the 

analysis of a beam. Nogueira and Bezerra [10], Bakošová et 

al. [11], Barhate and Ladhane [5], Neiva et al. [8], Barreto 

Bezerra et al. [16], Htwe and Khaing [17], Godoi et al. [22], 

Barrera [15] and Patil and Annigeri [18] present the 

numerical results of the analysis of structures, printed in text 

files or on screen. Therefore, algorithms are required to draw 

the internal force diagrams and the deformed shape of any 

structure. 

 

This research seeks to contribute with computational aspects 

to develop graphic and interactive software for the analysis 

of trusses, beams and frames. For preprocessing, a Graph 

Abstract Data Type (Graph ADT) is defined, which 

facilitates the use of the mouse to build the geometric model 

on a canvas, assign data to selected members and nodes and 

dynamically modify the model. For the calculation and post-

processing, algorithms have been developed to calculate 

nodal displacements, internal forces, draw the deformed 

shape of the models and the internal force diagrams: axial, 

shear and bending moments. The algorithms cover topics 

such as: thermal effects, elastic supports, fabrication errors, 

imposed displacements, nodal loads, point loads, and 

trapezoidal distributed loads. This research is useful for 

engineering professionals, who only require basic 

programming knowledge to code the algorithms and obtain 

software with similar calculation capacity as commercial 

software and according to their requirements. 
 

2. Methods 
 

For the development of a program for analysis of framed 

structures, a graph-based approach is presented, which 

includes: pre-processing, calculation and post-processing, as 

illustrated in Fig. 1. 

 
Figure 1: Graph-based approach for the analysis of framed 

structures 

The computer implementation begins with the definition of 

the Graph ADT, which stores all the data, so that the model 

is redrawn on the screen each time its data or geometry are 

modified. The Graph ADT includes operations to add and 

remove vertices and edges, for model building. 

Subsequently, algorithms are designed for both calculation 

and post-processing. The calculation is performed by the 

stiffness method, where the solution of the KU=F system is 

obtained by the Gauss-Seidel method, whose algorithm is 

described by Chapra and Canale [24]. In the post-processing 

stage, the deformed shape of the members and the internal 

force diagrams are drawn from expressions formulated in 

terms of Macaulay functions. Finally, a graphical user 

interface is developed, which facilitates data input. The 

graphical interface includes a canvas where the model can 

be drawn. The numerical results are compared with those of 

the SAP2000 software.  

 

3. Development of the graph-based approach 
 

3.1 Definition of a Graph ADT to represent analytical 

models of framed structures 

 

Figure 2 shows a structure model, which is a graph, whose 

vertices correspond to the nodes (joints) and the edges to the 

members of the model. 

 

 
Figure 2: Graph representing a model 

 

For each member, two edges directed in opposite directions 

are associated, as illustrated in Fig. 3. 

 

 
Figure 3: Directed edges of a model 

 

The reason for using directed edges is that they establish two 

local x-y coordinate systems for each member, as shown in 

Fig. 4. The z
+
 axis is assumed to be perpendicular to the 

screen and pointing at the viewer. 
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Figure 4: Local coordinate systems of a member given by 

its directed edges 

 

Selecting a directed edge to assign loads on a member 

avoids ambiguity in the location and sign of the loads. For 

example, in Fig. 5 for edge AB, the force P is negative and 

is located at a distance a from A, while for edge BA the 

force P is positive and acts at a distance b from B. 

 

 
Figure 5: Load on directed edge 

 

In a similar way, temperatures can be assigned on the 

surfaces of a member. In Fig. 6 for edge AB the temperature 

T1 acts on the upper surface of the member and T2 on the 

lower surface, while for BA, T2 acts on the upper surface 

and T1 on the lower surface.   

 
Figure 6: Temperatures on directed edge 

 

To access the nodes of a member, each directed edge (e) 

stores a reference to its origin vertex (e.origin) and its 

opposite edge (e.opposite), thus the two nodes of a member 

are: e.origin and e.opposite.origin, as illustrated in Fig. 7. 

 
Figure 7: Incidence between edges and nodes 

 

Each node v stores a list containing the edges that leave v, 

this makes it possible to access the incident members in v 

and the adjacent nodes of v. 

 

Attributes related to topics such as: thermal effects, 

fabrication errors, elastic supports, trapezoidal distributed 

loads, and support movements have been included. 

 

Each vertex v has the following attributes: 

Id 

Inc 

sel 

x,y 

i,j,k 

 

kx 

ky 

kθ 

tx 

ty 

rz 

Fx 

Fy 

Mz 

u 

v 

θ 

:Vertex identifier. 

:List of incident edges leaving v. 

:Value that is true if v is selected, default is false. 

:Vertex coordinate, default value for z is 0. 

:Identifiers for the degrees of freedom in the X and Y 

directions and about the Z axis. 

:Spring constant in X direction, default value is 0 

:Spring constant in Y direction, default value is 0 

:Spring constant about the Z axis, default is 0. 

:Restraint in X direction, 1: restrained, 0: free, default 0 

:Restraint in Y direction, 1: restrained, 0: free, default 0 

:Rotational restraint, 1: restrained, 0: free, default is 0. 

:Force in X direction, default value is 0. 

:Force in Y direction, default value is 0. 

:Moment about the global Z axis, default is 0. 

:Displacement in X direction, default is 0. 

:Displacement in Y direction, default is 0. 

:Displacement about the Z axis, default is 0. 

 

Each directed edgee has the following attributes: 

opposite 

origin 

L 

cx,cy 

sel 

E 

A 

I 

Tt 

Tb 

h 

α 

ΔL 

 

Ni 

Vi 

Mi 

 

ui 

 

vi 

 

θi 

 

P 

N 

M 

w 

wN 

:Edge directed in the opposite direction to e. 

:Origin vertex of e. 

:Length of the member. 

:Direction cosines of the directed edge e 

:Value that is true if e is selected, default isfalse. 

:Modulus of elasticity. 

:Cross-sectional area. 

:Moment of inertia. 

:Temperature of the top surface of e default is 0. 

:Temperature of the bottom surface of e default is 0 

:Depth h of the member cross-section. 

:Coefficient of thermal expansion. 

:Fabrication error, (+) if member is longer, (-) if 

member is shorter, default is 0. 

:Internal axial force at the beginning of e, default 0. 

:Internal shear force at the beginning of e, default 0 

:Internal bending moment at the beginning of e, 

default is 0. 

:Displacement in the local x direction at the 

beginning of e. 

:Displacement in the local y direction at the 

beginning of e. 

