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Abstract: Diabetes must be detected accurately and early to ensure successful prevention and control. This article describes a deep 

learning-based technique that use a Deep Convolutional Neural Network (DCNN) to categorize diabetes risk using health indicators from 

the 2015 Behavioral Risk Factor Surveillance System. Three versions of the dataset were tested: a multiclass dataset with three diabetes 

states (no diabetes, prediabetes, and diabetes), a binary classification version, and a balanced binary version with an equal proportion of 

diabetic and non-diabetic patients. The suggested DCNN model was trained on 21 health-related survey characteristics, such as BMI, 

physical activity, smoking status, and overall health perception. Normalization and class balancing were performed during preprocessing. 

An intensive hyperparameter tuning procedure was carried out to guarantee that the model obtained the lowest loss and highest 

classification accuracy. This stage was crucial since the choice of suitable hyperparameters-such as learning rate, batch size, number of 

filters, kernel size, and number of epochs-had a direct impact on the model's capacity to learn significant patterns from data while avoiding 

underfitting or overfitting. The improved DCNN outperforms traditional machine learning classifiers in terms of accuracy, recall, and 

F1-score across all dataset versions. Furthermore, feature importance analysis revealed the most significant risk variables involved in 

diabetes prediction. These findings demonstrate that carefully tuning hyperparameters in deep learning models can significantly enhance 

predictive performance, thereby supporting early detection efforts and informing public health interventions. 

 

Keywords: Diabetes Prediction, optimization, Deep learning, 1D Convolutional Neural Network, Health Indicator, Lifestyle and Clinical 
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1. Introduction 
 

Diabetes mellitus affects millions of people worldwide and is 

becoming increasingly prevalent, putting a pressure on 

healthcare systems. Early identification and precise risk 

prediction are crucial for prompt intervention, effective illness 

treatment, and minimizing long-term problems [1]. Diabetes 

is a common chronic disorder that affects people’s quality of 

life and raises healthcare expenditures, especially with 

complications like retinopathy and hypertension [2]. Obesity 

and physical inactivity are the two most frequent risk factors 

for developing diabetes. Diabetes is a complicated metabolic 

illness caused by a mix of lifestyle factors, dietary choices, 

and genetic predispositions. Eating behaviors, in particular, 

can have a major influence on blood glucose levels. Diabetes 

is recognized as a major worldwide health problem, affecting 

people in both industrialized and developing countries. 

Diabetes affected around 463 million people globally in 2019 

and is expected to reach 700 million by 2045 [3]. Over 37 

million people in the United States alone are afflicted, with a 

large proportion of them going untreated. Diabetes cases in 

India are projected to increase from 77 million in 2019 to over 

100 million by 2030 [4]. 

 

The healthcare business creates large volumes of data, such as 

patient records, diagnostic imaging, and real-time monitoring 

outputs [5, 6]. Effectively exploiting this data using advanced 

computer approaches has become critical in current medical 

practice. Machine learning and AI are disruptive technologies 

that allow for more accurate diagnosis, cost-effective 

therapies, and better patient outcomes [7]. Deep learning 

algorithms outperform classical machine learning approaches 

on big and complicated datasets [8, 9]. Integrating AI, deep 

learning, and data mining into healthcare processes improves 

early detection and diagnostic accuracy of chronic illnesses, 

giving doctors important insights for individualized patient 

care [10, 11].  

 

The purpose of this study is to develop a deep learning-based 

system for early diabetes prediction using public health survey 

data. Specifically, a Deep Convolutional Neural Network 

(DCNN) is employed to categorize diabetes risk based on 

responses from the BRFSS2015 dataset, which includes 21 

health-related variables such as BMI, physical activity, 

smoking status, and overall health perception. To enhance the 

accuracy and reliability of the model, the framework 

incorporates essential preprocessing steps, including data 

normalization and class imbalance handling. Additionally, a 

comprehensive hyperparameter tuning process was carried out 

to identify the optimal configuration-such as learning rate, 

number of filters, and batch size-ensuring the model achieves 

minimal loss and high predictive performance. The goal is to 

create an effective and scalable prediction model that aids in 

early diagnosis and risk assessment, allowing for prompt 

interventions and individualized treatment options. By 

capturing complex patterns in large-scale health data, the 

DCNN model provides a solid platform for population-level 

health screening activities. Future improvements will 

concentrate on enhancing model interpretability and 

integrating the system with real-world clinical decision-

support systems. 

