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Abstract: With the increasing number of diabetic patients worldwide, the prevention and treatment of diabetic cardiovascular disease, a 

major complication, has become a major social challenge. At present, most of the research on diabetic cardiovascular disease is based on 

statistical methods, focusing on the correlation analysis between the risk characteristics of patients, such as age and cholesterol, and the 

disease risk. This approach, which considers the individual characteristics of patients and the characteristics of metabolic indicators as 

the same risk characteristics, ignores the causal relationship between risk characteristics and disease risk, ignores the important 

information carried by the individual characteristics of patients and the background of diabetes, and further ignores the impact of 

differences in disease background. In order to fill this gap, we proposed a new deep learning model, namely, a risk assessment model for 

diabetic cardiovascular disease based on Causal stability and interaction of individual characteristics (causal-NET). The causally stable 

and time-aware Long short-term Memory network (Causal and time-aware TLSTM) was used to learn disease risk information in the 

metabolic characteristics of patients and enhance the stability of the model. Secondly, our model also designed an individual feature 

interaction layer, which used individual features to modify the disease information hidden information obtained by learning the Causal 

and time-aware TLSTM unit, so as to obtain a more accurate and comprehensive disease information representation for the risk 

assessment task of diabetic cardiovascular disease. Our experimental results demonstrate that the model presented here performs better in 

the diabetic CVD risk assessment task, and consistently outperforms the contrast model. The experimental evaluation indexes reached the 

model accuracy, recall, F1 score and 94.33%, 89.84%, 93.33% and 93.90% under the receiver operation feature curve, respectively.  

 

Keywords: Diabetic cardiovascular disease; Metabolic characteristics selection; Individual characteristic interaction; Causal stable learning; 

Disease risk assessment 

 

1. Introduction 
 

Diabetes mellitus (dm) is a chronic metabolic disease that 

causes a variety of serious health complications, including 

kidney failure, blindness and cardiovascular diseases, and has 

become one of the leading disease burdens in China and 

globally [1, 2, 3]. The international diabetes federation 

estimates that 415 million people worldwide, or 8.8% of the 

world's population, are living with diabetes, and death from 

diabetic cardiovascular disease is one of the leading causes of 

death in this population [5, 6, 7]. Therefore, the search for an 

effective risk assessment method for diabetic cardiovascular 

disease for early prevention and treatment of the disease 

could greatly improve the survival rate of people with 

diabetes.  

 

Most of the existing studies related to the risk of diabetic 

cardiovascular disease are based on statistical methods to 

calculate the correlation between risk characteristics and 

disease risk or disease risk score. For example, Domanski et 

al. [11] used statistical methods to evaluate the relationship 

between low-density lipoprotein and disease risk. D'Agostino 

et al. [12] constructed the American Framingham 

cardiovascular disease prediction model based on the general 

population, and used Cox proportional hazards regression 

model to evaluate the risk scores of related factors such as 

patient age, high-density lipoprotein and diabetes status on 

cardiovascular disease events. These methods have made 

some progress in their study cohorts, but most of them treat 

diabetes, an important disease background, individual 

characteristics and metabolic characteristics of patients as 

risk characteristics indiscriminately for disease risk analysis, 

emphasizing the statistical correlation between risk 

characteristics and disease risk, but ignoring the causal 

relationship between them [13]. At the same time, they ignore 

the important information carried by the individual 

characteristics of patients and the background of diabetes, 

and further ignore the influence of the difference in the 

distribution of data sets caused by the difference in the 

background of disease on the stability of the model. 
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To address the above problems, we propose a risk assessment 

model for diabetic cardiovascular disease based on the 

interaction between causal attention and individual 

characteristics. This model can effectively consider the 

characteristics of diabetes, emphasize the causal relationship 

between risk characteristics and target tasks, and reduce the 

impact of differences in disease background. At the same 

time, the model can effectively combine the individual 

characteristics of patients, improve the accuracy of disease 

risk assessment task, help clinicians to make disease risk 

diagnosis, and improve the probability of early detection and 

treatment of disease.  

 

In summary, the main contributions of this paper are as 

follows:  

 

Considering the characteristics of chronic metabolic diseases 

in diabetes, the long-term medical visit data of patients were 

regarded as temporal information as the input of the model in 

the task of risk assessment of diabetic cardiovascular disease, 

and the modeling idea of TLSTM was adopted.  

 

We redesigned the unit update process of TLSTM to better 

focus on the information carried by patients' current medical 

data, reduce the impact of data distribution differences caused 

by different background of diabetes complications on the 

model, and increase the accuracy and stability of the model 

prediction. To the best of our knowledge, this is the first time 

that causal correlation has been applied to the risk prediction 

task of diabetes cardiovascular disease.  

 

(3) The individual feature interaction network was designed, 

and the individual characteristics of patients were 

incorporated into the model learning to further learn and 

modify the disease risk feature information obtained in the 

previous stage, so as to obtain a more comprehensive disease 

information feature representation.  

