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Abstract: When it comes to very large integers; the traditional naive algorithm for multiplication does not work well. This leads to very 

bad performance of the circuit in which the multiplier is implemented. FIR filter is a basic digital filter that mostly consists of 

multiplication and addition blocks. Multipliers also mark their significance in many DSP based processors. FIR is one of the most basic 

fundamental blocks of the DSP processors.SSA is an practical and much understandable algorithm for this purpose. This algorithm 

increases the speed of the filter without affecting any other major constraints. 
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1. Introduction 
 

Multipliers are the fundamental blocks of many large 

circuits. They find their importance in many DSP processors 

and other important electronic circuits. Adders and 

multipliers are periodically improved to match with day to 

day advancements in the electronic circuits. Reduced area, 

high speed and very low power consumption are basic 

constraints that are to be considered. This can be achieved by 

improving the basic circuits like multipliers.SSA is much 

practical that can meet out the needs. 

 

2. Basic Mathematical Techniques Involved in 

SSA 
 

This session gives detail understanding of SSA and other 

mathematical techniques that are involved in performing 

SSA based multiplication. 

  

 Pre requisites of SSA: 

Before performing SSA we need to know about some basic 

mathematical concepts that are used in SSA to produce 

intermediate results. Numerical Theoretical Transform is one 

such concept. 

 

Chinese reminder theorem is also a part of this concept. A 

cumulative bunch of these concepts and algorithms help us 

understand the SSA easily. DFT is a familiar concept. NTT 

is the process that generalises DFT. Apart from this NTT 

involves Montgomery reductions which can be alternatively 

replaced by the Barrett reductions to increase the speed of the 

modular arithmetic that is used in NTT. Montgomery 

reduction allows us to simplify the modular multiplication 

process. By this we perform modulo multiplication in the 

absence of heavy modulo operations. This is based on 

extended Euclidean algorithm. Extended Euclidean 

algorithm as the name suggests is the extension of the 

Euclidean algorithm. This states that Ax+By = gcd(A,B). 

Barrett reduction on the other hand is an algorithm that is 

designed especially for reduction. 

 

 Chinese Remainder Theorem: 

There is always a value „x‟ that satisfies the convergence. 

Let‟s take two co primes, that is two numbers that have only 

one number 1 as their common divisor. In CRT we can 

represent a value say „x‟ as 

 

X≡ a1 (mod m(i))  

X≡ a2 (mod m(j)) Where, m (i) and m(j) are co primes. 

 

Consider an multiplication operation 17*37 
Number Mod7 Mod11 Mod 13 

17 3 6 4 

37 2 4 1 

629 6 2 4 

Figure 2.2.1: Modulo multiplication 

 

 Numerical Theoretical transform: 

NTT is based on Fourier Transform. This is a generalization 

method. Consider a sequence of non- zero values. Now let us 

consider the procedure to perform NTT on the integers. 

 Consider X= (6,0,10,7,2) 

 No. Of elements in the sequence= 5 

 Select a prime M for modulo multiplication. Maximum 

value =10; therefore M=11 

 Select a prime value N such that N=kn+1 and also N≥M 

N= k+1 

N=11, 13,15,17,19... 

Say N= 11 = (11-1)/5 = 2 

Say N=13 = (13-1)/5 =2.4(decimal value) Say N=15 = (15-

1)/5 =2.6(decimal value) Say N=17 = (17-1)/5 =3.4(decimal 

value) Say N=19 = (19-1)/5 =3.8(decimal value) Only for 11 

we get a non decimal value. We can use any number like 11 

that does not produce a decimal value. 

 

Assume N= 11 

Therefore 5k =10 

k=2 

 

 Select a generator for this group. A generator „g‟ should 

be Ѡ=g^k 

g=6 

g^k= 6^2 = 36/11 =3mod 11 

 

Y(0)=X(0)Ѡ^(0*0)+X(1)Ѡ^(0*1)+X(2)Ѡ^( 

0*2)+X(3)Ѡ^(0*3)+X(4)Ѡ^(0*4)  

=6(1)+(0)*(6)+(10)*(6*2)+(7)*(6*3)+(2)*(6* 4) 

=300/11 =3mod 11  
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Y(1)=X(0)Ѡ^(1*0)+X(1)Ѡ^(1*1)+X(2)Ѡ^( 

1*2)+X(3)Ѡ^(1*3)+X(4)Ѡ^(1*4) 

=6+90+189+162 

=447/11 =7mod 11 

 

Y(2)=X(0)Ѡ^(2*0)+X(1)Ѡ^(2*1)+X(2)Ѡ^( 

2*2)+X(3)Ѡ^(2*3)+X(4)Ѡ^(2*4) 