:Displacement about the Z axis at the beginning of 

e. 

:Vector of transverse point loads. 

:Vector of axial point loads. 

:Vector of bending moments. 

:Vector of transverse distributed loads. 

:Vector of axial distributed loads. 

 

Graph G contains the following attributes:     

V 

E 

:List of vertices in G 

:List of directed edges in G 

 

Graph operations are defined for insertion and elimination of 
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vertices and edges, which modify the incidence between 

edges and vertices when the model changes its geometry. 

 

a) To insert a vertex, its coordinates (x,y) are required, as 

indicated by Algorithm 1. 

Algorithm 1 Add a vertex 

ADD-VERTEX (x, y) 

1 

2 

3 

v = new vertex (x, y) 

add v to list V 

returnv 

 

b) An edge e1 between v1 and v2 is inserted if e1 does not 

exist. Both e1 and its opposite e2 are added in E and in the 

lists v1.Inc and v2.Inc respectively. Algorithm 2 returns e1 

(the edge coming out of v1), if e1 already exists it returns 

null. The length and direction cosines of the directed edges 

are calculated and stored when inserting the edge. 

Algorithm 2 Add an edge 

ADD-EDGE (v1, v2) 

 

1 

2 

3 

 

4 

5 

 

6 

7 

8 

9 

 

10 

11 

 

12 

 
13 

14 

15 

16 

17 

//check if there is already an edge e  

for each edge e∈v1.Inc 

ife.opposite.origin == v2 

return NIL 

//create e1 and e2 with origin at v1 and v2  

e1 = new edge(v1)            

e2 = new edge(v2)           

// link both directed edges e1 and e2 

e2.opposite = e1 

e1.opposite = e2 

add e1 to list E 

add e2 to list E 

// bind e1 to v1 and e2 to v2. 

add e1 to list v1.Inc 

add e2 to list v2.Inc 

// assign length L to e1 and e2 

e1.L = e2.L = L = √((v2.x - v1.x)
2
 + (v2.y - v1.y)

2
) 

// direction cosines of e1 and e2 

e1.cx = (v2.x - v1.x) / L 

e1.cy = (v2.y - v1.y) / L 

e2.cx = -e1.cx  

e2.cy = -e1.cy 

returne1 

 

c) Removing a vertex v includes removing the edges coming 

out of v and their respective opposite edges, as described by 

Algorithm 3. 

Algorithm 3 Remove a vertex 

REMOVE-VERTEX (v) 

1 

2 

 

3 

4 

5 

6 

7 

ifv == NIL 

return 

// traverse the incident edges coming out of v 

for each edge e∈v.Inc 

b = e.opposite.origin 

remove e.opposite from list b.Inc 

remove e from list E 

remove e.opposite from list E 

remove v from list V 

 

d) Removing a member from the model includes removing 

its two directed edges. If the member is isolated, its end 

nodes must be removed. If the member has a free end, the 

free end node must be removed. If the member has no free 

ends, the end nodes are not removed. Algorithm 4 details the 

procedure. 

Algorithm 4 Remove edges associated with a member 

REMOVE-EDGE (e) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

ife == NIL 

return 

a = e.origin 

b = e.opposite.origin 

ifb.Inc.size== 1 

if a.Inc.size== 1// edge with free ends 

REMOVE-VERTEX(a) 

REMOVE-VERTEX(b) 

else// edge with a free end 

remove e from list a.Inc 

REMOVE-VERTEX(b) 

else ifa.Inc.size== 1 // edge with a free end 

remove e.opposite from list b.Inc 

REMOVE-VERTEX(a) 

else     // edge with ends attached to other edges 

remove e from list a.Inc 

remove e.opposite from list b.Inc 

remove e from list E 

remove e.opposite from list E 

 

1.1 Design of graph-based algorithms for the analysis of 

framed structures 

The following nomenclature is used in the algorithms: 

K 

F 

U 

k 

f 

fe 

 

 

n 

u(x) 

 

v(x) 

 

N(x) 

 

V(x) 

 

M(x) 

:Structure stiffness matrix. 

:Nodal load vector of the model. 

:Nodal displacements. 

:Member stiffness matrix in the global system. 

:Nodal load vector of a member in the global system. 

:Member local fixed-end force vector at the origin-

node, due to loads, whose axial, shear, and 

bendingmoment components are respec-

tively{fab,fsb,fmb}. 

:Number of degrees of freedom of the structure. 

:Displacement of the member’s centroidal axis in the 

local x direction, at a distance x from the origin. 

:Deflection of the member’s centroidal axis in the local 

y direction, at a distance x from the origin. 

:Axial force at the member section at a distance x from 

the origin of the local xy coordinate system. 

:Shear force at the member section at a distance x from 

the origin of the local xy coordinate system. 

:Bending  moment at the member section at a distance 

x from the origin of the local xy coordinate system. 

The algorithms deal with the calculation and post-

processing, according to the sequence shown in Fig. 8. 
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Figure 6: Diagram of the structural analysis procedure 

 

3.1.1 Calculation of the global stiffness matrix of the 

model 
The matrix associated with a directed edge of the member is 

defined by the submatrix 3x6 given by the upper half of the 

stiffness matrix 6x6 of the member, see [2] p. 277, as Eq. 1 

illustrates. The terms k1, k2, k3, k4, k5, k6 and k7 of k are 

detailed in Algorithm 5. 

𝒌 =  

𝑘1 𝑘2 𝑘3 −𝑘1 −𝑘2 𝑘3

𝑘2 𝑘4 𝑘5 −𝑘2 −𝑘4 𝑘5

𝑘3 𝑘5 𝑘6 −𝑘3 −𝑘5 𝑘7

 

                     
𝑠.𝑖         𝑠.𝑗        𝑠.𝑘          𝑒 .𝑖            𝑒 .𝑗           𝑒 .𝑘

𝑠. 𝑖

𝑠. 𝑗

𝑠. 𝑘

 
(1) 

 

The complete matrix for a frame member can be obtained by 

applying Eq. 1 to both directed edges of the member. 

 

The stiffness matrix K of the structure is given by the 

contribution of all the matrices k, for which k has associated 

labels for rows and columns corresponding to the degrees of 

freedom i, j, k of the nodes of the member shown in Fig. 9. 

Such labels define the positions in K where the terms of k 

should be located. 

 

 
Figure 7: Degrees of freedom of a member according to the 

direction of a directed edge 

 

Algorithm 5 calculates the stiffness matrix K for a frame G. 

