
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 11, November 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Improved FIR Filter using Schönhage-Strassen

Algorithm based Multipliers

S. Gayathri

PG Scholar, Department of Electronics and Communication, Sri Manakula Vinayakar Engineering College, Puducherry, India

gayathri5gayathri[at]gmail.com

Abstract: When it comes to very large integers; the traditional naive algorithm for multiplication does not work well. This leads to very

bad performance of the circuit in which the multiplier is implemented. FIR filter is a basic digital filter that mostly consists of

multiplication and addition blocks. Multipliers also mark their significance in many DSP based processors. FIR is one of the most basic

fundamental blocks of the DSP processors.SSA is an practical and much understandable algorithm for this purpose. This algorithm

increases the speed of the filter without affecting any other major constraints.

Keywords: Schönhage strassen algorithm, FIR filter, NTT

1. Introduction

Multipliers are the fundamental blocks of many large

circuits. They find their importance in many DSP processors

and other important electronic circuits. Adders and

multipliers are periodically improved to match with day to

day advancements in the electronic circuits. Reduced area,

high speed and very low power consumption are basic

constraints that are to be considered. This can be achieved by

improving the basic circuits like multipliers.SSA is much

practical that can meet out the needs.

2. Basic Mathematical Techniques Involved in

SSA

This session gives detail understanding of SSA and other

mathematical techniques that are involved in performing

SSA based multiplication.

 Pre requisites of SSA:

Before performing SSA we need to know about some basic

mathematical concepts that are used in SSA to produce

intermediate results. Numerical Theoretical Transform is one

such concept.

Chinese reminder theorem is also a part of this concept. A

cumulative bunch of these concepts and algorithms help us

understand the SSA easily. DFT is a familiar concept. NTT

is the process that generalises DFT. Apart from this NTT

involves Montgomery reductions which can be alternatively

replaced by the Barrett reductions to increase the speed of the

modular arithmetic that is used in NTT. Montgomery

reduction allows us to simplify the modular multiplication

process. By this we perform modulo multiplication in the

absence of heavy modulo operations. This is based on

extended Euclidean algorithm. Extended Euclidean

algorithm as the name suggests is the extension of the

Euclidean algorithm. This states that Ax+By = gcd(A,B).

Barrett reduction on the other hand is an algorithm that is

designed especially for reduction.

 Chinese Remainder Theorem:

There is always a value „x‟ that satisfies the convergence.

Let‟s take two co primes, that is two numbers that have only

one number 1 as their common divisor. In CRT we can

represent a value say „x‟ as

X≡ a1 (mod m(i))

X≡ a2 (mod m(j)) Where, m (i) and m(j) are co primes.

Consider an multiplication operation 17*37
Number Mod7 Mod11 Mod 13

17 3 6 4

37 2 4 1

629 6 2 4

Figure 2.2.1: Modulo multiplication

 Numerical Theoretical transform:

NTT is based on Fourier Transform. This is a generalization

method. Consider a sequence of non- zero values. Now let us

consider the procedure to perform NTT on the integers.

 Consider X= (6,0,10,7,2)

 No. Of elements in the sequence= 5

 Select a prime M for modulo multiplication. Maximum

value =10; therefore M=11

 Select a prime value N such that N=kn+1 and also N≥M

N= k+1

N=11, 13,15,17,19...

Say N= 11 = (11-1)/5 = 2

Say N=13 = (13-1)/5 =2.4(decimal value) Say N=15 = (15-

1)/5 =2.6(decimal value) Say N=17 = (17-1)/5 =3.4(decimal

value) Say N=19 = (19-1)/5 =3.8(decimal value) Only for 11

we get a non decimal value. We can use any number like 11

that does not produce a decimal value.

Assume N= 11

Therefore 5k =10

k=2

 Select a generator for this group. A generator „g‟ should

be Ѡ=g^k

g=6

g^k= 6^2 = 36/11 =3mod 11

Y(0)=X(0)Ѡ^(0*0)+X(1)Ѡ^(0*1)+X(2)Ѡ^(

0*2)+X(3)Ѡ^(0*3)+X(4)Ѡ^(0*4)

=6(1)+(0)*(6)+(10)*(6*2)+(7)*(6*3)+(2)*(6* 4)

=300/11 =3mod 11

Paper ID: SR221120132156 DOI: 10.21275/SR221120132156 1103

mailto:gayathri5gayathri@gmail.com

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 11, November 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Y(1)=X(0)Ѡ^(1*0)+X(1)Ѡ^(1*1)+X(2)Ѡ^(