 

This paper is structured as follows: Section 2 provides an 

overview of relevant research in the disciplines of diabetes 

prediction, machine learning, and deep learning applications 

in healthcare. Section 3 describes the suggested technique, 
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which includes data preparation processes, the design of the 

Deep Convolutional Neural Network (DCNN), and the 

evaluation metrics. Section 4 presents the experimental 

findings, which include a thorough study of the model’s 

performance across several dataset configurations. Finally, 

Section 5 wraps up the study by summarizing major findings 

and suggesting future prospects for improving model 

applicability and integration with real-world healthcare 

systems. 

 

2. Related works 
 

Artificial intelligence (AI), fueled by breakthroughs in 

machine learning and deep learning, has advanced fast with 

increased computing capacity. [12] focused on AI/ML-based 

medical devices and prediction algorithms designed for 

diabetes treatment. Numerous research have used powerful 

algorithms to analyze complicated data and create predictive 

models for chronic illnesses like diabetes. [13] created 

diabetes prediction models utilizing machine learning, 

however their lack of interpretability hampered their clinical 

use. This work addresses that gap by combining explainable 

AI with SHAP on the Pima Indian dataset, attaining 90% 

accuracy and improving model transparency for greater 

clinical adoption. Early diagnosis is crucial for diabetes 

detection, and deep learning improves this procedure by 

automating feature extraction. Using the PIMA dataset, a 

CNN-Bi-LSTM model outperformed conventional techniques 

by offering real-time monitoring to help doctors efficiently 

[14]. Healthcare relied on varied patient data to provide 

correct diagnoses, which were typically evaluated by 

clinicians. [15] used artificial intelligence (AI) using Naive 

Bayes and random forest algorithms to categorize illnesses 

including cancer and diabetes. Performance research revealed 

that both strategies were successful, depending on the 

dataset’s complexity. Diabetes was a developing worldwide 

health concern, with catastrophic con sequences. [16] 

examined machine learning and data mining strategies for 

early prediction, identified present limits, and sought to 

enhance diagnostic and treatment results.  

 

Diabetes was identified as a major worldwide health concern 

with serious consequences. [17] evaluated previous studies 

that employed machine learning and data mining for early 

prediction, stressing its limitations while seeking to enhance 

diagnostic and treatment results. In order to increase model 

accuracy and dependability, efforts are concentrated on 

resolving data restrictions through feature selection and 

oversampling. Furthermore, [18] addressed missing values 

and class imbalance by introducing a Deep 1D Convolutional 

Neural Network (DCNN) for better diabetes classification. 

The technique employed SMOTE to balance the dataset and 

outlier identification to fill in missing data. Additionally, [19] 

presented an AI-based approach that uses the RASGD 

classifier to detect early diabetes. By integrating ridge 

regression with Adaline SGD, the model improved accuracy 

and surpassed previous approaches, reaching 92%. Moreover, 

[20] examined deep learning techniques for diabetes 

prediction using EHR data, emphasizing models such as 

ANN, CNN, RNN, and LSTM. While effective, concerns like 

as data privacy and model interpretability persist. [21] 

proposed an Integrated Approach to Diabetes Prediction 

(IADP) that incorporates Hierarchical Agglomerative 

Clustering, Linear Discriminant Analysis, and Random 

Forests. Tested on the Pima Indian Diabetes Dataset, the 

strategy outperformed standard models, provided a more 

effective tool for early detection and possible use in other 

medical prediction tasks. 

 

[22] created an AI-powered, IoT-based system to monitor 

geriatric health and forecast diabetes risk. It used data from 

the ELSA database to train machine learning models using the 

KDD technique. The suggested ensemble model achieved an 

AUC of 0.884, exceeding standard risk scores while providing 

a more customized prediction method. Furthermore, [23] 