The list of directed edges of G is traversed. For each edge 

visited, the terms of k are added in K at the positions given 

by the degrees of freedom of the directed edge. The stiffness 

of elastic supports is also included. 

 
Algorithm5 Calculates the stiffness matrix of a frame 

COMPUTE-STIFFNESS-MATRIX-FRAME (G) 

1 

2 

 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

 

17 

18 

19 

20 

21 

22 

23 

24 

25 

 

26 

27 

28 

29 

30 

31 

32 

33 

34 

 

35 

36 

37 

38 

39 

n = 3∙G.V.size 

let K be a new nxn matrix 

// traversing directed edges of G 

for each edge curr∈G.E 

s = curr.origin; 

e = curr.opposite.origin 

L = curr.L; cx = curr.cx; cy = curr.cy 

E = curr.E ; A = curr.A; I = curr.I; 

ki = E ∙ I / L
3
 

ka = E ∙ A / L 

k1 = ka ∙ cx ∙ cx + 12 ∙ ki ∙ cy ∙ cy 

k2 = (ka - 12 ∙ ki) ∙ cx ∙ cy 

k3 = -6 ∙ ki ∙ L ∙ cy 

k4 = ka ∙ cy ∙ cy + 12 ∙ ki ∙ cx ∙ cx 

k5 = 6 ∙ ki ∙ L ∙ cx 

k6 = 4 ∙ ki ∙ L
2
 

k7 = 2 ∙ ki ∙ L
2
 

// add first three columns of k 

K[s.i][s.i] += k1; 

K[s.i][s.j] += k2;      

K[s.i][s.k] += k3; 

K[s.j][s.i] += k2; 

K[s.j][s.j] += k4;      

K[s.j][s.k] += k5; 

K[s.k][s.i] += k3;       

K[s.k][s.j] += k5;      

K[s.k][s.k] += k6; 

// add last three columns of k 

K[s.i][e.i] += -k1;      

K[s.i][e.j] += -k2;     

K[s.i][e.k] += k3; 

K[s.j][e.i] += -k2;      

K[s.j][e.j] += -k4;     

K[s.j][e.k] += k5; 

K[s.k][e.i] += -k3;     

K[s.k][e.j] += -k5;    

K[s.k][e.k] += k7; 

// traverse vertices of G to add spring stiffness 

for each vertex s∈G.V 

K[s.i][s.i] += s.kx 

K[s.j][s.j] += s.ky 

K[s.k][s.k] += s.kθ 

returnK 

 

Similarly, stiffness matrices for directed edges of truss and 

beam members are defined. 

 
For trusses: 

𝒌 =
𝐸𝐴

𝐿
 
𝑐𝑥2 𝑐𝑥𝑐𝑦 −𝑐𝑥2 −𝑐𝑥𝑐𝑦

𝑐𝑥𝑐𝑦 𝑐𝑦2 −𝑐𝑥𝑐𝑦 𝑐𝑦2
 

                     
𝑠.𝑖               𝑠.𝑗                     𝑒 .𝑖                  𝑒 .𝑗

𝑠. 𝑖

𝑠. 𝑗
 

(2) 

 

For beams: 

𝒌 =
𝐸𝐼

𝐿3
 
12𝑐𝑥2 6𝐿𝑐𝑥 −12𝑐𝑥2 6𝐿𝑐𝑥

6𝐿𝑐𝑥 4𝐿2 −6𝐿𝑐𝑥 2𝐿2
 

                       
𝑠.𝑗                    𝑠.𝑘                     𝑒.𝑗                   𝑒.𝑘

𝑠. 𝑗

𝑠. 𝑘
 

(3) 

 

In both cases, algorithms can be formulated following the 
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same approach of Algorithm 5. 

 

3.1.2 Calculation of the fixed-end force vector for a 

model member 

Loads on a member can act parallel to the member (axial 

load) or perpendicular (transverse load), as shown in Fig. 10. 

 
Figure 8 (a): Transverse point load; b Bending moment; c 

Transverse distributed trapezoidal load; d Axial point load; e 

Axial distributed trapezoidal load 

 

As a result of the action of such loads on a frame member, 

forces are generated at the ends of the member. To calculate 

such end forces, there are expressions for each type of load 

acting on the member [2] p.656. Figure 10 shows the 

extreme forces fab, fsb, fmb, corresponding only to the 

origin node of the directed edge. 

 

The data of each type of load: magnitude and location, are 

stored in the arrays P, M, N, w and wN, which are edge 

attributes. In each array, the data of each load is grouped 

sequentially considering the signs of the loads and their 

locations according to the direction of the directed edge. 

 

a) For each transverse point load, two positions of P:{P1,a1, 

…, Pj,aj} are occupied, corresponding to its magnitude and 

location. 

b) For each bending moment, two positions of M:{M1,a1, …, 

Mj,aj} are occupied, corresponding to its magnitude and 

location. 

c) For each transverse trapezoidal load, four positions of 

w:{w1,a1,w2,b2,…,wj,aj,wk,bk} are occupied, corresponding to 

their magnitudes w1 and w2 and the distances a, b from the 

ends respectively. 

d) For each axial point load, two positions of N:{N1,a1, …, 

Nj,aj} are occupied, corresponding to its magnitude and 

location. 

e) For each axial trapezoidal load, four positions of 

wN:{w1,a1,w2,b2,…, wj,aj,wk,bk} are occupied, corresponding 

to their magnitudes w1 and w2 and the distances a, b from 

the ends respectively. 

 

Algorithm 6 calculates the total magnitudes of the end forces 

fab, fsb, fmb at the origin of the edge curr, which are 

obtained by adding the end forces corresponding to all types 

of loads acting on a member. 