=6+0+810+5103+13122 

=19041/11 =0mod 11 

 

Y(3)=X(0)Ѡ^(3*0)+X(1)Ѡ^(3*1)+X(2)Ѡ^( 

3*2)+X(3)Ѡ^(3*3)+X(4)Ѡ^(3*4) 

=6+0+7290+137781+1062882 

=1207959/11 =5mod 11  

 

Y(4)=X(0)Ѡ^(4*0)+X(1)Ѡ^(4*1)+X(2)Ѡ^( 

4*2)+X(3)Ѡ^(4*3)+X(4)Ѡ^(4*4) 

=6+0+65610+3720087+86093442 

=89879145/11 =4mod 11 

 

For Y (0) use addition modulo and for the others we use 

multiplication modulo. We take Ѡ^1 = 3mod 11. This is 

because another modulo operation is going to be performed 

with modulo 11 for the answer. 

 

 Inverse of NTT 

This is the inverse operation of NTT. Here Ѡ^ (-1) = 3^ (n-

1)= 81/11 = 4mod 11 

Consider Y= (3, 7, 0, 5, 4) from NTT Use the same values of 

k, N, Ѡ 

X(0)=Y(0)Ѡ^(0*0)+Y(1)Ѡ^(0*1)+Y(2)Ѡ^( 

0*2)+Y(3)Ѡ^(0*3)+Y(4)Ѡ^(0*4) 

=3+7+0+5+4 = 19/11 =8 mod 11 

X(1)=Y(0)Ѡ^(1*0)+Y(1)Ѡ^(1*1)+Y(2)Ѡ^( 

1*2)+Y(3)Ѡ^(1*3)+Y(4)Ѡ^(1*4) 

=1375= 1375/11 =0 mod 11 

X(2)=Y(0)Ѡ^(2*0)+Y(1)Ѡ^(2*1)+Y(2)Ѡ^( 

2*2)+Y(3)Ѡ^(2*3)+Y(4)Ѡ^(2*4) 

=282739 /11 =6 mod 11 

X(0)=Y(0)Ѡ^(0*0)+Y(1)Ѡ^(0*1)+Y(2)Ѡ^( 

0*2)+Y(3)Ѡ^(0*3)+Y(4)Ѡ^(0*4) 

=68420035/11 =2 mod 11 

X(0)=Y(0)Ѡ^(0*0)+Y(1)Ѡ^(0*1)+Y(2)Ѡ^( 

0*2)+Y(3)Ѡ^(0*3)+Y(4)Ѡ^(0*4) 

=17263757049/11 =10 mod 11 

X (n) = (8, 0, 6, 2, 10) 

 

Calculate n^ (p-1); where p= set of unique prime factors 

5^ (p-1) = 5^4=625/11=9 

 

Therefore (8,0,6,2,10)*9 =(6,0,10,7,2)mod11 

 

NTT can be performed based on FFT and the pseudo code is 

given below 

 
Figure 2.3.1: Pseudo code for NTT 

 

3. Algorithm 
 

Schönhage – Strassen Multiplication algorithm 

There are various algorithms that can be used to implement 

multipliers. But mostly they are under research. The 

algorithms like Furer and De Et Al are advanced 

multiplication algorithms. The range of bits for which they 

outperform the SSA is not yet vivid. So the most practical 

algorithm for the existing software packages is SSA. This 

algorithm requires notable amount of memory for storage. 

The time complexity of SSA is calculated as O (n.log n.log 

log n) for multiplying two integers of bit size n. 

 

 
 

The value of “X” and “Y” are padded with 0s so as they are 

of the base value 2.These integers are split into B number of 

bit of length  L. Then the NTT and then inverse NTT is 

performed on these values. 

 

 
 

Input : Any two integers (say) „X” and “Y” 

Output: Product of X and Y:Z 

1. Calculate NTT of the given inputs “X” and “Y” 

2. Bitwise multiply the output of the NTT 

3. Z[i]NTT(A)[i]*NTT(B)[i] 

4. Perform INTT for Z 

5. Z‟ = INTT (Z) 

6. Now the carries need to be 

accumulated 

7. Say, Z[i] greater than or equal to R  

8. Then Z[i+1] =Z[i+1]+[Z[i]/R] 

9. Then Z[i]=Z( mod R) 

10. Return value of R 

Schönhage – Strassen Algorithm 
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Figure 3.1.1: Time complexity calculation for NTT 

 

This algorithm is used for large operant. By this we can 

achieve low area, reduced power consumption and achieve 

high speed. By the end of the process the result is obtained in 

O(N log N log log N) time . 