 

In order to prove the effectiveness and superiority of our 

model, we evaluated and compared our model with 

traditional machine learning methods (LR, RF and GBDT) 

and deep learning methods (RNN, GRU, LSTM and T-LSTM) 

on this task. Experimental results show that our proposed 

model performs better in real tasks and outperforms the 

baseline model in AUC and other indicators.  

 

2. Related Work 
 

Cardiovascular disease, as the leading cause of death 

worldwide, is an important public health problem [10]. Over 

the years, the study of its related disease risk has been a hot 

issue, attracting the attention of many scholars and experts at 

home and abroad. Most of the existing research methods are 

based on statistics and use the correlation between risk factors 

(risk characteristics) and diseases to carry out disease risk 

regression modeling. For example, Shen Meifeng et al. [16] 

used Pearson and variance statistical methods to study the 

effects of patient's age, gender, history of diabetic 

complications and glycated hemoglobin index on 

cardiovascular complications of type 2 diabetes. Scholes et al. 

[18] studied the prevalence and management trends of CVD 

risk factors in the United Kingdom from the perspective of 

BMI category based on statistical analysis, and confirmed the 

significance of blood pressure and lipid changes and 

glycemic control. Similarly, Bode et al. [19] also combined 

statistical methods and used Wald test and Logistic regression 

model to study the relationship between cardiovascular 

disease risk factors and BMI and age with the prevalence of 

risk factors in American firefighters by BMI category.  

 

These works have contributed to our study of risk factors for 

cardiovascular disease, but most of them regard diabetes as an 

important disease background as a simple risk characteristic, 

such as low-density lipoprotein and other risk indicators, 

ignoring the important information carried by the patient's 

diabetes disease background. Based on the correlation 

between risk factors and disease, some studies further used 

Cox hazard regression model to model and obtained the risk 

score of related factors on cardiovascular disease events. For 

example, Elley et al. [21] built the cardiovascular disease 

prediction model of the New Zealand Diabetes Cohort Study 

(DCS) based on patients with type 2 diabetes mellitus. Cox 

proportional hazards regression model was used to model 

cardiovascular events. Multiple risk factors such as age, 

duration of diabetes, sex, systolic blood pressure, smoking 

status, total cholesterol and glycosylated hemoglobin were 

evaluated. Conroy et al. [22] used the Weibull proportional 

hazards model to develop a risk scoring system for the 

clinical management of cardiovascular risk in European 

clinical practice, based on cohort study datasets from 12 

European countries. Hippisley-cox J et al. [23] developed a 

model to estimate lifetime risk of CVD by fitting two 

independent Cox models, taking into account factors such as 

race, total cholesterol ratio, and age.  

 

These risk prediction algorithms are usually developed using 

multivariate regression models and usually assume that all of 

these factors are linearly related to CVD outcome. The 

limitations of modeling assumptions and the limited number 

of predictors make existing algorithms usually show 

moderate predictive performance [24]. Therefore, some 

scholars proposed data-driven techniques based on Machine 

Learning (ML) to unknowingly identify new risk predictors 

and their more complex interactions, so as to improve the 

performance of risk prediction. For example, Mohan et al. [12] 

combined Random Forest (RF) and Linear Method (LM) 

modeling and proposed a Linear hybrid Random Forest 

model to improve the accuracy of cardiovascular disease 

prediction. Dinh et al. [25] used Logistic Regression (LR) and 

Support Vector Machine (SVM) to improve the accuracy of 

cardiovascular disease prediction. Multiple supervised 

learning models, such as SVM and Integration Model, were 

used to classify high-risk patients to achieve better 

performance than a single algorithm. Alaa et al. [23] An 

ML-based model was developed to predict cardiovascular 

disease risk based on 473 available variables.  

 

To some extent, these machine learning models make up for 

the shortcomings of previous models based on multivariate 

regression. However, these models treat all risk factors 
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related to the disease equally as the same, lack of attention to 

the heterogeneity of individual characteristics of patients, and 

lack of learning of important disease background information. 

A number of studies have been conducted [26-30]It has been 

shown that people with diabetes have an increased risk of 

cardiovascular disease, and the correlation is not negligible. 

Diabetes mellitus is considered to be an independent risk 

factor for cardiovascular disease, and cardiovascular disease 

is the most common cause of death in patients with diabetes 

[7, 31, 32]Therefore, it is very important to further explore 

and utilize diabetes information for the task of cardiovascular 

disease risk prediction. In this paper, we propose a new deep 

learning model for the risk assessment task of cardiovascular 

disease. This model considering the diabetes chronic 

metabolic disease characteristics, using the patients medical 

clinic data as input for a long time, and get the weights of 

causal factors based on the balance of covariate in patients 

with metabolic characteristics of stability study, study to 

interact with the characteristics of individual patients, in 

addition to the patients with metabolic characteristics of 

individual characteristic information, improve the reliability 

and accuracy of the model of task.  