 
Algorithm 6 Calculates the end forces at the origin of a 

directed edge 

COMPUTE-END-FORCES-FRAME-BAR (curr) 

1 

2 

 

3 

4 

5 

6 

7 

8 

 

9 

10 

11 

12 

13 

14 

 

15 

16 

17 

18 

19 

20 

21 

 

 

22 

 

 

 

 

23 

24 

25 

26 

27 

 

28 

29 

30 

31 

32 

33 

34 

35 

 

 

36 

37 

 

38 

39 

L=curr.L 

fab = 0, fsb = 0, fmb = 0 

// transverse point load 

for j = 1 to curr.P.length /2 

P = curr.P[2 ∙ j-1] 

a = curr.P[2 ∙ j] 

b = L - a; 

fsb += P ∙ b
2
 ∙ (3 ∙ a + b) / L

3
 

fmb += P ∙ a ∙ b
2
 / L

2
 

// bending moment 

forj = 1 tocurr.M.length/ 2 

M = curr.M[2 ∙ j-1] 

a = curr.M[2 ∙ j] 

b = L - a; 

fsb += -6 ∙ M ∙ a ∙ b / L
3
 

fmb += M ∙ b ∙ (b - 2 ∙ a) / L
2
 

// transverse trapezoidal load 

forj = 1 tocurr.w.length/ 4 

w1 = curr.w[4 ∙ j-1] 

a = curr.w[4 ∙ j] 

w2 = curr.w[4 ∙ j + 1] 

b = curr.w[4 ∙ j + 2] 

d = L - a; 

fsb += w1∙d
3
∙(7∙L + 8∙a - b∙(3∙L + 2∙a) / d∙(1 + b/d + 

b
2
/d

2
) + 2∙b

4
 / d

3
) / (20∙L

3
)+w2∙d

3
∙((3∙L 

+2∙a)∙(1+b/d+b
2
/d

2
)-b

3
/d

2
∙(2+(15∙L-8∙ b)/d))/(20∙L

3
) 

fmb += w1∙d
3
∙(3∙(L+4∙a)-b∙(2∙L+3∙a) / 

d∙(1+b/d+b
2
/d

2
)+3∙b

4
 /d

3
) / (60∙L

2
) 

+w2∙d
3
∙((2∙L+3∙a)∙(1+b/d+b

2
/d

2
) 

-3∙b
3
/d

2
∙(1+(5∙L-4∙ b)/d))/(60∙L

2
) 

// axial point load  

forj = 1 tocurr.N.length/ 2 

P = curr.N[2 ∙ j-1] 

a = curr.N[2 ∙ j] 

b = L - a 

fab += P ∙ b / L 

// axial trapezoidal load 

forj = 1 tocurr.wN.length/ 4 

w1 = curr.wN[4 ∙ j-1] 

a = curr.wN[4 ∙ j] 

w2 = curr.wN[4 ∙ j + 1] 

b = curr.wN[4 ∙ j + 2] 

d = L - a - b 

c = L - a 

fab += w1/(2∙L)∙c
2
 + (w2 - w1) / (6∙d∙L)∙(c

3
-b

3
) 

 - w2∙b
2
 / (2∙L) 

// temperature variation 

fab += -curr.E∙curr.A∙curr.α ∙(curr.Ts + curr.Ti) / 2 

fmb += curr.E ∙curr.I ∙curr.α ∙(curr.Ts - curr.Ti) /curr.h 

// error in member length 

fab += -curr.E ∙ curr.A ∙ curr.ΔL / curr.L  

returnfe = {fab, fsb, fmb} 
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For beams, Algorithm 6 is valid, but the action of axial 

forces should not be considered, that is, fab=0. 

 

For trusses the procedure is similar to Algorithm 6but 

consider fmb=0 and fsb is calculated using the following 

expressions for load types a, b and c from Fig. 10. 

a) For transverse point load 

𝑓𝑠𝑏 =
𝑃 ⋅ 𝑏

𝐿
 

(

4) 

b) For bending moment 

𝑓𝑠𝑏 = −
𝑀

𝐿
 

(

5) 

c) For transverse trapezoidal load 

𝑓𝑠𝑏 =
 𝐿 − 𝑎 − 𝑏 

6 ⋅ 𝐿
⋅ [𝑤1 2𝐿 − 2𝑎 + 𝑏 + 𝑤2(𝐿 − 𝑎

+ 2𝑏)] 

(

6) 

 

3.1.3 Calculation of the vector of nodal loads of the 

model 

Algorithm 7 returns the vector of nodal loads F of the model, 

for which the fixed-end forces at the origin node of each 

directed edge of a frame model G are calculated. Such forces 

are rotated to the global system and stored in F in the 

positions corresponding to the degrees of freedom of the 

origin node of the respective directed edge. 

 
Algorithm 7 Calculate the vector of nodal forces for a frame 

model 

Compute-Global-Vector-Frame (G) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

 

10 

11 

12 

 

13 

14 

15 

16 

17 

n = 3∙G.V.length 

let F be a new vector of length n 

for each edge curr∈G.E 

s = curr.origin; 

e = curr.opposite.origin 

L = curr.L 

 cx = curr.cx 

 cy = curr.cy 

fe=COMPUTE-END-FORCES-FRAME-BAR (curr) 

// rotar a global 

F[s.i] += fe[0]∙ cx – fe[1] ∙ cy 

F[s.j] += fe[0]∙ cy + fe[1] ∙ cx 

F[s.k] += fe[2] 

// traverse vertices of G to add nodal loads 

for each vertex s∈G.V 

F[s.i] += s.Fx 

F[s.j] += s.Fy 

F[s.k] += s.Mz 

returnF 

 

For trusses and beams, the procedure is similar to Algorithm 

7, but for trusses, bending moments are not considered and 

for beams, axial loads are not considered. 

 

3.1.4 Calculation of the internal forces in the 

members of the model 

At each end of the members the internal forces Ni, Vi and Mi 

are calculated. Figure 11 shows the internal forces at the 

origin end of a directed edge. The internal forces at the other 

end can be calculated from the opposite edge. The sign of 

the internal forces is interpreted according to the local 

coordinate system of the directed edge. 

 
Figure 9: Internal forces at the origin end of a directed edge 

 

The internal forces at the origin of a directed edge are 

calculated by applying the following matrix expression: 

 

𝑁𝑖

𝑉𝑖

𝑀𝑖

 =

 
 
 
 
 
 
𝐸𝐴

𝐿
0 0 −

𝐸𝐴

𝐿
0 0

0
12𝐸𝐼

𝐿3

6𝐸𝐼

𝐿2 0 −
12𝐸𝐼

𝐿3

6𝐸𝐼

𝐿2

0
6𝐸𝐼

𝐿2

4𝐸𝐼

𝐿
0 −

6𝐸𝐼

𝐿2

2𝐸𝐼

𝐿  
 
 
 
 
 

⋅

 
 
 
 
 
 
𝑐𝑥 𝑐𝑦 0 0 0 0
−𝑐𝑦 𝑐𝑥 0 0 0 0

0 0 1 0 0 0
0 0 0 𝑐𝑥 𝑐𝑦 0
0 0 0 −𝑐𝑦 𝑐𝑥 0
0 0 0 0 0 1 

 
 
 
 
 

⋅

 
 
 
 
 
 
𝑢1

𝑣1

𝜃1

𝑢2

𝑣2

𝜃2 
 
 
 
 
 

−  

𝑓𝑎𝑏

𝑓𝑠𝑏

𝑓𝑚𝑏

  

(7) 

 

Algorithm 8 calculates the internal forces at the origin of 

each member, using simplified Equation 7. Such forces are 

stored in the attributes Ni, Vi and Mi of each directed edge. 