created a fused machine learning model that combines SVM 

and ANN to predict diabetes and uses fuzzy logic for the final 

diagnosis. Trained on a 70:30 split dataset, the model achieved 

94.87% accuracy and saved findings in cloud systems for 

future use, exceeding previous techniques. For better results, 

[24] employed random forest (RF), a highly interpretable AI 

approach, to predict changes in HbA1c for early intervention 

in type 2 diabetes. Applied to large-scale health check-up data, 

RF overcame deep learning’s explain ability difficulties while 

outperforming standard prediction models. Additionally, the 

model presented in [25] introduced ExplAIn, an explainable 

AI model for identifying the severity of diabetic retinopathy 

using fundus pictures. Unlike black-box models, ExplAIn 

segments and categorizes lesions using image-level 

supervision, resulting in excellent accuracy and clear visual 

explanations. This builds confidence and encourages wider 

clinical application of AI. Moreover, [26] employed machine 

learning algorithms to detect diabetes early, using models 

tested on datasets from Frankfurt Hospital and the Pima Indian 

dataset. Random Forest scored 97.6% accuracy on the 

Frankfurt dataset, while SVM achieved 83.1% on the Pima 

dataset, indicating a high potential for early identification. 

 

Accurate prediction of diabetes risk is critical for early 

identification and appropriate treatment. While several 

machine learning techniques have been investigated in earlier 

research, few studies have effectively incorporated large-

scale, multidimensional health data in a way that balances 

computational efficiency with prediction accuracy. This 

article fills that gap by presenting a one-dimensional 

Convolutional Neural Network (1D-CNN) model for 

predicting diabetes risk, which uses a large dataset of genetic 

markers, lifestyle factors, and clinical characteristics. To 

improve data quality and model dependability, the proposed 

technique includes necessary preprocessing processes such as 

feature encoding and normalization. Importantly, 

considerable hyperparameter optimization was used to fine-

tune parameters such as kernel size, number of filters, learning 

rate, and batch size. This optimization approach was critical 

in minimizing loss and maximizing classification 

performance, allowing the model to learn complex, nonlinear 

connections between input data. The resultant 1D-CNN model 

displayed good robustness and accuracy, allowing for rapid 

and tailored risk assessments. Future research will concentrate 

on enhancing scalability and assessing integration with real-

world healthcare decision support systems. 
 

3. Methodology 
 

The dataset utilized in this study is derived from the CDC’s 

2015 Behavioral Risk Factor Surveillance System (BRFSS) 
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survey and comprises 253,680 cleaned responses covering a 

wide variety of health, lifestyle, and demographic variables. 

Diabetes prediction, the target variable, is a three-class 

variable that assigns responders to one of three categories: 0 

(no diabetes or diabetes solely during pregnancy), 1 

(prediabetes), or 2 diabetes. The dataset includes 21 feature 

variables that indicate parameters such as high blood pressure, 

high cholesterol, body mass index, smoking status, alcohol 

use, physical activity, mental and physical health, and access 

to healthcare. Because this dataset has a class imbalance, with 

fewer cases of diabetes than non-diabetic replies, special 

attention was taken during the modeling phase to reduce bias 

in prediction performance. This rich and organized dataset is 

ideal for deep learning models such as 1D-CNN, which can 

learn complicated, nonlinear patterns from numerous 

interconnected characteristics without explicit feature 

engineering. Preprocessing processes include removing 

missing or incorrect entries, normalizing numerical features 

using Min-Max, and encoding target labels for binary and 

multiclass classification problems. The DCNN model is 

especially developed to detect underlying patterns in 

structured health data by combining 1D convolutional layers 

for automated feature extraction with dense layers for risk 

prediction. This design enables quick learning from high-

dimensional inputs and improves the model’s capacity to 

recognize subtle, nonlinear correlations in the data. 

 

3.1 Dataset Characteristics 

 

The dataset utilized in this work is obtained from the publicly 

accessible BRFSS2015 (Behavioral Risk Factor Surveillance 

System) dataset, which may be viewed through Kaggle at 

https://www.kaggle.com/datasets/alexteboul /diabetes-health-

indicators. It contains 253,680 survey responses and 21 

health-related characteristics, providing a solid foundation for 

diabetes risk prediction. These characteristics encompass 

behavioral, lifestyle, and clinical health markers, reflecting the 

multidimensional nature of diabetes initiation and 

progression.  

• General Health is a self-reported evaluation of general 

health state, which might indicate underlying chronic 

diseases. 

• BMI (Body Mass Index): is a fundamental indication of 

body fat and is directly linked to the risk of metabolic and 

cardiovascular ill nesses, such as diabetes. 