1*2)+X(3)Ѡ^(1*3)+X(4)Ѡ^(1*4)

=6+90+189+162

=447/11 =7mod 11

Y(2)=X(0)Ѡ^(2*0)+X(1)Ѡ^(2*1)+X(2)Ѡ^(

2*2)+X(3)Ѡ^(2*3)+X(4)Ѡ^(2*4)

=6+0+810+5103+13122

=19041/11 =0mod 11

Y(3)=X(0)Ѡ^(3*0)+X(1)Ѡ^(3*1)+X(2)Ѡ^(

3*2)+X(3)Ѡ^(3*3)+X(4)Ѡ^(3*4)

=6+0+7290+137781+1062882

=1207959/11 =5mod 11

Y(4)=X(0)Ѡ^(4*0)+X(1)Ѡ^(4*1)+X(2)Ѡ^(

4*2)+X(3)Ѡ^(4*3)+X(4)Ѡ^(4*4)

=6+0+65610+3720087+86093442

=89879145/11 =4mod 11

For Y (0) use addition modulo and for the others we use

multiplication modulo. We take Ѡ^1 = 3mod 11. This is

because another modulo operation is going to be performed

with modulo 11 for the answer.

 Inverse of NTT

This is the inverse operation of NTT. Here Ѡ^ (-1) = 3^ (n-

1)= 81/11 = 4mod 11

Consider Y= (3, 7, 0, 5, 4) from NTT Use the same values of

k, N, Ѡ

X(0)=Y(0)Ѡ^(0*0)+Y(1)Ѡ^(0*1)+Y(2)Ѡ^(

0*2)+Y(3)Ѡ^(0*3)+Y(4)Ѡ^(0*4)

=3+7+0+5+4 = 19/11 =8 mod 11

X(1)=Y(0)Ѡ^(1*0)+Y(1)Ѡ^(1*1)+Y(2)Ѡ^(

1*2)+Y(3)Ѡ^(1*3)+Y(4)Ѡ^(1*4)

=1375= 1375/11 =0 mod 11

X(2)=Y(0)Ѡ^(2*0)+Y(1)Ѡ^(2*1)+Y(2)Ѡ^(

2*2)+Y(3)Ѡ^(2*3)+Y(4)Ѡ^(2*4)

=282739 /11 =6 mod 11

X(0)=Y(0)Ѡ^(0*0)+Y(1)Ѡ^(0*1)+Y(2)Ѡ^(

0*2)+Y(3)Ѡ^(0*3)+Y(4)Ѡ^(0*4)

=68420035/11 =2 mod 11

X(0)=Y(0)Ѡ^(0*0)+Y(1)Ѡ^(0*1)+Y(2)Ѡ^(

0*2)+Y(3)Ѡ^(0*3)+Y(4)Ѡ^(0*4)

=17263757049/11 =10 mod 11

X (n) = (8, 0, 6, 2, 10)

Calculate n^ (p-1); where p= set of unique prime factors

5^ (p-1) = 5^4=625/11=9

Therefore (8,0,6,2,10)*9 =(6,0,10,7,2)mod11

NTT can be performed based on FFT and the pseudo code is

given below

Figure 2.3.1: Pseudo code for NTT

3. Algorithm

Schönhage – Strassen Multiplication algorithm

There are various algorithms that can be used to implement

multipliers. But mostly they are under research. The

algorithms like Furer and De Et Al are advanced

multiplication algorithms. The range of bits for which they

outperform the SSA is not yet vivid. So the most practical

algorithm for the existing software packages is SSA. This

algorithm requires notable amount of memory for storage.

The time complexity of SSA is calculated as O (n.log n.log

log n) for multiplying two integers of bit size n.

The value of “X” and “Y” are padded with 0s so as they are

of the base value 2.These integers are split into B number of

bit of length L. Then the NTT and then inverse NTT is

performed on these values.

Input : Any two integers (say) „X” and “Y”

Output: Product of X and Y:Z

1. Calculate NTT of the given inputs “X” and “Y”

2. Bitwise multiply the output of the NTT

3. Z[i]NTT(A)[i]*NTT(B)[i]

4. Perform INTT for Z

5. Z‟ = INTT (Z)

6. Now the carries need to be

accumulated

7. Say, Z[i] greater than or equal to R

8. Then Z[i+1] =Z[i+1]+[Z[i]/R]

9. Then Z[i]=Z(mod R)

10. Return value of R

Schönhage – Strassen Algorithm

Paper ID: SR221120132156 DOI: 10.21275/SR221120132156 1104

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 11, November 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 3.1.1: Time complexity calculation for NTT

This algorithm is used for large operant. By this we can

achieve low area, reduced power consumption and achieve

high speed. By the end of the process the result is obtained in

O(N log N log log N) time .