 
Algorithm 8 Calculate the internal forces in the members of 

a frame 

Compute-Internal-Forces-Vector-Frame (G) 

1 

2 

3 

4 

 

5 

6 

7 

8 

9 

10 

11 

 

12 

13 

14 

 

15 

16 

 

17 

for each edge curr∈G.E 

s = curr.origin 

e = curr.opposite.origin 

L = curr.L; cx = curr.cx; cy = curr.cy 

// local matrix of a frame member 

E = curr.E; A = curr.A; I = curr.I; 

ki = E ∙ I / L
3
; 

k1 = E ∙ A / L 

k2 = 12 ∙ ki 

k3 = 6 ∙ ki ∙ L 

k4 = 4 ∙ ki ∙ L
2
 

k5 = 2 ∙ ki ∙ L
2
 

// get displacements of the end nodes s and e 

u1 = s.u;              v1 = s.v;            θ1 = s.θ; 

u2 = e.u;              v2 = e.v;           θ2 = e.θ; 

fe=COMPUTE-END-FORCES-FRAME-BAR (curr) 

// internal forces 

curr.Ni=k1∙(u1∙cx+v1∙cy)-k1∙(u2∙cx+v2∙cy)-fe[0] 

curr.Vi= k2∙(-u1∙cy+v1∙cx)+k3∙(θ1+θ2) 

-k2∙(-u2∙cy +v2∙cx)-fe[1] 

curr.Mi=k3∙(-u1∙cy+v1∙cx)+k4∙θ1 

-k3∙(-u2∙cy +v2∙cx)+k5∙θ2-fe[2]  

 

For trusses and beams, the procedure is similar, but in each 

case use the corresponding matrices and consider Mi=0 for 

trusses and Ni=0 for beams. 

3.1.5 Diagram of internal forces in the members of the 
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model 

Once Ni, Vi and Mi have been calculated, expressions N(x), 

V(x) and M(x) are formulated for each member according to 

the local coordinate system defined for the member. For 

each type of load in Figure 12, there are expressions N(x), 

V(x) and M(x) formulated in terms of the Macaulay function 

whose definition is: 

〈𝑥 − 𝑎〉𝑛 =  
0 ∀ 𝑥 < 𝑎

(𝑥 − 𝑎)𝑛 ∀ 𝑥 ≥ 𝑎
  (8) 

 
Figure 10: Types of load on a member 

 

a) For transverse point load 

𝑀 𝑥 = 𝑃〈𝑥 − 𝑎〉1 (9) 

b) For bending moment 

𝑀 𝑥 = −𝑀〈𝑥 − 𝑎〉0 (10) 

c) For transverse trapezoidal load 

𝑀 𝑥 = 𝑤2

〈𝑥 − 𝑎1〉
2

2
− 𝑤2 − 𝑤1 

〈𝑥 − 𝑎1〉

2

2

+  𝑤2 − 𝑤1 
〈𝑥 − 𝑎1〉

6 ⋅ 𝑑

3

−  𝑤2 − 𝑤1 
〈𝑥 − 𝑎2〉

6 ⋅ 𝑑

3

− 𝑤2

〈𝑥 − 𝑎2〉
2

2
 

(11) 

Where: 

a2 = L – b; d = a2 - a1 

 

For load types a, b and c, the expressions for V(x) are ob-

tained from V(x) = dM(x)/dx. 

 

d) For axial point load 

𝑁 𝑥 = −𝑁〈𝑥 − 𝑎〉0 (12) 

e) For axial trapezoidal load 

𝑁 𝑥 = −𝑤2〈𝑥 − 𝑎1〉
1 +  𝑤2 − 𝑤1 〈𝑥 − 𝑎1〉

1

−  𝑤2 − 𝑤1 
〈𝑥 − 𝑎1〉

2 ⋅ 𝑑

2

+  𝑤2 − 𝑤1 
〈𝑥 − 𝑎2〉

2 ⋅ 𝑑

2

+ 𝑤2〈𝑥 − 𝑎2〉
1 

(13) 

 

The values of P, N, w1, and w2 are substituted with signs 

according to the direction of the directed edge of the 

member. M is positive if it acts counterclockwise. 

 

A member can be subjected to a combination of the loads in 

Fig. 12, for which the Macaulay expressions must be 

accumulated. 

 

To evaluate N(x) the Macaulay expressions N(x) of the loads 

(d) and (e) in Fig. 12 are added as indicated in Eq. 14.  

𝑁 𝑥 = −𝑁𝑖 +  𝑁(𝑥)𝑗

𝑗

 (14) 

 

Algorithm 9 evaluates N(x) at a point x of a member, 

according to the direction of the directed edge e. 

Algorithm 9 Calculate the axial force on a member  

EVAL-AXIAL-FORCE-X (x, e) 

1 

2 

 

3 

4 

5 

6 

 

7 

8 

9 

10 

11 

12 

13 

14 

 

 

15 

Nx = -e.Ni 

L = e.L 

// axial point load 

forj = 1 toe.N.length/ 2 

N = e.N[2 ∙ j-1] 

a = e.N[2 ∙ j] 

Nx = Nx - N ∙ 〈x - a〉0
 

// axial trapezoidal load 

forj = 1 toe.wN.length/ 4 

w1 = e.wN[4 ∙ j-1] 

a1 = e.wN[4 ∙ j] 

w2 = e.wN[4 ∙ j + 1] 

b = e.wN[4 ∙ j + 2] 

a2 = L - b 

d = a2 - a1 

Nx = Nx - w2∙〈x - a1〉1
 + (w2-w1)∙〈x - a1〉1

 

- (w2 - w1)∙〈x - a1〉2
 / (2 ∙ d)  

+ (w2 - w1) ∙ 〈x - a2〉2
 / (2 ∙ d) + w2 ∙ 〈x - a2〉1

 

returnNx 

 

To evaluate V(x), the Macaulay expressions V(x) of loads (a) 

and (c) in Fig. 12 are added as indicated in Eq. 15. 

𝑉 𝑥 = 𝑉𝑖 +  𝑉(𝑥)𝑗

𝑗

 (15) 

Algorithm 10 evaluates V(x) at a point x of a member, 

according to the direction of the directed edge e. 