• Physical Activity: Indicates whether respondents 

participate in regular exercise, a key lifestyle component 

in diabetes prevention and management. 

• Smoking and Alcohol Use: Behavioral risk factors linked 

to systemic inflammation and insulin resistance.  

• High Blood Pressure and High Cholesterol: Clinically 

relevant indicators linked to comorbid conditions that 

increase diabetes risk. 

• Age, Education, and Income: Socioeconomic and 

demographic variables impacting health literacy, 

healthcare access, and lifestyle decisions. 

 

These properties work together to provide thorough modeling 

of diabetes risk, allowing the deep learning architecture to find 

complicated, nonlinear associations that standard statistical 

analysis may not reveal. In this study, the goal variable 

indicates diabetes risk and is classified as either binary (no 

diabetes vs. prediabetes or diabetes) or multiclass (no 

diabetes, prediabetes, diabetes) according to public health 

standards. The BRFSS2015 dataset comprises responses from 

a varied population with a variety of demographic, 

socioeconomic, and behavioral characteristics. This 

variability facilitates the creation of a strong and generalizable 

prediction model. The dataset, which is publicly available and 

well-curated on Kaggle, is of research-grade quality, making 

it suited for examining complicated interactions between 

lifestyle variables, clinical markers, and behavioral patterns in 

predicting diabetes risk. 

 

3.2 Data Preprocessing  

 

To assure the prediction model’s reliability and performance, 

rigorous pre-processing processes were performed on the 

dataset, which has 22 columns: one target variable and 21 

input attributes. Initially, the dataset was separated into input 

characteristics (columns 2–22) and the target variable (column 

1). As a first stage in neural network training, all input 

characteristics were normalized using MinMax scaling, which 

converted the values into a range of 0 to 1. This normalization 

reduces the impact of different feature magnitudes and 

promotes steady gradient descent during training. The 

normalized data was then rearranged using a sliding window 

approach to produce time-dependent sequences appropriate 

for use in a 1D Convolutional Neural Network (1D-CNN). 

This stage entailed creating overlapping sequences of a 

predetermined number of timesteps, allowing the model to 

learn temporal patterns over several observations. Each 

sequence was organized into a three-dimensional format of 

samples, timesteps, and features, as needed by the 1D-CNN 

architecture. Following restructuring, the data was divided 

into training and testing sets using an 80:20 split, ensuring that 

the model was assessed on previously unknown data to 

determine its generalization capabilities. This preprocessing 

technique guarantees that the model receives input data that 

has been scaled, organized, and temporally contextualized for 

optimal learning.  

 

A correlation heatmap using Pearson correlation coefficients 

was created to analyze the linear correlations between 

variables in the dataset as shown in Figure 1. The heatmap 

depicts the intensity and direction of connections among the 

22 characteristics, with values ranging from-1 to +1. The 

dataset’s correlations are generally modest, demonstrating 

little multicollinearity across characteristics. However, there 

were some modest associations found, such as between 

General Health and Physical Health (0.52), General Health 

and Mental Health (0.30), and Income and Education (0.45). 

Furthermore, age had a modest link with diabetes status 

(0.34), although sex had a poor correlation with the majority 

of characteristics. These insights are useful for feature 

selection and model interpretation, ensuring that duplicated or 

strongly correlated features do not impede the learning 

process or lead to overfitting. These pretreatment processes 

guarantee that the dataset is clean, consistent, and ready for 

input into the proposed deep learning model. By correcting 

missing values, normalizing continuous features, and properly 

encoding categorical variables, the dataset becomes more 

suited for effective model training. This preparation improves 

the model’s capacity to discover important patterns and 

associations, resulting in greater accuracy and robustness in 

predicting diabetes risk. The thorough data treatment 
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procedure minimizes noise, balances feature contributions, 

and allows for more accurate and generalizable predictions. 

 

 
Figure 1: Correlation matrix 

 

3.3 Proposed Deep Learning Model 

 

The suggested prediction model makes use of a 1D 

Convolutional Neural Network (CNN) that is specifically 

developed to effectively handle structured sequential health 

data. This design is very good at capturing local dependencies 

and intricate feature interactions among the 21 input variables 

relevant to diabetes and metabolism. The model is made up of 

many Conv1D layers, each followed by batch normalization, 

ReLU activation, and dropout layers to improve 

generalization and decrease overfitting. A global average 

pooling layer is used to compress the feature maps before the 

final dense layer, which generates the prediction. Figure 2 

depicts the model’s general architecture, including input-

output forms and layer types employed. Table 1 highlights the 

network’s primary architectural settings and hyperparameters. 