 

 

 

 

3. Problem Elaboration 
 

3.1 Patient dataset description 

 

In the problem we defined, each patient data consists of two 

parts: temporal metabolic characteristics and individual 

patient characteristics. In metabolic characteristics on the 

choice of the risk factors, and the most risk factors based on 

clinical experience or relevant statistical study of the 

traditional feature selection methods, in order to further study 

characteristics and target the potential relationship between 

disease risk, combined with the characteristics of target 

population data set, lower unrelated or low correlation 

characteristic of the model, the influence of In order to 

improve the performance of the model, SHAP based on game 

theory and random forest algorithm, a commonly used 

method in machine learning, were used to rank the 

importance of features on the relevant risk indicators, and the 

high-importance features were selected as the input data of 

the model.  

 

As shown in Figure 3-1. According to the ranking results of 

characteristics, we finally selected seven indicators of 

glycosylated hemoglobin (HbA1c), two hours postprandial 

blood glucose (GLU4), cholesterol (CHOL), high density 

lipoprotein (UHDL), low density lipoprotein (ULDL), 

triglyceride (TG-B) and apolipoprotein B (APOB) as our 

metabolic characteristics input. This is also consistent with 

the direction chosen in most clinical studies.  

 

Figure 3: 1 Left: Importance ranking of indicator features based on Random Forest; Figure 3-1 right: Ranking of importance of 

indicator features based on SHAP. 

 

3.2 Problem Elaboration 

 

In the definition of the problem in this paper, each patient's 

data is composed of metabolic characteristics and individual 

characteristics. In order to better reflect the real patient visit 

situation, the patient visit time is also included as input 

information in the task learning of the model.  

 

Thus, a patient data can be described as 

P, P = { [v1, v2, . . . vT], d, τ} = {V, d, τ} , where T  represents 

the number of examinations and vt represents the t visits, 

including glycated hemoglobin (HbA1c), two hours 

postprandial blood glucose (GLU4), HDL lipoprotein 

(UHDL), low density lipoprotein (ULDL), cholesterol 

(CHOL), triglycerides (TGB) and apolipoprotein B (APOB). 

For unified expression, the number of medical features is 

recorded here as Nv , so the patient t visit record data is 

described as vt =  [vt
1, vt

2, . . . , vt

Nv], vt ∈ ℝNv, here Nv = 7. d 
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represents six individual characteristics including patient 

gender, age and the other four common complications of 

diabetes (here, diabetic foot disease, diabetic nephropathy, 

diabetic peripheral neuropathy and diabetic eye disease), as 

described by Nd, d =  d1, d
2, . . . , d

Nd , d ∈ ℝNd , τ represents 

the time interval of patient visits, τ =  [∆1, ∆2, . . . ∆T], τ ∈

ℝNt . Specifically, the ∆i  represents the time interval 

between the patient's t  visit, vi , and the last visit, vi−1 , 

which should be noted as ∆1= 0.  

 

The problem in this paper can be described as, given the l 

sample size dataset  

D, D = { (P1, y
1
), (P2, y

2
), . . . , (Pl, y

l
) } = { (Pi, y

i
) }i=1

l , in 

which the input Pi for each sample consists of patient visit 

medical feature sequence V, visit interval τ and individual 

feature τ, namely Pi = {V, d, τ} = { [v1, v2, . . . vT], d, τ}. The 

goal of this paper is to learn a non-linear mapping function to 

assess the diabetic CVD risk of patients based on the medical 

visit data D , while minimizing the error of the target 

function and the sample output, as shown in formulas (4-1) 

and (4-2):  

𝑦 𝑖 = 𝑓(𝑃𝑖 ; 𝜔) (4-1) 

𝜔∗ = 𝑎𝑟𝑔𝑚𝑖𝑛
𝜔

 𝐿(𝑦𝑖 , 𝑦 𝑖)
𝑙
𝑖=1  (4-2) 

Specifically, f (·) is the nonlinear mapping function, L (·) is 

the loss function for defining the model task, and ω is the 

parameter of the model network. y 
i
 represents the output of 

the target model prediction function, and y
i
 represents the 

true value of the risk of the cardiovascular disease 

occurrence in the i
th

 patient, where, y 
i
, y

i
∈  0, 1 . It should 

be pointed out here that in order to better express the size of 

the patient's current cardiovascular disease risk, y 
i
, the 

binary label, and the y 
i
 (y 

i
∈  [0, 1]), are also used as the 

output.  

 

4. Model Approach 
 

4.1 Overall Architecture 

 

As shown in figure 4-1, Causal cardiovascular disease risk 

assessment model causal-net mainly consists of three parts: 

(1) LSTM module based on Causal stability and time 

awareness; (2) individual feature interaction module based 

on attention mechanism; (3) Output module based on fully 

connected network.  