Algorithm 10 Calculate the shear force on a member  

EVAL-SHEAR-FORCE-X (x, e) 

1 

2 

 

3 

4 

5 

6 

 

7 

8 

9 

10 

11 

12 

13 

14 

Vx = e.Vi  

L = e.L 

// transverse point load 

forj = 1 toe.P.length/ 2 

P = e.P[2 ∙ j-1] 

a = e.P[2 ∙ j] 

Vx = Vx + P ∙〈x - a〉0
 

// transverse trapezoidal load 

forj = 1 toe.w.length/ 4 

w1 = e.w[4 ∙ j-1] 

a1 = e.w[4 ∙ j] 

w2 = e.w[4 ∙ j + 1] 

b = e.w[4 ∙ j + 2] 

a2 = L - b 

d = a2 - a1 

Vx = Vx + w2∙〈x - a1〉1
 - (w2 - w1)∙〈x - a1〉1
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15 

+ (w2 - w1)∙〈x - a1〉2
 / (2∙d)  

- (w2 - w1) ∙ 〈x - a2〉2
 / (2 ∙ d) - w2 ∙ 〈x - a2〉1

 

returnVx 

To evaluate M(x) the Macaulay expressions M(x) of the 

loads (a), (b) and (c) of Fig. 12 are added as indicated in Eq. 

16. 

𝑀 𝑥 = 𝑉𝑖 ⋅ 𝑥 − 𝑀𝑖 +  𝑀(𝑥)𝑗
𝑗

 (16) 

Algorithm 11 evaluates M(x) at a point x of a member, 

according to the direction of the directed edge e. 

Algorithm 11 Calculates the bending moment on a member  

EVAL-BENDING-MOMENT-X (x, e) 

1 

2 

 

3 

4 

5 

6 

 

7 

8 

9 

10 

 

11 

12 

13 

14 

15 

16 

17 

18 

 

 

19 

Mx = e.Vi ∙ x - e.Mi 

L = e.L 

// transverse point load 

forj = 1 toe.P.length/ 2 

P = e.P[2 ∙ j-1] 

a = e.P[2 ∙ j] 

Mx = Mx + P ∙ 〈x - a〉1
 

// bending moment 

forj = 1 toe.M.length/ 2 

M = e.M[2 ∙ j-1] 

a = e.M[2 ∙ j] 

Mx = Mx - M ∙ 〈x - a〉0
 

// transverse trapezoidal load 

forj = 1 toe.w.length/ 4 

w1 = e.w[4 ∙ j-1] 

a1 = e.w[4 ∙ j] 

w2 = e.w[4 ∙ j + 1] 

b = e.w[4 ∙ j + 2] 

a2 = L - b 

d = a2 - a1 

Mx = Mx + w2∙〈x - a1〉2
 /2 - (w2 - w1)∙〈x – a1〉2

 / 2 + 

(w2 - w1)∙〈x - a1〉3
 / (6∙d) - (w2 - w1) ∙ 〈x - a2〉3

 / (6 ∙ d) - 

w2 ∙ 〈x - a2〉2
 / 2 

returnMx 

 

The signs for N(x), V(x) and M(x), are interpreted according 

to the direction of the directed edge. 

 

The points (x, N(x)) or (x, V(x)) are drawn according to the 

local coordinate systems of Fig. 13. 

 
Figure 11: Sign convention for diagrams of axial and shear 

forces according to the direction of the directed edge. 

 

If M(x) is positive the points (x, M(x)) are drawn on the 

negative y-axis as shown in Fig. 14, so if the member is 

horizontal, the positive moments are drawn downwards. 

 
Figure 12: Sign convention for bending moment diagrams 

 

3.1.6 Deformed shape of model members 

To draw the deformed shape of a member, its axial 

deformation u(x) and deflection v(x) are drawn as ordered 

pairs (x+u(x), v(x)) as illustrated in Fig. 15. 

 
Figure 13: Deformed shape of a model member 

 

Previously, the local displacements 𝑢 𝑖 , 𝑣 𝑖  at the origin of 

each member are required, for which the displacements 

𝑢𝑖 , 𝑣𝑖  of the origin nodes of the members are transformed by 

applying Eq. 17. 

 
𝑢 𝑖

𝑣 𝑖
 =  

𝑐𝑥 𝑐𝑦

−𝑐𝑦 𝑐𝑥
  

𝑢𝑖

𝑣𝑖

  (17) 

 

The axial deformation of a member is obtained from Eq. 18.  
𝑑𝑢

𝑑𝑥
=

𝑁 𝑥 

𝐸𝐴
, 𝑢 0 = 𝑢 𝑖  (18) 

Whose solution is: 

𝑢 𝑥 = 𝑢 𝑖 +
1

𝐸𝐴
 𝑁(𝑥)𝑑𝑥 (19) 

 

To the previous solution is added the deformation due to 

temperature changes and the deformation due to error in the 

length of the member. 

 

𝑢 𝑥 = 𝑢 𝑖 +
1

𝐸𝐴
 𝑁(𝑥)𝑑𝑥 +

𝛼 ⋅ (𝑇𝑡 + 𝑇𝑏)

2
⋅ 𝑥 +

Δ𝐿

𝐿
⋅ 𝑥 

(20) 

 

Algorithm 12 evaluates the axial deformation at a point x on 

a member, according to the directed edge direction e.  

Algorithm 12 Calculates the axial deformation in a frame 

member 

Eval-Ux (x, e) 

1 

 

 

2 

3 

4 

Ux = e.ui - e.Ni ∙ x /(e.E ∙ e.A) + e.α ∙(e.Tt + e.Tb)∙x/2 

+ e.ΔL ∙ x / e.L  

// axial point load 

forj = 1 toe.N.length/ 2 

P = e.N[2 ∙ j-1] 

a = e.N[2 ∙ j] 

Paper ID: SR22928042711 DOI: 10.21275/SR22928042711 1317 



International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2022): 7.942 

Volume 11 Issue 11, November 2022 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

5 

 

6 

7 

8 

9 

10 

11 

12 

13 

 

 

14 

Ux = Ux + (-P ∙ 〈x - a〉1
) / (e.E ∙ e.A) 

// axial trapezoidal load 

forj = 1 toe.wN.length/ 4 

w1 = e.wN[4 ∙ j-1] 

a1 = e.wN[4 ∙ j] 

w2 = e.wN[4 ∙ j + 1] 

b = e.wN[4 ∙ j + 2] 

a2 = e.L - b 

d = a2 - a1 

Ux = Ux +(-w2∙〈x - a1〉2
 /2 + (w2-w1)∙〈x - a1〉2

/2-

(w2-w1)∙〈x - a1〉3
 / (6∙d) + (w2 - w1)∙〈x - a2〉3

 / (6∙d)  

+ w2 ∙ 〈x - a2〉2
 / 2) / (e.E ∙ e.A) 

returnUx 

 

For beams u(x)=0.  