This approach allows the model to learn complicated patterns 

while preserving resilience and training efficiency. 

• The input layer of the proposed model processes a 

structured dataset made upof21normalized characteristics 

per instance. Each element indicates an important 

physiological, behavioral, or demographic aspect related 

to diabetes risk. Clinical indicators include high blood 

pressure, high cholesterol, BMI, a history of stroke, and 

heart disease; behavioral factors such as smoking, heavy 

alcohol consumption, physical activity, and daily fruit and 

vegetable intake; and demographic and socioeconomic 

variables such as education level, income, age, and gender. 

Prior to model training, the dataset was thoroughly 

preprocessed, which included managing missing values, 

performing Min-Max normalization to continuous 

variables, and encoding categorical features using suitable 

approaches. This preprocessing guaranteed that all input 

values were uniformly scaled, which increased training 

efficiency and model convergence. The resultant 21-

dimensional input vector enables the 1D-CNN to 

successfully capture nonlinear interactions and hidden 

patterns that help forecast diabetes risk. 

Table 1: Summary of model architecture and hyperparameters used in the proposed 1D CNN model 

Component Details 

Input Layer  Input shape: (33, 1) 

CNN Layers  6 Conv1D layers, each with 32 filters and ker nel size 3, ReLU activation 

Kernel Regularization L2 regularization with factor 0.0001 

Batch Normalization  Applied after each convolutional layer 

Dropout  0.3 dropout rate applied after each activation 

Pooling Layer  GlobalAveragePooling1D layer 

Recurrent Layers  4 layers specified in the model function (un used in shared CNN-only block) 

Output Layer  Dense layer with 1 output (regression) 

Optimizer  Adam optimizer with learning rate = 0.0001 

Mertrics Loss, AUC, Recall, Precision, Accuracy, F1-Score 
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Figure 2: 1D-CNN Model Architecture with Corresponding Layers and Shapes 

 

• Convolutional Layers: The proposed 1D-CNN architecture 

is built on a sequence of convolutional layers that extract 

meaningful feature representations and detect localized 

patterns in the input data. Each convolutional layer applies 

multiple filters that slide across the 21 sequential features, 

which include health conditions (e.g., high blood pressure, 

high alcohol consumption), behavioral factors (e.g., 

smoking, physical activity), dietary habits (e.g., fruits and 

vegetables), and demographic characteristics (e.g., age, 

income, education). This sequential filtering allows the 

model to detect subtle relationships and interactions 

among nearby variables. For example, it can identify 

trends that link high BMI with low physical activity or 

smoking and alcohol intake with poor overall health-

factors that can have a major impact on diabetes risk. By 

learning hierarchical representations layer by layer, the 

convolutional design improves the model’s capacity to 

detect complex, multidimensional interactions essential to 

diabetes prediction. 

• Activation Functions: Following convolutional operations 

and global average pooling, the retrieved feature maps are 

fed via fully connected (dense) layers. These layers are in 

charge of integrating and refining the information gleaned 

from the 21 input features, which include clinical factors 

(e.g., BMI, HighBP, HighChol), lifestyle choices (e.g., 

smoking, physical activity, alcohol consumption), and 
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sociodemographic indicators (e.g., education, income, age, 

sex). The deep layers assist to capture complicated, non-

linear interactions between these factors, al lowing the 

model to make accurate predictions about diabetes risk. 

The fully linked layers combine the localized patterns 

discovered in previous levels to produce meaningful 

outputs that represent the likelihood of diabetes 

occurrence.  

• Dense Layers: Following the convolutional and pooling 

processes, the data is routed into fully connected (dense) 

layers, with each neuron connecting to all neurons in the 

preceding layer. These thick layers combine the feature 

representations acquired from the 21 input variables, such 

as BMI, smoking status, and general health, to provide a 

final prediction. The thick layers are important in 

strengthening the model’s grasp of diabetes risk patterns 

and improving output accuracy because they capture 

complicated interdependencies across variables. 

