
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 11, November 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Exploring a Minimum Cost Solution for Traveling

Salesman Problem using Parallel Simulated

Annealing

Geerisha Jain
1
, Dr. Anto S

2
, Dewang Mehta

3

1School of Computer Science and Engineering, Vellore Institute of Technology, India

2Professor, Department of Computational Intelligence, Vellore Institute of Technology, India

3School of Computer Science and Engineering, Vellore Institute of Technology, India

Corresponding author (s) E-mail(s): 1geerishajain1[at]gmail.com; 2Contributing Authors: anto.s[at]vit.ac.in
3dewang_mehta[at]hotmail.com

Abstract: In this paper, we extend the traditional Simulated Annealing (SA) algorithm to provide a modified version with incorporated

parallel processing. The algorithm is used to solve the NP-hard Traveling Salesman problem in which there is a specified map of cities,

and the algorithm aims to discover the shortest and the most optimized route that begins at one point, travels once through all the cities,

and then returns to the initial point. The main objective is to discover the likelihood of having a zero-cost path with n cities and p

processors specifically where they run in parallel. To achieve this analysis, simulation was performed, and the results obtained proved

that the proposed method showed promising results in terms of finding a zero-cost path in lesser execution time when running for a

large number of processes on parallel processors.

Keywords: Travelling Salesman Problem, TSP, Simulated Annealing, minimum cost solution, optimization, Parallel Computing

1. Introduction

The traveling salesman problem (TSP) is known to be a

typical NP-Hard problem in combinatorial optimization and

a significant situation when it comes on to the graph theory

and computational perspective. In this problem, a distinct

number of cities and the distances every city has from each

other is given. The objective is to discover the shortest

optimized possible path that makes sure that every city has

been visited once and in the end, it comes back to the initial

one. Apart from this, it is also important that the distances

between the cities are known. In the software world, this

problem is frequently seen as a graph problem that makes

use of a symmetric adjacency matrix in which every node

represents the city and edges represent the cost or distance

(Andreas Björklund, 2012)

Countless attempts at finding a solution to TSP have been

made using various algorithms, mathematical models, and

optimization searches. Most existing literature, dealing with

TSP is based on Tabu Search Implementation (Sumanta

Basu 2008, Basu S 2012) owing to the norm that Tabu

search is one of the most widely applied metaheuristics for

solving TSP, but Tabu search has its own research gaps that

are yet to be explored. However, its variations and separate

versions provide solutions to a vast number of computing

problems.Ant Colony Optimization (Hingrajiya KH 2012)

and Bee colony algorithm (Anshul Singh 2012) with its

basic mechanism of bees foraging behavior and its

efficiency in solving the shortest path among various routes

have been implemented. Neighborhood search is useful

when exploitation is desired. It can be applied after every

bee cycle to enhance the quality of solutions. Evolutionary

algorithm (Huai-Kuang Tsai 2004) described new crossover

operators and mutation operators suitable for solving TSP by

Genetic Augmentation with the availability of fast

computing facilities, this search technique can be utilized to

solve TSPs with large dimensions. Studies have also been

carried out extensively on the genetic algorithm (Naveen

Kumar 2012, Gupta S 2013, Khattar S 2014) due to its

success rate in NP-hard problems, however, it depends

highly on the system in which the problem is encoded, and

which crossover and mutation techniques are used.

With regards to the simulated annealing (SA) algorithm,

comparatively lesser research and variations have been

explored to date. A new simulated annealing algorithm was

proposed, called a list-based simulated annealing algorithm

(Zhan et al.2016), in order to solve the traveling-salesman

problem. Experimental results indicated that the proposed

algorithm had competitive performance compared to the

other algorithms. Sometime later, a hybrid simulated

annealing algorithm based on tabu search (Lin, Y 2016) was

proposed to solve TSP. Experimental results demonstrated

that the proposed algorithm improved the accuracy and

efficiency of the traditional SA. In the line with that, a

simulated annealing algorithm based on symbiotic-organism

search (Ezugwu2017) was presented to better solve the TSP.

Comparative analysis revealed that the proposed algorithm

had advantages with regard to factors such as convergence,

average execution time, and percentage deviations. In an

attempt to further optimize and aim for a more efficient

solution, an improved simulated annealing algorithm (Zhao,

D 2017) was devised. Numerous efforts on searching for a

zero-cost path have been made, with each approach having

its own solution sets and limitations.