 

For trusses, Algorithm 12 is valid but the temperature must 

be considered uniform, that is, Tt=Tb. 

 

The deflection of a member is obtained from Eq. 21. 

𝑑2𝑣

𝑑𝑥2
=

𝑀 𝑥 

𝐸𝐼
,  𝑑𝑣

𝑑𝑥
 
𝑥=0

= 𝜃𝑖     𝑣 0 = 𝑣 𝑖  (21) 

 

Whose solution is 

𝑣 𝑥 = 𝑣 𝑖 + 𝜃𝑖𝑥 +
1

𝐸𝐼
  𝑀(𝑥)𝑑𝑥𝑑𝑥 (22) 

 

To the previous solution is added the deformation due to 

temperature changes. 

𝑣 𝑥 = 𝑣 𝑖 + 𝜃𝑖𝑥 +
1

𝐸𝐼
  𝑀(𝑥)𝑑𝑥𝑑𝑥

−
𝛼 ⋅ (𝑇𝑡 − 𝑇𝑏)

2 ⋅ ℎ
⋅ 𝑥2 

(23) 

 

Algorithm 13 evaluates the deflection at a point x on a 

member, according to the direction of the directed edge e. 

 
Algorithm 13 Calculates the deflection in a frame member 

EVAL-YX (x, e) 

1 

 

 

2 

3 

4 

5 

 

6 

7 

8 

9 

 

10 

11 

12 

13 

14 

15 

16 

17 

 

 

Yx = e.vi + e.θi∙x + (e.Vi∙x
3
/6 - e.Mi∙x

2
/2)/(e.E∙e.I) - 

e.α∙(e.Tt - e.Tb)∙x
2
/ (2∙e.h) 

// transverse point load 

forj = 1 toe.P.length/ 2 

P = e.P[2 ∙ j-1] 

a = e.P[2 ∙ j] 

Yx = Yx + (P ∙ 〈x - a〉3
 / 6) / (e.E ∙ e.I)    

// bending moment 

forj = 1 toe.M.length/ 2 

M = e.M[2 ∙ j-1] 

a = e.M[2 ∙ j] 

Yx = Yx + (-M ∙ 〈x - a〉2
 / 2) / (e.E ∙ e.I) 

// transverse trapezoidal load 

forj = 1 toe.w.length/ 4 

w1 = e.w[4 ∙ j-1] 

a1 = e.w[4 ∙ j] 

w2 = e.w[4 ∙ j + 1] 

b = e.w[4 ∙ j + 2] 

a2 = e.L - b 

d = a2 - a1 

Yx = Yx + (w2∙〈x - a1〉4
/ 24 - (w2- w1)∙〈x - a1〉4

 /24 + 

(w2-w1)∙〈x - a1〉5
 / (120∙d) - (w2-w1)∙〈x - a2〉5

 / (120∙d) 

 - w2∙〈x - a2〉4
 / 24) / (e.E ∙ e.I) 

18 returnYx 

 

To draw the diagrams, all members are assumed to be 

horizontal with origin at (0,0) as shown in Fig. 16a. The 

points (x+u(x),v(x)), (x, N(x)), (x, V(x)), (x, M(x)), must be 

rotated around the origin (0,0) an angle θ according to the 

direction of the directed edge and translate such rotated 

points, a distance (x1, y1), corresponding to the origin 

coordinate of the member. In this way the diagram is as 

shown in Fig. 16b.  

 
Figure 14: Rotation and translation of diagrams 

 

The transformation matrix that rotates a point (x, y) around 

the origin and translates it a distance (x1, y1) is: 

 

 

𝑥 ′

𝑦′

1

 =  

cos 𝜃 − sen 𝜃 𝑥1

sen 𝜃 cos 𝜃 𝑦1

0 0 1

  

𝑥

𝑦

1

  (24) 

 

4. Program developed 
 

From the programming of the TAD Grafo and the 

algorithms, GBSA (Graph-Based Structural Analysis) is 

obtained, whose graphical interface allows interaction in the 

three stages of structural analysis, as illustrated in Fig. 17. 

 
Figure 15: Interaction with the graphical user interface 

 

The graphical user interface includes a canvas where the 

user can draw a model using the mouse and view the 

diagrams associated with the model. It also includes a 

context menu to perform each stage of the structural 

analysis. 

Figure 18 shows the options for inserting and deleting 

members and nodes are available for preprocessing. The 

user can assign data to groups of selected nodes or members. 
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Figure 16: Options for preprocessing 

 

For the calculation, the Run option is available, as shown in 

Fig. 19, which integrates the set of algorithms corresponding 

to this stage. 

 

 
Figure 17: Option for calculation 

 

For post-processing, Figure 20 shows the options to view the 

diagrams. It is possible to select the members on which to 

display the diagrams. 

 

 
Figure 18: Options for post-processing 

 

5. Results and Discussion 
 

Using GBSA, a truss, a beam and a frame have been 

analyzed, whose results are compared with those of the 

SAP2000 program. The data are taken from Table 1. 

 

Table 1: Data collected for member attributes 
Attribute Truss Beam Frame 

A 0.005 m2 ------------ 0.075 m2 

I ----------- 0.0005625 m4 0.0005625 m4 

∆L -0.01 m ------------ ----------- 

h ----------- ----------- 0.30 m 

E 2e8 kN/m2 2e8 kN/m2 2e8 kN/m2 

Tt ----------- ----------- +24 °C 

Tb ----------- ----------- +15 °C 

α ----------- ----------- 1.2e-5 /°C 

 

As a result of the analysis of each model, the nodal 

displacements, the deformed shape of the models and the 

internal force diagrams are presented. To visualize the 

internal force diagrams, only some members of the model 

have been selected, in order to avoid overloading the 

diagrams. 

 

5.1 Analysis of a truss  

 

Figure 21 shows a truss loaded at node 4, point loads at 

member 6-7, and trapezoidal distributed loading at member 

1-2. Member 3-5 is considered to have been made 0.01 

shorter. The truss was drawn on a grid with 1m spacing. 
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Figure 19: Truss model subjected to nodal load, point loads, 

trapezoidal distributed load and member length error 

 

Table 2 presents the nodal displacements from the truss 

analysis. 