 

 
Figure 3.1.2: RTL of 64 bit SSA based multiplier 

 

4. Implementation of SSA in FIR Filter 
  

 Finite Impulse Response Filter: 

FIR filters are one of the most important digital filters that 

are used for finite response. The outputs of these filters 

depend on present as well as past values of the given input. 

This filter is non recursive by nature. These filters are built 

using three blocks. They are Adders, Multipliers and Delay 

elements. Considering these three blocks: adders perform 

binary addition using a half adder or the full adders. Delay 

elements are chosen as per need. Multipliers have longer 

operation time. Hence the delays in these filters are majorly 

caused by these multipliers. 

 

SSA based FIR filter Prototype Implementation: 

With increase in technology, large operations with larger 

value of input bits are required. This means that we need to 

use adders and multiplier blocks that can perform their 

operation on big integer values without compromising with 

the performance and speed. Hence we create a prototype of 

FIR filters using the SSA based multipliers. This can 

significantly reduce the operation time of the FIR filters. 

 

 

Figure 4.2.1: Prototype of SSA multiplier based FIR filter 

 

5. Conclusion 
 

Thus an FIR filter that meets required speed without 

compromising the performance and accuracy to certain level 

is developed.SSA is one such algorithm that can be used to 

improve the performance of the circuit and thus improving 

the overall time complexity of any application. SSA also 

finds its applications in many other electronic components 

that need to perform with input integers with large number of 

bits. 

 

References 
 

[1] Soniya,Suresh Kumar, “ A Review of Different Types 

of Multipliers and Multiplier – Accumulator Unit” 

International journsl of Emerging Trends and 

Technologies in Computer science (ISSN 2278-6856)  

[2] B.Srikanth,M.Siva Kumar,J.V.R.Ravindra,K.Hari 

Kishore, “Double Precession Floating Point Multiplier 

using Schönhage – Strassen Algorithm used for FPGA 

Accelerator” International Journal of Emerging trends 

in Engineering Research(ISSN 2347-3983) 

[3] Kevin Millar,Marcin Lukowiak, Stanislaw 

Radziszowski, “Design of a flexible Schönhage – 

Strassen FFT Polynomial Multiplier with High – Level 

Synthesis to Accelerate HE in the Cloud” 2019 

International Conference on ReConFigurable 

Computing and FPGA(ReConFig),2019,pp.1- 

5,doi:10.1109/ReconFig48160.2019.8994790, I EEE 

Xplore July 26,2020 

[4] Tsz-Wo Sze, “Schönhage – Strassen Algorithm with 

Map reduce for Multiplying Terabit Integers,”SNC‟11: 

Proceedings of the 2011 International Workshop on 

Symbolic Numeric Computation June 2012 pages 54- 

62,http://doi.org/10.1145/2331684.2331693  

[5] K.Kawamura M.Yangisawa and N.Togawa, “A loop 

structure optimization targeting high – level synthesis of 

fast numeric theoretical transform” in 2018 19
th
 

international symposium on Quality Electronic 

Design(ISQED), March 2018,pp.106-111 

[6] Schönhage and V.Strassien, “Schnelle multiplication 

grober zachen,”Computing vol.7.no.3-4,pp.281-

292,sep1971 

[7] A.S “Asymtotically fast algorithms for the numerical 

multiplication and division of polynomials with 

complex co-effecient,”in Computer Algebra, J.Calmet 

Ed.Berlin.Heidelberg: Spinger Berlin Heidelberg, 

Paper ID: SR221120132156 DOI: 10.21275/SR221120132156 1105 

http://doi.org/10.1145/2331684.2331693
http://doi.org/10.1145/2331684.2331693


International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2022): 7.942 

Volume 11 Issue 11, November 2022 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

1982,pp.3-15  

[8] P.Gaudry,A.Kruppa and P.Zimmermann,”A GMP-

based implementation of Schönhage – Strassen large 

integer multiplication algorithm,” in Proceedings of the 

2007International Symposium on Symbolicand 

Algebraic Computation,pages167-174,ACM,2007  

[9] Iffat Fatima, “Analysis of multiplier in VLSI” Journal 

of Global Research in Computer Science. 

[10] U.Meyer-Baese,G.Botella,D.E.T.Romero and Martin 

Kumm, “Optimization of high speed pipelining in 

FPGA- based FIR filter design using generic 

Algorithm,” Proc.of SPIE,Vol.8401,2012 

Paper ID: SR221120132156 DOI: 10.21275/SR221120132156 1106 