This note aims to extend the traditional Simulated Annealing

(SA) algorithm by incorporating parallel computing to find a

Paper ID: SR221030104342 DOI: 10.21275/SR221030104342 667

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 11, November 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

solution to the Travelling Salesman problem. The remaining

part of the paper is organized as below: In Section 2, we

give an overview of the problem statement and the intended

solution; discuss the mathematical representation of the

traveling man problem; the idea behind simulated annealing,

its acceptance criterion; propose algorithms for the enhanced

new version of simulated annealing with parallel processing,

and give in-depth coverage of the model’s architecture,

operations involved, and parameters defined. Section 3 of

the paper covers the results obtained from the simulation of

the algorithm when run in parallel. Finally, Section 4

presents the conclusion of the devised algorithm and gains

insights into the viability of the solution.

2. Methodology

We have a discrete space of cities, and the algorithm finds

the shortest route that starts at one of the towns, goes once

through every other point, and returns to the first one as

shown in Figure 1 (Zhan et al. 2016). The main goal is to

explore the possibility of having a zero-cost solution with n

cities and p processors running in parallel. To perform this,

we are using a TSP algorithm and making it run in parallel.

The algorithm devised is for Parallel SA to explore the

possibility of having a zero-cost solution with n cities and p

processors.

Figure 1: Travelling Salesman Problem connecting n cities

asymmetrically

2.1 Travelling Salesman Problem (TSP)

TSP can be demonstrated as an undirected weighted graph,

such that the graph’s vertices represent the cities, the graph’s

edges represent the paths, and an edge’s weight depicts the

path's distance. It is a minimization problem starting and

finishing at a specified vertex after having visited each other

vertex exactly once (Mijwil2016). In the majority of the

cases, the model is a complete graph (such that each pair of

vertices is connected by an edge). If no route exists between

two cities, adding a sufficiently long edge will result in

completing the graph, not affecting the optimal tour at the

same time (Andreas Björklund 2012)

We label the cities with the numbers 1, …, n and define the

constraints given by (1)

𝑥𝑖𝑗 =
1 𝑡ℎ𝑒 𝑝𝑎𝑡ℎ 𝑔𝑜𝑒𝑠 𝑓𝑟𝑜𝑚 𝑐𝑖𝑡𝑦 𝑖 𝑡𝑜 𝑐𝑖𝑡𝑦 𝑗
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (1)

Take𝑐𝑖𝑗 > 0 to be the distance from city i to city j. Then TSP

can be written as the following integer linear programming

problem as given by (2), (3), and (4)

Min 𝑐𝑖𝑗 𝑥𝑖𝑗
𝑛
𝑗≠𝑖,𝑗=1

𝑛
𝑖=1 (2)

 𝑥𝑖𝑗
𝑛
𝑖=1,𝑖≠𝑗 =1 j=1, …., n; (3)

 𝑥𝑖𝑗
𝑛
𝑗=1,𝑗≠𝑖 =1 i=1, …., n; (4)

 𝑥𝑖𝑗𝑗≠𝑖,𝑗 ∈𝑄𝑖∈𝑄 ≤ |Q| - 1 ⦡Q⊊{1, …., n}, |Q| ≥ 2 (5)

The last constraint of the formulation given by (5) ensures

no proper subset Q can form a sub-tour, so the solution

returned is a single tour and not the union of smaller tours.

Since this leads to an exponential number of possible

constraints, in actuality it is solved using row generation.

2.2 Simulated Annealing (SA)

SA is basically referred to as a probabilistic method to

estimate the global optimum for a given processor method.

This process discovers the Temperature concept and agrees

on worse solutions as it explores the solution space. This

examination of poor solutions is a major feature of this

meta-heuristic approach (Kirkpatrick 1983). Occasionally it

is made to behave as equivalence to a mountain: simulated

annealing admits larger distances reaching high onto the

mountain of solutions and states if we overcome the hill

peak, we reach the best solution which is optimized.

2.3 Acceptance Criterion for SA

Simulated Annealing (SA) is inspired by a similarity that

deals with the annealing of hard substrate or solids. The

procedure presented in this paper is based on simulating the

cooling of substantial matter in a heat tub. This methodology

is called annealing.

The law of thermodynamics state that at temperature, t, the

probability of an increase in energy of magnitude, δE, is

given by (6)

δE) = 𝑒
−𝛿𝐸

𝑘𝑡 (6)

Where k = Boltzmann’s constant.