 

Figure 4-1: Overall architecture of Causal-aware TLSTM model 

 

The model Causal-Net takes the feature sequenceV in the 

patient's medical visit record and the visit time interval τ as 

the input of the Causal and Time-aware LSTM module 

(Causal-aware TLSTM) based on causal stability and 

time-perception, which first obtains the weight factor αi of 

each step by balancing covariates, reducing the influence of 

different complication disease background on the index 

characteristics of diabetes patients. Subsequently, the 

Causal-aware TLSTM module performed feature learning of 

patient metabolic metrics based on the weight factor 

αi, viand τi at the current step, yielding the hidden state hi 

and ci at the time of i. In order to further study disease risk 

in the hidden state information, this chapter in the second 

stage of individual feature interaction module, set K size 

observation window, the previous stage output 

hT−K: T (hT−K: T =  [hT−K, . . . , hT−1, hT]) and patient 

individual characteristics d as input to the stage, based on 

the attention mechanism of disease information hidden state 

sequence hT−K: T reweighted weight 

β (β =  [β
T−K

, . . . , β
T−1

, β
T

]).  Use these modified 

reweighted hidden state sequence h T−K: T (h T−K: T =
 [h T−K, . . . , h T−1, h T]) and individual characteristics d  to 

obtain a more accurate and comprehensive disease risk 

representation u. Finally, the model uses a fully connected 

network for disease risk assessment to obtain a risk 

assessment value ofy  between 0 and 1, and then it is mapped 
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to {0, 1} via the softmax function to obtain the y .  

 

4.2 LSTM based on causal stability and time awareness 

 

This section describes the first module in Causal-Net, the 

Causal stability and time-aware long short-term Memory 

Unit (Causal-Aware TLSTM). This module is mainly 

composed of two parts: weight factor calculation based on 

covariate balance and causal stability learning based on time 

awareness.  

 

4.2.1 Weight calculation based on covariate balance 

There are a large number of diabetic complications, and their 

prevalence varies greatly, leading to unbalanced distribution 

of patients' disease background, which brings some 

distribution differences to the dataset, resulting in inaccurate 

parameter estimation and unstable prediction of unknown 

test data. Intuitively speaking, since the incidence of diabetic 

nephropathy is higher than that of other complications, the 

distribution of patients' disease backgrounds in the data sets 

is unbalanced. In this condition, in order to better improve 

the performance of the model, such as accuracy, the model 

will pay more attention to and learn the data characteristics 

of patients with nephropathy complications during training, 

while ignoring the information of patients with other disease 

backgrounds.  

 

Therefore, this section proposes a feature de-correlation 

weighting algorithm based in literature [10] to calculate the 

weight factor αi for each step of visit data, by adjusting the 

weight size to achieve covariate balance, thus removing the 

impact of the difference in disease background distribution, 

and increasing the accuracy and stability of the model. The 

main calculation process is as follows:  

 

First, One characteristic variable in all clinic medical 

characteristics is Zi (i ∈ Nv, Zi ∈ ℝ
Nn∗1

), Nn  represents the 

total number of visits of all patients in the dataset, Initialized 

causal weight is W (W ∈ ℝ
Nn∗1

, α ∈ W);  To achieve a 

covariate equilibrium, That is, to make the difference 

between E [Zi
TΣWZ−i]  and E [Zi

TW]E [Z−i
T W]  as small as 

possible, Where ΣW = diag (W1, . . . , WNn
),  Wj =

Nn

j=1

Nn , Z−i represents the other feature variables other than Zi, 

The objective function can therefore be described as shown 

in the formula (4-3):  

𝑊𝛼 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝑊

 ||𝐸[𝑍𝑖
𝑇𝛴𝑊𝑍−𝑖] − 𝐸[𝑍𝑖

𝑇𝑊]𝐸[𝑍−𝑖
𝑇 𝑊]||2

2𝑁𝑣
𝑖=1  

(4-3) 

4.2.2 TLSTM unit based on causal stability 

Traditional TLSTM considers that if the time span between 

two consecutive records is large, the current dependence on 

the previous record should be differentiated, that is, the 

short-term memory should be adjusted according to the time 

span between records with time steps t and t−1 without 

dismissing the long-term effects. Therefore, compared with 

LSTM, the main improvement of TLSTM architecture is the 

adjustment of the amount of information contained in the 

previous time step. TLSTM focuses on the information 

dependency between vt−1 and vt and proposed the heuristic 

decay function Υ (·),  applied to short-term memory 

information Ct−1
S  to obtain the adjusted short-term memory 

C t−1

S
.  

 

Similarly, the contribution of patient records to the current 

information should vary differently, and to reduce the 

data-agnostic distribution difference effects of the disease 

background, emphasize the attention learning of the current 

visit information vt  during the TLSTM unit updating 

process. This subsection presents the TLSTM-based on 

causal attention, namely Causal-aware TLSTM, as shown in 

Figures 4-3. Causal-aware TLSTM uses the feature causal 

weight Wα calculated in the previous subsection to adjust 

the current candidate memory C  during the neural network 

unit update, allowing the model to pay attention to more 

complete information on the clinic feature.  