• Output Layer: The model’s output layer generates 

predictions regarding diabetes risk. This layer is intended 

for a regression job and consists of a single neuron that 

generates a continuous output reflecting the projected 

diabetes risk score for each unique event. This score 

indicates the likelihood or severity of diabetes present 

depending on the input features. The output layer allows 

for accurate prediction of diabetes risk throughout the 

population under investigation by translating the 

complicated, nonlinear connections documented by 

previous layers to a single interpretable number.  

• Optimizer and Loss Function: The Adam optimizer was 

used at a learning rate of 0.0001. Adam is a popular 

optimization technique in deep learning due to its flexible 

learning rate capabilities and effective handling of sparse 

gradients. It combines the benefits of AdaGrad and RM 

SProp, making it especially useful for complicated, high-

dimensional data such as diabetes-related health and 

lifestyle factors. The model employs the binary cross-

entropy loss function, which is appropriate for binary 

classification problems such as predicting diabetes. This 

loss function calculates the difference between projected 

probability and real binary labels, leading the model to 

reduce classification mistakes. Furthermore, binary 

accuracy and the Area Under the Curve (AUC) metrics 

were employed to measure performance during training, 

providing information about the model’s capacity to 

discriminate between diabetes and non-diabetic situations. 

 

The architecture is especially well-suited to processing 

structured, multidimensional datasets such as the one utilized 

in this study, which contains a variety of clinical, lifestyle, and 

demographic characteristics linked with diabetes risk. Its 

approach allows the model to automatically learn hierarchical 

feature representations without requiring human feature 

engineering. Given the complex and nonlinear interactions 

that frequently exist between factors such as BMI, blood 

pressure, cholesterol, physical activity, and socioeconomic 

status, the 1D-CNN’s ability to discover and model these 

intricate relationships makes it particularly effective for 

predicting diabetes outcomes. 

 

 

 

4. Results 
 

The suggested 1D-CNN model’s performance was 

extensively examined utilizing a wide range of classification 

criteria to enable a fair and trustworthy assessment of its 

predictive capacity. Beyond overall accuracy, which may be 

misleading in the presence of class imbalance, key 

performance indicators such as precision, recall, F1-score, 

AUC, and the Matthews Correlation Coefficient (MCC) were 

used to gain a better understanding of the model’s ability to 

distinguish between different levels of diabetes risk. These 

indicators enabled a more detailed view of performance, 

particularly among under represented classes. Throughout the 

model’s training phase, loss curves and other indicators such 

as training loss and validation loss were studied to assess 

training dynamics and convergence behavior. A step-by-step 

experimental procedure was used, which included data 

preparation, model training, and performance validation. The 

findings are supported by thorough performance tables and 

rich visualizations, such as confusion matrices and metric 

trend charts, which together demonstrate the proposed deep 

learning architecture’s resilience and efficacy in categorizing 

multi-class diabetes risk. 

 

4.1 Evaluation Metrics 

 

To completely test the effectiveness of the suggested 

categorization model, a variety of well-established measures 

were used, each giving unique insights into distinct elements 

of predicted dependability. These included accuracy to 

measure overall correctness, precision and recall to evaluate 

the model’s capacity to detect real positive cases, and the F1-

score to balance precision and recall, particularly in the face 

of class imbalance. Confusion matrices and area under the 

ROC curve (AUC) were also examined to confirm the model’s 

classification accuracy across all classes. 

 

• Accuracy The percentage of correctly classified cases 

relative to all instances is known as accuracy. It is 

computed as follows: 

TP TN
Accuracy

TP TN FP FN

+
=

+ + +
                             (1) 

where:  

TP (True Positives): Correctly predicted positive cases.  

TN (True Negatives): Correctly predicted negative cases.  

FP (False Positives): Negative cases incorrectly classified as 

positive.  

FN (False Negatives): Positive cases incorrectly classified as 

negative. 

 

• Recall assesses the model’s accuracy in identifying 

positive instances and is especially important in situations 

where reducing false negatives is a top concern. It is 

calculated as follows: 
TP

Recall
TP FN

=
+

                                   (2) 

 

• Precision is crucial for reducing false positives since it 

measures the percentage of accurately predicted positive 

cases among all expected positives. It is described as: 

TP
Precision

TP FP
=

+
                           (3) 
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• By determining their harmonic mean, the F1-score strikes 

a balance between recall and precision, offering a single 

statistic to assess the trade-off between the two. 