Equation (1) is directly utilized in simulated annealing, even

though the Boltzmann constant is usually dropped, as this

was only introduced into the equation to cope up with and

correctly represent different materials. Hence, the

probability of accepting a worse state is given by the

equation (7) and (8)

P =
1 𝑖𝑓 𝛿𝑐 ≤ 0

𝑒−𝛿𝑐 𝑡 𝑖𝑓 𝛿𝑐 > 0

(7)

P = exp(-c/t) > r (8)

Where c = change in the evaluation function

t = current temperature

r = random number lying between 0 and 1

The probability of accepting a worse move is a factor

dependent on the temperature of the system as well as the

change in the respective cost function. It can be deduced that

as the temperature of the system decreases the probability of

accepting a worse move also decreases as shown in Figure 2.

This is equivalent to gradually moving to a frozen state in

realistic physical annealing. Furthermore, if the temperature

is zero, only then better-optimized moves will be accepted

which effectually makes simulated annealing act like hill

climbing (C. S. Jeong1990)

Paper ID: SR221030104342 DOI: 10.21275/SR221030104342 668

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 11, November 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 2: Simulated Annealing with Local and Global

optimum

2.4 Proposed Algorithms for leveraging Parallel SA for

TSP

The experimentation starts with exploring and examining the

feasibility of implementing an execution solver for TSP in

MATLAB. In the process of analyzing, it was observed that

an operation for exhibiting Simulated Annealing can be

programmed and configured; and can be delivered as a

probabilistic enhancing method, capable of being used on

huge distinct search spaces like the ones undergoing

examination in this paper. It works by primarily subjecting

the system to situations of lower energy. Continuously, the

entity will attain a state where it is difficult to get a lesser

drive state which in turn source halts the hunt. These meta-

heuristics practice the idea of Temperature which will be

connected with new answers. Figure 3 below displays the

relative correspondence between the temperature and the

new results recycled in the simulated annealing meta-

heuristic as described in the execution.

Figure 3: Relation between new solutions with SA and

Temperature

The proposed algorithm for the Travelling Salesman

Problem using Simulated Annealing is demonstrated below.

Procedure: Simulated Annealing

Begin
1. Find the FIRST tentative route

2. town=randperm(n) //random permutation of the first n integers

3. Tdist=D(town(n), town(1))

4. Tdist=Tdist+D(town(i), town(i+1)) for i=1 till n-1

5. set initial temperature

6. start while loop and stop if no changes for 100 iterations

7. randomly chooses a town (at position c in route)

8. if c==1then

previous=n;

next1=2; next2=3;

 elseif c==n-1 then

previous=n-2;

next1=n; next2=1;

 elseif c==n then

previous=n-1;

next1=1; next2=2;

else previous=c-1; then

next1=c+1; next2=c+2;

9. Do increment in length of the route

10. accept or discard change to route

11. if delta<0 or (exp(-delta/T)>= rand)

 swap order of town(c) and town(c+1) in route

 Tdist=Tdist+delta;

 if delta~=0 then

i=0;

else i=i+1;

 endthe loop
12. set temperature T=0.999*T;

Paper ID: SR221030104342 DOI: 10.21275/SR221030104342 669

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 11, November 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

End

In order to achieve parallelization, looping constraints based on the number of processors were additionally incorporated into

the algorithm as depicted below.

Procedure: Parallelization

Begin

1. Parallelization of for loop using par for operation

2. Use the simulated annealing algorithm for distance calculation

3. Plot the same using the plot function

End

As part of the Design Algorithm, changes were made to the original parallel simulated annealing algorithm through the

insertion of a nil cost path.

Procedure: Design Algorithm with modified Simulated Annealing

Begin

1. Start the loop for zero-cost finding

2. for i = 1: n

 j = i+ 1;

 if (j == n+1)

 j= 1;

 end
3. Distance (i , j) = 0;

4. Distance (j , i) = 0;

End

2.5 Model Architecture and Operations

The solution proposed can be categorized into three main

operations:

 tsp2.m: This method creates pseudo-random variables

using normal scattering between 0 and 1. The first path

is fixated and after that, we can select a new path in case

the cost or length is better or lesser than the previous

one. This method is constantly applied over a space

symmetric matrix also called an adjacency matrix in the

software department.

 tsp.m: This function is an extension of the above

method but includes the Simulated Annealing algorithm

to tackle the problem.

 PARtsp.m: This method makes use of tsp and tsp2

methods defined above and runs the solver with a

"parallel" simulation of P processes and n towns.