Figure 3.1.2: RTL of 64 bit SSA based multiplier

4. Implementation of SSA in FIR Filter

 Finite Impulse Response Filter:

FIR filters are one of the most important digital filters that

are used for finite response. The outputs of these filters

depend on present as well as past values of the given input.

This filter is non recursive by nature. These filters are built

using three blocks. They are Adders, Multipliers and Delay

elements. Considering these three blocks: adders perform

binary addition using a half adder or the full adders. Delay

elements are chosen as per need. Multipliers have longer

operation time. Hence the delays in these filters are majorly

caused by these multipliers.

SSA based FIR filter Prototype Implementation:

With increase in technology, large operations with larger

value of input bits are required. This means that we need to

use adders and multiplier blocks that can perform their

operation on big integer values without compromising with

the performance and speed. Hence we create a prototype of

FIR filters using the SSA based multipliers. This can

significantly reduce the operation time of the FIR filters.

Figure 4.2.1: Prototype of SSA multiplier based FIR filter

5. Conclusion

Thus an FIR filter that meets required speed without

compromising the performance and accuracy to certain level

is developed.SSA is one such algorithm that can be used to

improve the performance of the circuit and thus improving

the overall time complexity of any application. SSA also

finds its applications in many other electronic components

that need to perform with input integers with large number of

bits.

References

[1] Soniya,Suresh Kumar, “ A Review of Different Types

of Multipliers and Multiplier – Accumulator Unit”

International journsl of Emerging Trends and

Technologies in Computer science (ISSN 2278-6856)

[2] B.Srikanth,M.Siva Kumar,J.V.R.Ravindra,K.Hari

Kishore, “Double Precession Floating Point Multiplier

using Schönhage – Strassen Algorithm used for FPGA

Accelerator” International Journal of Emerging trends

in Engineering Research(ISSN 2347-3983)

[3] Kevin Millar,Marcin Lukowiak, Stanislaw

Radziszowski, “Design of a flexible Schönhage –

Strassen FFT Polynomial Multiplier with High – Level

Synthesis to Accelerate HE in the Cloud” 2019

International Conference on ReConFigurable

Computing and FPGA(ReConFig),2019,pp.1-

5,doi:10.1109/ReconFig48160.2019.8994790, I EEE

Xplore July 26,2020

[4] Tsz-Wo Sze, “Schönhage – Strassen Algorithm with

Map reduce for Multiplying Terabit Integers,”SNC‟11:

Proceedings of the 2011 International Workshop on

Symbolic Numeric Computation June 2012 pages 54-

62,http://doi.org/10.1145/2331684.2331693

[5] K.Kawamura M.Yangisawa and N.Togawa, “A loop

structure optimization targeting high – level synthesis of

fast numeric theoretical transform” in 2018 19
th

international symposium on Quality Electronic

Design(ISQED), March 2018,pp.106-111

[6] Schönhage and V.Strassien, “Schnelle multiplication

grober zachen,”Computing vol.7.no.3-4,pp.281-

292,sep1971

[7] A.S “Asymtotically fast algorithms for the numerical

multiplication and division of polynomials with

complex co-effecient,”in Computer Algebra, J.Calmet

Ed.Berlin.Heidelberg: Spinger Berlin Heidelberg,

Paper ID: SR221120132156 DOI: 10.21275/SR221120132156 1105

http://doi.org/10.1145/2331684.2331693
http://doi.org/10.1145/2331684.2331693

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 11, November 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

1982,pp.3-15

[8] P.Gaudry,A.Kruppa and P.Zimmermann,”A GMP-

based implementation of Schönhage – Strassen large

integer multiplication algorithm,” in Proceedings of the

2007International Symposium on Symbolicand

Algebraic Computation,pages167-174,ACM,2007

[9] Iffat Fatima, “Analysis of multiplier in VLSI” Journal

of Global Research in Computer Science.

[10] U.Meyer-Baese,G.Botella,D.E.T.Romero and Martin

Kumm, “Optimization of high speed pipelining in

FPGA- based FIR filter design using generic

Algorithm,” Proc.of SPIE,Vol.8401,2012

Paper ID: SR221120132156 DOI: 10.21275/SR221120132156 1106