 

Figure 4-3: TLSTM unit based on causal stability1 

Figure 4-3: The cell of Causal-aware TLSTM 

 

In Causal-Aware TLSTM, the cell status update process at 

time step t is as follows:  

 

In the cause-Aware TLSTM unit update process, the 

calculation principle of long short-term memory at time step 

t-1 is shown in equations (4-4) to (4-7):  

𝐶𝑡−1
𝑆 = 𝑡𝑎𝑛𝑕(𝑊𝑠𝐶𝑡−1 + 𝑏𝑠)  (4-4) 
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𝐶 𝑡−1
𝑆 = 𝐶𝑡−1

𝑆 ∗ 𝛶(∆𝑡)  (4-5) 

𝐶𝑡−1
𝐿 = 𝐶𝑡−1 − 𝐶𝑡−1

𝑆   (4-6) 

𝐶𝑡−1
∗ = 𝐶𝑡−1

𝐿 + 𝐶 𝑡−1
𝑆   (4-7) 

 

The calculation principle of the candidate memory C 
∗
 based 

on the causal weights is shown in Equations (4-8) and (4-9):  

 

𝐶 = 𝑡𝑎𝑛𝑕(𝑊𝑐𝑣𝑡 + 𝑈𝑐𝑕𝑡−1 + 𝑏𝑐)  (4-8) 

𝐶 ∗ = 𝐶 ∗ 𝛼𝑡   (4-9) 

 

The calculation process of forgetting gate ft, input gate it 

and output gate ot are as shown in equation (4-10), (4-11) 

and (4-12) respectively:  

 

 ft = σ (Wfvt + Ufht−1 + bf)    (4-10)  

 it = σ (Wivt + Uiht−1 + bi)    (4-11)  

 ot = σ (Wovt + Uoht−1 + bo)    (4-12)  

 

The memory unit Ct and the hidden state ht at time step t in 

Causal-aware TLSTM are calculated as shown in formulas 

(4-13) and (4-14):  

 

Ct = ft ∗ Ct−1
∗ + it ∗ C 

∗
 (4-13)  

ht = ot ∗ tanh (Ct) (4-14)  

 

where vt  represents the current input, ht−1 and ht  are the 

hidden states of the previous and current steps, respectively, 

and Ct−1 and Ct are the unit memories of the previous and 

current steps, respectively. ∆t  is the access time interval 

between vt−1 and vt, and Υ (·) is a heuristic decay function 

based on ∆t values, which have less effect on short-term 

memory. Ct−1
S  represents short-term memory in the previous 

step, C t−1

S
 is short-term memory after adjustment of the time 

inspiration function, Ct−1
L  represents long-term memory in 

the previous step, and Ct−1
∗  represents long and short-term 

memory after adjustment. As with the standard LSTM unit 

update process, C  is the current candidate memory, C 
∗
 is 

the candidate memory based on the causal weight αt 

adjustment, and the current unit memory Ct  is obtained 

based on these two parts of the unit memory. In addition, 

W, U and b are all network parameters to be trained. αt 

represents the weight size of the patient's current visit record, 

which is used to solve the problem of inaccurate parameter 

estimation and unknown prediction caused by differences in 

disease background, and enhance model stability learning.  

 

4.3 Attention-based interaction of individual features 

 

In addition to the metabolic data in medical visit 

characteristics, the information carried by individual 

characteristics of patients, such as history of other 

complications under diabetes, age and gender, also plays an 

important role in improving the performance of the target 

task in this paper, which should not be ignored. In addition, 

the disease risk information concerned by the various hidden 

state hi  obtained in the Causal-aware TLSTM in the 

previous stage is not the same, and its contribution size to the 

assessment task should not be regarded as undifferentiated. 

Therefore, in order to obtain more accurate feature 

information that can represent the current disease risk of 

patients, this paper designed an individual feature interaction 

module based on attention mechanism in Causal-NET, as 

shown in Figure 4-4 below.  

 

As shown in Figure 4-4, This module uses the vector 

embedding and the individual patient feature vector q 

obtained from feature extraction and the disease information 

hidden feature sequence obtained in the previous module 

Causal-aware TLSTM 

hT−K: T (hT−K: T =  [hT−K, . . . , hT−1, hT]) are used, as the 

input, And use individual features to correct the hT−K: T 

output in the learning Causal-aware TLSTM: T, To get more 

accurate disease information representing the u , For the 

diabetic cardiovascular disease risk assessment task used in 

this paper.  

 

Figure 4-4: Interaction module of individual characteristics 

based on attention 2 

 

4.3.1 Individual characteristics representation layer 

First, this section counts the discrete number of the discrete 

individual features as the word list size, and the word vector 

dimension size is set to be Ns according to the size of the 

available number of values of the discrete features. 