Precision Recall
F1-Score 2

Precision Recall


= 

+
       (4) 

An F1-score ranges from 0 to 1, where 1 indicates perfect 

precision and recall, and 0 indicates the poorest 

performance. 

 

 To assure the suggested categorization model’s dependability 

in real applications, these evaluation criteria were chosen to 

give a complete and unbiased assessment of its prediction 

capabilities. The next sections provide a full description of the 

training, validation, and testing techniques used to rigorously 

evaluate the model’s performance. 

 

4.2 Experimental Results 

 

This section contains experimental results that assess the 

performance of the proposed 1D Convolutional Neural 

Network (1D-CNN) model for diabetes risk categorization. To 

evaluate the model’s efficacy, a variety of classification 

measures were used, including accuracy, precision, re call, F1-

score, and AUC. These metrics provide a complete assessment 

of the model’s capacity to provide accurate predictions, 

especially in the presence of class imbalance. Special 

emphasis is placed on how the model performs across all 

classes, guaranteeing its applicability for practical, real-world 

medical applications. Additionally, we offer visualizations 

like accuracy and loss curves to monitor the learning progress 

of the proposed model over time, and confusion matrices to 

assess classification performance. Deeper understanding of 

the ability of the proposed model to generalize to new data and 

its effectiveness in reducing training errors is provided by 

these visualizations. The confusion matrix shown in Figure 3 

displays the proposed 1D CNN model’s high prediction 

accuracy in identifying persons across three diabetes-related 

health conditions. The algorithm correctly identified 42,760 

out of 42,761 instances in the non-diabetic class (Class 0), 

with only one misclassification. For the prediabetes group 

(Class 1), it properly predicted 885 cases with only four errors. 

Most notably, the model obtained flawless classification in the 

diabetes class (Class 2), properly recognizing all 7,086 

patients with no false positives or negatives. These findings 

emphasize the model’s capacity to discriminate between 

clinically comparable classes, particularly prediabetes and 

diabetes, implying its efficacy in learning subtle nonlinear 

correlations between health markers such as BMI, blood 

pressure, and lifestyle variables. Despite the dataset’s intrinsic 

class imbalance, the model maintained good accuracy across 

all classes, demonstrating that the preprocessing and training 

procedures were effective in reducing bias. This degree of 

performance validates the model’s promise as a dependable 

tool for early screening and risk stratification in large-scale 

public health settings. 

 

 
Figure 3: Confusion matrix 

 

The training and validation loss curves shown in Figure 4 give 

information about the model’s learning dynamics and 

generalization performance. The training loss lowers 

continuously during the training process, demonstrating that 

the 1D-CNN model is effectively decreasing error on the 

training data by learning important features from the input 

variables. The validation loss similarly exhibits a declining 

trend and remains closely matched with the training loss, 

indicating that the model is not overfitted and may generalize 

well to new data. The lack of abrupt oscillations or divergence 

between the two curves indicates a steady optimization 

process and an adequate model capacity for the dataset’s 

complexity. This behavior demonstrates the durability of the 

training strategy, including preprocessing techniques like 

normalization, as well as the model architecture’s ability to 

capture nonlinear relationships across many health-related 

metrics. The smooth convergence of both loss curves to lower 

values demonstrates the 1D-CNN’s potential for multi-class 

classification jobs in structured health data. 
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Figure 4: Loss curves for training and validation data 

 

The training and validation accuracy curves shown in Figure 

5 provide a quantifiable measurement of the model’s 

classification performance across epochs. As training 

advances, training accuracy steadily improves, demonstrating 

the 1D-CNN model’s capacity to learn dis criminative patterns 

from the input health data. Similarly, the validation accuracy 

curve shows a constant increasing trend that tracks the training 

accuracy, demonstrating that the model generalizes well to 

previously unknown data with no evidence of overfitting. The 

convergence of both curves to high accuracy values indicates 

that the network successfully captured the BRFSS dataset’s 

complex, nonlinear interactions between health, lifestyle, and 

demographic factors. The smooth and stable nature of the 

accuracy curves throughout training confirms that the learning 

process is well-regularized and that the model architecture, 

combined with appropriate preprocessing and class balancing 

strategies, is well-suited for the multi-class classification task 

of distinguishing between non-diabetic, prediabetic, and 

diabetic people. 