The "parallel execution" that we refer to, does not imply that

various searches need to be made for attaining one global

solution in just one simulation. We use PARtsp (ncities,

nprocs) function for the exact accurate simulation of n towns

which is performed nprocs times, but we make sure that all

of them run sequentially at the same time. Each method

implements the same program but with changed random

numbers and what they get at the end are different costs.

Hence executing PARtsp will make us interpret a parallel

solution to the problem and result in optimized and lesser-

cost solutions for all methods.

There can be a lot of methods to discover a path without

cost. Mainly we will make the algorithm discover a path

passing all cities where there is no cost related to it. In this

specific case, we format a zero-cost path in the humblest

way which is conferring to the order of the towns. For

instance, consider we take four cities {A, B, C, D}. Then we

infer that the distance between cities A and B is zero, the

same is the distance between cities B and C, C and D, and at

the end also between D and A. We need to recall that past

this solution it still remains (4!−1) paths where the total

distance is not equivalent to zero.

The alteration was additionally added to the PARtsp.m

function right beyond the loop that blocks the distance

matrix. This process basically travels the distance matrix

through the key diagonal by fixing the cost among the real

initial city and the one next to it at zero, in cross commands.

An outstanding condition happens when it touches the last

city and it must then return to the first one. Once we used a

bidirectional graph representation to store the distance

between all cities, we easily realize that the original matrix

only has the main diagonal with zero values as shown in the

Matrix Table1, which matches the distance between a city

and itself.

Table 1: Matrix Representing Distances between

Cities

D =

0 2.0968 1.7297 4.5634 6.3701 3.1868
2.0968 0 0.3682 2.9365 7.6584 5.2488
1.7297 0.3682 0 3.1640 7.4248 4.8816
4.5634 2.9365 3.1640 0 10.5866 7.2211
6.3701 7.6584 7.4248 10.5866 0 6.2161
3.1868 5.2488 4.8816 7.2211 6.2161 0

Once the zero-cost route is fixed, the distance matrix will

currently appear nearly in correspondence to the one shown

in Matrix Table 2 below.

Paper ID: SR221030104342 DOI: 10.21275/SR221030104342 670

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 11, November 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Table 2: Matrix Representing Distances between

Cities with zero cost Neighbors

D =

0 0 1.7297 4.5634 6.3701 0
0 0 0 2.9365 7.6584 5.2488

1.7297 0 0 0 7.4248 4.8816
4.5634 2.9365 0 0 0 7.2211
6.3701 7.6584 7.4248 0 0 0

0 5.2488 4.8816 7.2211 0 0

2.6 Parameter Configuration

Once we were done with our implementation, we executed a

specific number of simulation tests in order to comprehend

the performance of the meta-heuristic and reach the main

results and conclusions about it. For the simulation, we only

create a random x and y only once. We will use the same x

and y and run the code for 6, 36, and 216 cities with 4, 8,

and 16 processes. We take on this plan so we can confirm if

there is a similarity among the results obtained from the

program for the various cities and multiple amounts of

processes. Here we are going to examine the simulation

processing time and overall distance for equating the two

solutions attained from Simulated Annealing as shown in

Table 1, and another result without Simulated Annealing as

shown in Table 2. The given time amount was utilized using

the tic and toc functions.

In order to comprehend the performance of the meta-

heuristic and reach the main results and conclusions about it,

a certain number of tests were performed. For simulation

purposes, random x and y were created only once and were

used to run the code for 6, 36, and 216 cities with 4, 8, and

16 processes. This was done in order to confirm if there is

any similarity among the results were obtained from the

program for the various number of cities and multiple

amounts of processes. Here we are going to examine the

simulation time and overall distance for equating the two

solutions attained from Parallel Simulated Annealing as

shown in Table 3, and another result with the serial

Simulated Annealing algorithm as shown in Table 4. The

given time amount was utilized using the tic and toc

functions.

Table 3: Execution times with Parallel SA for

different number of processes
 Execution Time (sec) (with Parallel SA)

N Cities NP=4 NP=8 NP=16

6 1, 697881 2, 359874 5, 884847

36 1, 131469 2, 161275 4, 196453

216 1, 099692 1, 941346 3, 045308

Table 4: Execution times with traditional Serial SA for

different numbers of processes
 Execution Time (sec) (with Serial SA)

N Cities NP=4 NP=8 NP=16

6 2, 59231 2, 683813 6, 038509

36 1, 185353 2, 685516 4, 976031

216 1, 273476 2, 240703 3, 367285

Figure 4: Solution with SA VS without SA for different number of processes

From Figure 4, it is evident that the execution time of the

process by means of parallel Simulated Annealing is less as

compared to the traditional serial Simulated Annealing

algorithm.