Subsequently, the discrete individual features  [d1, . . . , dNd
] 

were input to the embedding layer to obtain the embedding 

vector of individual features based on Word2Vec, 

 e1, . . . , eNd
 , where ei ∈ ℝ

Ns
. The matrix representation 

q  (q ∈ ℝ
1× (Nd∗Ns) 

) is finally multiplied by the parameter 

matrix Wq (Wq ∈ ℝ
 (Nd∗Ns) ×Nh

) to obtain the latest 

representation of individual characteristics q (q ∈ ℝ
1×Nh

).  

 

4.3.2 Calculation of feature weights 

Take the individual feature q and the hidden state sequence 

hT−K: T as input to calculate the external product p of the 

two features, and then combine the feature external product 

p into Concat splicing together with the individual feature q 

and the hidden state sequence hT−K: T to get a new feature 

representation. Then the new feature representation is input 

into the multi-fully connected network, ReLu is selected as 

the activation function, and finally the reweighted weight of 
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the hidden state sequence is obtained by the linear layer 

output, β (β =  [β
T−K

, . . . , β
T−1

, β
T

]).  

 

Here, individual hi and q are taken as examples, and the 

computational principle is shown in Figure 4-5.  

 

 

 

 
Figure 4- 5: Activation Unit calculation process3 

 

The calculation process is shown in Equations (4-15) to 

(4-18):  

p = q ∗ hi (4-15)  

R1 = ReLu{Wr1 (q ⊕ p⨁hi)  + br1} (4-16)  

R2 = ReLu (Wr2R1 + br2) (4-17)  

β
i

= SoftMax (Wr3R2 + br3) (4-18)  

 

4.3.3 Feature Interaction layer 

Based on the attention weight β obtained in the previous 

step and the hidden state sequence hT−K: T, get the corrected 

disease hidden information 

h T−K: T (h T−K: T =  [hT−K
′ , . . . , hT−1

′ , hT
′ ]).  The h T−K: T  is 

input into the Sum Pooling layer for summing, and then 

stitched together with the individual feature information q 

to obtain the final disease information feature u 

representation.  

 

The calculation process is shown in formula (4-19):  

 

u = q⨁ β
T−j

K
j=0 hT−j (4-19)  

 

4.4 Risk assessment of diabetic cardiovascular disease 

 

The disease risk assessment module takes the output u of 

the individual feature interaction module as the input. 

Through a fully connected network, a binary label y  (model 

training process) output indicates the risk of the patient's 

diabetic cardiovascular disease. It should be noted that in 

order to better display the size of the disease risk, in addition 

to the binary label y  output during the model training, the 

evaluation results before softmax operation y 
i
 is used as 

the output.  

 

Furthermore, this chapter selects the cross-entropy function 

to calculate the losses, with a mathematical representation as 

shown in formulas (4-20), (4-21), and (4-22):  

 

y = Wyu + by (4-20)  

y = softmax (y ) (4-21)  

ℒ (y, y )  = − (y log (y)  +  (1 − y ) log (1 − y) (4-22)  

 

Specifically, Wy  and by  are the network parameters, y 

represents the true value of the patient's diabetic CVD risk, y  

is the output value of the model disease risk assessment 

function, and ℒ (·) is the loss function of the model task.  

 

5. Experiments 
 

5.1 Experimental data description 

 

The study was approved by the ethics Committee of Ruijin 

Hospital, and written informed consent was obtained from 

each participating patient in accordance with the Declaration 

of Helsinki. The patient information is shown in Table 5-1. 

Our dataset consists of biochemical index data and personal 

information of diabetic patients in Shanghai Ruijin Hospital 

from August 1, 2009 to July 30, 2021. A total of 33048 

patients and 61646 medical records were included, including 

19899 men and 13149 women. Based on domestic and 

foreign literature and feature selection, Seven metabolic 

indicators, including glycosylated hemoglobin (HbA1c), 

2-hour postprandial blood glucose (GLU4), cholesterol 

(CHOL), triglyceride (TG-B), high-density lipoprotein 

(UHDL), low-density lipoprotein (ULDL) and 

apolipoprotein B (APOB), were selected as metabolic 

characteristics in this dataset. At the same time, six 

individual characteristics, including gender, age, history of 

diabetic foot disease, history of diabetic eye disease, history 

of diabetic nephropathy and history of diabetic peripheral 

neuropathy, were selected as the experimental data together 

with the above seven metabolic characteristics.  

 

Table 5- 1: Details of Patient Information 

 Statistic Value 

DataSet 

# patients 33048 

# visit 61646 

# positive label 12680 

# negative label 20368 

% female 60.21% 

 

5.2 Experimental Model 

 

We evaluated our proposed causal-NET model on baseline 

models, including three traditional machine learning 

methods (LR, RF, GBDT) and four deep learning methods 

(RNN, GRU, LSTM, and TLSTM). In order to demonstrate 

the effectiveness of Causal stability and individual feature 
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interaction in causal-NET, We also implemented five 

versions of causal-NE and TLSTM, respectively. It is worth 

noting that there are many advanced clinical prediction 

models that utilize attention mechanisms to extract 

long-term dependencies in patient history visits [41, 42, 43, 

19], and they are orthogonal to our contribution. Cause-net 

focuses on incorporating the heterogeneity of individual 

patient characteristics and the difference of disease 

background into model learning, which can be easily 

combined with attention mechanisms.  