 

 
Figure 5: Accuracy curves for training and validation data 

 

A comparison of the accuracy, recall, and precision of various 

machine learning algorithms-including the suggested model-

is shown in Table 2 The proposed 1D-CNN model's 

performance for multiclass diabetes prediction was evaluated 

by comparing its findings to numerous conventional machine 

learning and deep learning models using important 

performance measures such as precision, recall, accuracy, and 

AUC. Logistic Regression (LR) outperformed conventional 

classifiers with 77.5\% accuracy and an AUC of 0.825. Naïve 

Bayes (NB) followed with 76.3% accuracy and a 

corresponding AUC of 0.819. Despite good recall and 

accuracy, the Support Vector Machine (SVM) and Clustered 

K-Nearest Neighbors (CKNN) had lower precision values 

(0.424 and 0.430, respectively), indicating that these models 

may struggle with class imbalance or non-linearity in the data. 

The Long Short-Term Memory (LSTM) network 

outperformed most conventional models with an accuracy of 

83.65% and an AUC of 0.832, followed by the Deep Belief 

Network (DBN) and the Deep Neural Network with L-BFGS 

optimization (DNNL-BFGS), both of which achieved more 

than 81% accuracy. In contrast, the suggested 1D-CNN model 

beat all previous models, with near-perfect performance 

across all measures (99.99% accuracy, precision, recall, 

beside these metrics F1-score for the proposed model is 

considered and it has been found that F1- score of the 

proposed model is 0.9999. This significant increase 

demonstrates the model's exceptional capacity to extract key 

characteristics from structured health data and reliably 

distinguish between the three diabetes classes, even when 

there is class imbalance. 
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Table 2: Optimal parameters for different algorithms 

including the proposed model 
Algorithm Precision Recall Accuracy AUC 

NB 0.759 0.763  76.3  0.819 

LR 0.773 0.781 77.5 0.825 

SVM 0.424 0.651 78.0 0.500 

CKNN 0.430 0.763 78.2 0.621 

LSTM 0.789 0.802 83.65 0.832 

DBM 0.741 0.763 81.20 0.816 

DNNL-BFGS 0.776 0.791 77.09 0.810 

Proposed model 0.9999 0.9999 99.99 0.9999 

 

The suggested 1D-CNN model's high performance across all 

assessment criteria may be due in large part to rigorous 

hyperparameter adjustment. By methodically tweaking 

crucial parameters such as learning rate, batch size, number of 

filters, and kernel size, we were able to reduce training loss 

while also improving accuracy, precision, recall, F1-score, 

and AUC. The F1-score, in particular, demonstrates the 

model's balanced capacity to manage both false positives and 

false negatives, which is especially essential given the class 

imbalance that is common in healthcare data. This 

optimization technique allowed the model to learn 

complicated patterns in the high-dimensional health data 

while remaining generalizable and avoiding overfitting. The 

consistent findings across several runs and dataset 

combinations demonstrate the stability and resilience 

achieved via hyperparameter adjustment. These findings 

support the need of refining deep learning models in clinical 

applications, where prediction reliability is critical for early 

diagnosis and informed treatment choices. 

 

5. Conclusion 
 

This study provided a 1D Convolutional Neural Network (1D-

CNN) model for early diabetes risk assessment based on a 

diverse dataset of clinical, genetic, and lifestyle parameters. 

Preprocessing procedures such as normalization and feature 

scaling improved data consistency and quality, while the 

model architecture facilitated the fast learning of complicated 

risk patterns. This study made major contributions by 

implementing a complete hyperparameter optimization 

technique that reduced loss while increasing accuracy. 

Multiple measures, including accuracy, precision, recall, F1-

score, and AUC, were used to assess the model's robustness, 

particularly in dealing with class imbalance, a prevalent 

difficulty in healthcare datasets. The improved model 

demonstrated robust and consistent performance, highlighting 

its potential for early diagnosis and individualized treatment 

planning. Future work will focus on increasing the model's 

generalizability by including real-time health data from 

wearable IoT devices, verifying it across larger populations, 

and integrating it into user-friendly platforms for real-world 

clinical decision assistance. These developments are intended 

to bring the framework closer to actual application and 

improve AI-powered healthcare solutions. 
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