 

Table 2: Comparison of nodal displacements with SAP2000 

Node Direction 
DISPLACEMENTS (m) 

GBSA SAP2000 % Error 

2 
x 0.00598211 0.005982 0.000000 

y -0.00145667 -0.001457 0.000000 

3 
x 0.00706941 0.007069 0.000000 

y -0.00037879 -0.000379 0.000000 

4 
x 0.00206919 0.002069 0.000000 

y 0.00390949 0.003909 0.000000 

5 
x -0.00225948 -0.002259 0.000000 

y 0.00113656 0.001137 0.000000 

6 x -0.00467529 -0.004675 0.000000 

7 
x -0.00088487 -0.000885 0.000000 

y -0.00084333 -0.000843 0.000000 

 

Table 2 shows that when rounding the GBSA values to 6 

decimal places, an error of 0.000000% is obtained for the 

displacements. 

 

The deformed shape of the truss is consistent with the nodal 

displacements obtained as shown in Fig. 22. 

 
Figure 20: Deformed shape of the truss 

 

Figure 23 shows the axial force diagram for members 1-3, 6-

5, 6-7 and 4-7 according to the direction shown on such 

members. Members 6-7 and 4-7 are in compression (negati-

ve sign), while members 1-3 and 6-5 are in tension (positive 

sign). 

 
Figure 21: Axial force diagram for the truss 

 

Figure 24 shows the shear force diagram for members 1-2 

and 6-7. In all other members, the shear force is zero. 

 

 
Figure 22: Shear force diagram for the truss 

 

Figure 25 shows the bending moment diagram for members 

1-2 and 6-7. In all other members the bending moment is 

zero. 

 
Figure 23: Bending moment diagram for the truss 

 

5.2 Analysis of a beam 

 

The beam in Fig. 26 is subjected to a trapezoidal distributed 

load in member 1-2 and a point load in member 2-3. In addi-

tion, node 2 is on an elastic support. The beam was drawn on 

a grid with 1m spacing. 

 
Figure 24: Beam model subjected to trapezoidal distributed 

load, point load and elastic support 
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Table 3 presents the nodal displacements for nodes 2 and 3 

of the beam. 

 

Table 3: Comparison of nodal displacements with SAP2000 

Node Direction 
DISPLACEMENTS (m) 

GBSA SAP2000 % Error 

2 
y -0.00129600 -0.001296 0.000000 

z -0.00016066 -0.000161 0.000000 

3 z 0.00067744 0.000677 0.000000 

 

Table 3 shows that when rounding the GBSA values to 6 

decimal places, an error of 0.000000% is obtained for the 

displacements. 

 

Figure 27 shows the deformed shape of the beam, which is 

consistent with the displacements obtained for nodes 2 and 

3. 

 

 
Figure 25: Deformed shape of the beam 

 

Figure 28 shows the shear force diagram for the members of 

the beam. Positive shear forces are drawn upwards. 

 

 
Figure 26: Shear force diagram for the beam 

 

Figure 29 shows the bending moment diagram for the beam 

members. Positive bending moments are drawn downward. 

 

 
Figure 27: Bending moment diagram for the beam 

 

5.3 Analysis of a frame 

 

Figure 30 presents a frame subjected to trapezoidal 

distributed loading at member 3-4 and loads at nodes 2 and 

3. Member 2-5 is subjected to temperature variation and 

point loading. In addition, node 6 is subject to a settlement 

of 0.01 m. The frame was drawn on a grid with 1m spacing. 

 
Figure 28: Frame model subjected to trapezoidal 

distributed load, nodal loads, point load, temperature 

variation and settlement 

 

Table 4 presents the nodal displacements from the frame 

analysis. 

 

Table 4: Comparison of nodal displacements with SAP2000 

Node Direction 
DISPLACEMENTS (m) 

GBSA SAP2000 % Error 

2 

x 0.00776380 0.007764 0.000000 

y -0.00000430 -0.000004 0.000000 

z -0.00183260 -0.001833 0.000000 

3 

x 0.01686238 0.016862 0.000000 

y -0.00001025 -0.000010 0.000000 

z -0.00246757 -0.002468 0.000000 

5 

x 0.00962186 0.009622 0.000000 

y -0.01002904 -0.010029 0.000000 

z -0.00215871 -0.002159 0.000000 

6 

x 0.01685199 0.016852 0.000000 

y -0.01003909 -0.010039 0.000000 

z -0.00099437 -0.000994 0.000000 

 

Table 4 shows that when rounding the GBSA values to 6 

decimal places, an error of 0.000000% is obtained for the 

displacements. 

 

Figure 31 shows the deformed shape of the frame, which is 

consistent with the displacements obtained for nodes 2, 3,5 

and 6 of the frame. 

 

 
Figure 29: Deformed shape of the frame 

 

Figure 32 shows the axial force diagram for members 1-2, 4-

5 and 3-6 of the frame. 
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Figure 30: Axial force diagram for the frame 

 

Figure 33 shows the shear force diagram for members 1-2, 

4-5 and 3-6 of the frame. 

 
Figure 31: Shear force diagram for the frame 

 

Figure 34 shows the bending moment diagram for members 

1-2, 4-5 and 3-6 of the frame. 

 
Figure 32: Bending moment diagram for the frame 

 

6. Discussions 
 

The analysis of three structures with different geometries 

and subjected to different types of loads has been presented, 

obtaining in all cases that the results coincide with those of 

the SAP2000 software. 

 

For each model, a combination of the following topics has 

been included: thermal effects, fabrication errors, elastic 

supports, trapezoidal distributed loads, point loads, nodal 

loads, and support movements. 

 

Data was quickly assigned to models by selecting their 

nodes and members. 

 

In order to visualize the internal force diagrams, the user can 

select a member or a set of members with their respective 

directions. 

7. Conclusions 
 

The representation of models by directed edges is useful, 

since it allows greater interactivity with the user, by 

allowing him to choose the direction of a member to view 

the diagrams and assign loads and temperatures. 

 

The Graph ADT facilitated the implementation of a canvas 

where the user can draw the models using the mouse, in this 

way the user does not need to type one by one coordinates 

and connectivity between nodes. 

 

The operations of the Graph ADT allows a model to be built 

and modified dynamically, that is, the number of members 

and nodes of the model is not restricted.  

 

The algorithms presented can analyze structures subjected to 

topics such as: thermal effects, fabrication errors, elastic 

supports, trapezoidal distributed loads, point loads, nodal 

loads, and support movements. 

 

The presented algorithms produce correct results, therefore, 

they are useful for the development of software for the 

analysis of trusses, beams and frames.  
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