 

5.3 Experimental environment and evaluation indicators 

 

We implement our proposed baseline and target models on 

TensorFlow 2.2.0 and Scikit-Learn 1.0.2, and use Adam 

optimizer for training. Through parameter tuning, in this 

section, the Epoch and Batch Size parameters during model 

training are set to 100 and 125, the learning rate is set to 

0.001, the dimension of the individual feature embedding 

vector used in the deep learning baseline model and the 

Causal-Net model is set to 64, and the dimension of the 

hidden vector is set to 128. In addition, the dataset is 

randomly divided into 10, and all experimental results are 

averaged by ten-fold cross-validation. Seven groups of 

training are used each time, one group of validation and two 

groups of testing, and the validation set is used to determine 

the best value of parameters in the training iteration.  

 

Finally, we use the four most commonly used evaluation 

indexes in dichotomous classification problems as 

experimental evaluation criteria to compare the performance 

of all methods. Namely, Accuracy, Recall, F1-score and 

Area Under the Receiver Operating Characteristic curve 

(AUC).  

 

5.3 Comparative Experiment 

 

In order to better discuss and analyze the performance of 

causal-net model on the risk assessment task of diabetic 

cardiovascular disease, and evaluate the effectiveness of 

TLSTM unit and individual feature interaction layer based 

on Causal stability learning in the target model, a number of 

comparative experiments were set up in this section. Four 

experiments were conducted, including the comparison 

experiment of important parameters of the experiment, the 

comparison experiment of individual feature fusion method 

and the whole model comparison experiment.  

 

5.3.1 Selection of important parameters 

Parameter T: Diabetic disease is a chronic metabolic disease. 

To accurately assess the risk of diabetic cardiovascular 

disease, it is important to track and learn the long-term health 

status of patients. According to the data analysis in Section 

3.1.3, 65.37% of the patients had only one visit record, and 

the sample of patients with long-term regular visits (T > 10 

here) was small, accounting for only 1.17% of the data set. In 

order to reduce the impact of the difference in data volume, 

this section only discusses the case when the step size T is 

less than or equal to 7. At the same time, in order to increase 

the research scope of data and reduce data loss, this section 

discusses the data records of the last T times of patients, that 

is, all patients have at least one visit record. The data 

statistics are shown in Figure 4-6.  

 
Figure 4-6: Statistics of the number of visits not less than T4 

 

where, K=1 was set, and the step size T was compared on the 

model Causal-Net. The best experimental results were 

obtained by adjusting the experimental parameters such as 

Epoch and Batch, as shown in Table 4-3.  

 

Table 4-3 Parameter selection of step size T1 

Step T Accuracy Recall F1-Score AUC 

T=1 0.8972 0.7893 0.8549 0.8768 

T=2 0.9033 0.8054 0.8672 0.8859 

T=3 0.9148 0.8687 0.8911 0.9072 

T=4 0.9251 0.8786 0.9028 0.9171 

T=5 0.9314 0.8817 0.9188 0.9261 

T=6 0.9260 0.8317 0.9008 0.9108 

T=7 0.9211 0.8731 0.9007 0.9150 

 

The experimental results show that, with the increase of T=1 

to T=5, the evaluation indexes of the model are getting better, 

and the long-term information of patients can be obtained by 

tracking and learning, which can effectively improve the 

accuracy of disease risk assessment. It is considered that this 

is caused by diabetes itself as a chronic metabolic disease. 

Therefore, when the amount of data allows, it is necessary to 

collect as much information as possible to improve the 

accuracy of the disease risk assessment task. In addition, it 

can be seen from Table 4-3 that when T is 5, the model index 

reaches the best level and then begins to show a downward 

trend. Combined with the data statistics in Figure 4-6, the 

influence of data volume is considered here. Therefore, in 

combination with the experimental results in Table 4-3 and 

to reduce the impact of too small data volume on other model 

experiments, the patient visit step T=5 is selected as the 

parameter of the subsequent experiments in this chapter. 

  

Parameter K: T=5 is set here to discuss the influence of 

parameter K in the interaction module of individual 

characteristics on the model. The experimental results are 

shown in Table 4-4.  
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Table 4-4: Parameter selection of observation window K2 

Watch window K Accuracy Recall F1-Score AUC 

K=1 0.9314 0.8817 0.9188 0.9261 

K=2 0.9433 0.8984 0.9333 0.9390 

K=3 0.9267 0.8441 0.9109 0.9178 

K=4 0.9173 0.8978 0.9051 0.9152 

K=5 0.9102 0.8495 0.8978 0.9000 

 

As shown in Table 4-4, when K=2, the model achieves the 

best performance; When K is greater than 2, the performance 

of the model decreases, which is because the long-term 

dependence of information has been modeled and learned in 

Causal-Net. When T=5 and the step size is small, too much 

value of K will cause the model to pay too much attention to 

the redundant part of feature information and reduce the 

performance of the model, which proves the advantages of 

LSTM unit in long-term information dependence learning to 

a certain extent. Therefore, K=2 is chosen as the observation 

window size of the interaction layer of individual features in 

subsequent experiments.  