3. Simulation Result

As we inferred that the performance analysis above, the

execution time taken to find the most optimized path was

considerably less for parallel SA as compared to Serial SA.

Furthermore, we can make certain deductions about total

distances equating the consequences with and without

Parallel computed SA in lieu of the modifications we made

in the program by injecting a zero-cost route between every

pair of cities. The given below images, Figures5, 6, 7 and 8

show the results we get with the x-axis and y-axis both

depicting the number of processes and shortest distances for

the cities respectively.

Paper ID: SR221030104342 DOI: 10.21275/SR221030104342 671

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 11, November 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 5: Comparing the results of Parallel SA and Serial SA for 6 cities and 4 processors

Figure 6: Comparing the results for Zero cost solution of Parallel SA and Serial SA for 6 cities and 4 processors

Figure 7: Comparing the results of Parallel SA and Serial SA for 6 cities and 8 processors

Paper ID: SR221030104342 DOI: 10.21275/SR221030104342 672

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 11, November 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 8: Comparing the results for Zero cost solution with SA and without SA for 6 cities and 8 processor

From Figures5, 6, 7, and 8, we can observe that on running

the solver with the parallel Simulated Annealing algorithm,

we are able to discover minor distances for a different

number of processes. Another point to be considered is that

as long as we increase the number of processes, the

algorithm seems to get better results related to the shortest

path. This in turn validates as well as demonstrates the

concept behind simulated annealing; Accepting worse

solutions (like the analogy of climbing a mountain) can be

advantageous if after overcoming the mountain peak, we

achieve a lower solution - in this algorithm, a lower total

distance.

4. Conclusion

In this paper, we analyzed the TSP algorithm with a Parallel

Simulated Annealing meta-heuristic. We injected a zero

cost/distance path between each pair of cities and made a

study about the total distances achieved and their

performance analysis. This analysis was made for a different

number of cities and a different number of processes. We

conclude that Parallel Simulated Annealing promises a more

optimal solution with reduced execution time, the extent

depending on the number of cities and the number of

processes chosen. It was also observed that climbing to

costly solutions is better if done after overcoming the

"mountain peak", as this can lead to a lower global cost - in

this case, the lower distance between all cities. To get the

minimum cost path we also made some changes to the

distance matrix. After the addition of the zero-cost path, the

matrix appeared to have a thicker main diagonal with zero

values because its adjacent diagonals also became zero.

Moreover, the beginning and the last elements of the

secondary diagonal also added up to zero as they portray the

distance of returning to the first city. After the calculation of

the distance matrix, the experimentation was carried out;

according to which it was clear that the time spent with

Simulated Annealing in parallel distribution was lower and

promised a more significantly optimized zero-cost solution

when compared to the state-of-the-art algorithm.

5. Conflicts of interest/ Competing interests

All authors certify that they have no affiliations with or

involvement in any organization or entity with any financial

interest or non-financial interest in the subject matter or
materials discussed in this manuscript. Hence, the
authors have no conflicts of interest to declare that are
relevant to the content of this article.

References

[1] Tsai, H.K., Yang, J.M., Tsai, Y.F. & Kao, C.Y.

(2004) An evolutionary algorithm for large traveling

salesman problems. IEEE Transactions on Systems,

Man, and Cybernetics. Part B, Cybernetics, 34,

1718–1729 [DOI: 10.1109/tsmcb.2004.828283]

[PubMed: 15462439].

[2] Sumanta Basu & Ghosh, Diptesh, 2008. "A review of

the Tabu Search Literature on Traveling Salesman

Problems,” IIMA Working Papers WP2008-10-01,

Indian Institute of Management Ahmedabad,

Research and Publication Department.

[3] Rajan, K. Genetically Motivated Search Algorithm

for Solving Travelling Salesman Problem (2009).

[4] Kumar & Naveen Karambir and Rajiv Kumar. A

Study of Genetic Algorithm to Solve Travelling

Salesman Problem Journal of Global Research in

Computer Sciences 3 (2012), 33–37.

[5] Singh, A. & Narayan, D. A Survey Paper on Solving

Travelling Salesman Problem Using Bee Colony

Optimization (2012).

[6] Basu, S. (2012) Tabu search implementation on

traveling salesman problem and its variations: A

literature survey. American Journal of Operations

Research, 02, 163–173 [DOI:

10.4236/ajor.2012.22019].

[7] Hingrajiya, K.H., Gupta, R.K. & Chandel, G.S.

(2018) An ant colony optimization algorithm for

solving travelling salesman problem. International

Journal of Scientific and Research Publications, 2

(ISSN, 2250–3153).

[8] Gupta, Saloni & Panwar, Dr. (2013). Solving

Travelling Salesman Problem Using Genetic

Algorithm. International Journal of Advanced

Research in Computer Science and Software

Engineering. 3. 376-380.

[9] Khattar, S. & Goswami, P. (2014) A solution of

genetic algorithm for solving traveling salesman

problem. [IJSRD - International Journal for Scientific

Paper ID: SR221030104342 DOI: 10.21275/SR221030104342 673

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 11, November 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Research & Development IJSRD] Vol. 2, Issue 04,

2014

[10] Jeong, C.S. & Kim, M.H. Fast parallel simulated

annealing for traveling salesman problem (1990).

IJCNN International Joint Conference on Neural

Networks, 1990, pp. 947–953, vol. 3 [DOI:

10.1109/IJCNN.1990.137955].

[11] Kirkpatrick, Scott & Jr, D. &Vecchi (1983).

Optimization by Simulated Annealing Mario.

Science, 220, 671–680 [DOI:

10.1142/9789812799371_0035].

[12] Applegate, D.L., Bixby, R.E., Chvatal, V. & Cook,

W.J. (2007). The Traveling Salesman Problem: A

Computational Study (Princeton Series in Applied

Mathematics). Princeton University Press: USA.

[13] Björklund, A., Husfeldt, T., Kaski, P. & Koivisto, M.

(2012) The traveling salesman problem in bounded

degree graphs. ACM Transactions on Algorithms, 8,

1–13, 13 pages, article 18 [DOI:

10.1145/2151171.2151181].

[14] Zhan, S.H., Lin, J., Zhang, Z.J. & Zhong, Y.W.

(2016) List-Based Simulated Annealing Algorithm

for Traveling Salesman Problem. Computational

Intelligence and Neuroscience, 2016, 1712630 [DOI:

10.1155/2016/1712630] [PubMed: 27034650].

[15] Lin, Y., Bian, Zheyong & Liu, X. (2016) Developing

a dynamic neighborhood structure for an adaptive

hybrid simulated annealing tabu search algorithm to

solve the symmetrical traveling salesman problem.

Applied Soft Computing, 49, 937–952 [DOI:

10.1016/j.asoc.2016.08.036].

[16] Ezugwu, A.E.-S., Adewumi, A.O. &Frîncu, M.E.

(2017) Simulated annealing based symbiotic

organisms search optimization algorithm for traveling

salesman problem. Expert Systems with

Applications, 77, 189–210 [DOI:

10.1016/j.eswa.2017.01.053].

[17] Behnck, L.P., Doering, D., Pereira, C.E. & Rettberg,

A. (2015) A modified simulated annealing algorithm

for SUAVs path planning. IFAC-PapersOnLine, 48,

63–68 [DOI: 10.1016/j.ifacol.2015.08.109].

[18] Mijwil, M. (2016). Travelling Salesman Problem

Mathematical Description. 10.131

40/RG.2.2.27113.62563.

[19] Garfinkel, R.S. & Gilbert, K.C. (1978) The

bottleneck traveling salesman problem: Algorithms

and probabilistic analysis. Journal of the ACM, 25,

435–448 [DOI: 10.1145/322077.322086].

[20] Mömke, T. (2015) An improved approximation

algorithm for the traveling salesman problem with

relaxed triangle inequality. Information Processing

Letters, 115, 866–871 [DOI:

10.1016/j.ipl.2015.06.003].

[21] Held, M. & Karp, R.M. (1970) The Traveling-

Salesman Problem and Minimum Spanning Trees.

Operations Research, 18, 1138–1162 [DOI:

10.1287/opre.18.6.1138].

[22] Ingber, L. (1993) Simulated annealing: Practice

versus theory. Mathematical and Computer

Modelling, 18, 29–57, ISSN 0895-7177 [DOI:

10.1016/0895-7177(93)90204-C].

Paper ID: SR221030104342 DOI: 10.21275/SR221030104342 674