 

5.3.2 Comparison of individual feature fusion methods 

The interaction of individual features based on attention 

mechanism is the focus of the design of Causal Net model in 

this chapter. In order to prove its effectiveness, four versions 

of Causal Net and TLSTM are respectively implemented 

based on traditional feature fusion methods (Concat and Add 

here). Table 4-5 describes the evaluation results of different 

feature fusion methods on model accuracy, recall and F1 

score. "Metabo" in Table 4-5 indicates that the model only 

uses the metabolic characteristics of patients as input data, 

and "Concat" and "Add" indicate the individual feature 

fusion methods adopted by the model. Here, the metabolic 

medical characteristic data of patients is defined as "Metabo", 

the individual characteristic data of patients is defined as 

"Indifac", and the attention-based individual feature 

interaction method proposed in this chapter is defined as 

"Interfus".  

 

It should be noted that, in order to further observe and 

compare the performance of different feature fusion methods 

on the task of risk assessment of diabetic cardiovascular 

disease, the performance of AUC on each model was 

separately presented in this experiment, as shown in Figure 

4-7.  

 

Table 4-5: Comparison of feature fusion methods 

Model Metabo Indifac Interfus Accuracy Recall F1-Score 

TLSTM_Metabo Square root   0.8983 0.7688 0.8693 

TLSTM_Add Square root Square root  0.9243 0.8656 0.9069 

TLSTM_Concat Square root Square root  0.9209 0.875 0.8974 

TLSTM_At Square root Square root Square root 0.9312 0.8762 0.9117 

Causal-Net_Metabo Square root   0.9008 0.8281 0.8724 

Causal-Net_Add Square root Square root  0.9267 0.8817 0.9136 

Causal-Net_Concat Square root Square root  0.9338 0.8602 0.9195 

Causal-Net Square root Square root Square root 0.9433 0.8984 0.9333 

 

 

Figure 4-7: Comparison of feature fusion methods on AUC5 

 

As can be seen from Table 4-5 and Figure 4-7, the traditional 

TLSTM model and the model Causal-Net proposed in this 

chapter can also achieve good results when only metabolic 

indexes are used as model input data, with Accuracy indexes 

reaching 89.83% and 90.08%, respectively. The AUC index 

was 88.44% and 88.97%, respectively. Then, Concat and 

Add, the traditional feature fusion methods, were used to 

Add the individual feature data into the model learning, and 

the F1-score and Recall indexes of the above two basic 

models were significantly improved. Compared with 

TLSTM_Metabo, TLSTM_Concat increased the index 

Recall by 13.81%, and Causal Net_Add increased the index 

F1-score by 4.72% compared with Causal Net_Metabo. This 

shows the importance of individual feature learning in 

disease risk task.  

 

In addition, when the model adopts the attentional 

mechanism based individual feature interactive fusion 

method proposed in this chapter (namely TLSTM_At and 

causal-Net), the Accuracy, Recall and F1-score of other 

evaluation indexes are significantly better than other models 

and fusion methods. The accuracy of TLSTM_At and 

Causes-NET reached 93.12% and 94.33%, the recall rate 

was 87.62% and 89.84%, the F1 score was 91.17% and 

93.33%, and the AUC index was 92.14% and 93.90%, 

respectively. The results showed that TLSTM_At and 

Causes-NET had the best performance in their comparison 

models. The experimental results strongly prove that the 

individual feature interaction layer is effective in improving 

the performance of the target task.  
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5.3.3 Causal stable learning analysis 

From the data analysis in Section 3.1, it can be seen that the 

background of diabetic complications among the patients in 

this dataset is different. Therefore, the experiment in this 

section will discuss the performance of the long short-term 

memory unit based on Causal stability and time perception in 

the causal-net model on this target task. According to the 

distribution statistics of individual characteristics of patients 

in Chapter 3, in order to reduce the error caused by the small 

amount of data, the background conditions of five diseases 

with a large number of patients were selected here. The 

details are shown in Table 4-6 below.  

 

Table 4-6: Prevalence of diabetic complications3 

Alpha code Diabetes Complications 

A No other complications of diabetes occurred 

B Only diabetic nephropathy 

C Only diabetic eye disease 

D Only diabetic peripheral neuropathy 

E Concurrent diabetic nephropathy and diabetic eye disease 

 

In order to facilitate the observation of the impact of 

differences in disease background, data of patients without 

other complications of diabetes were used as the training set, 

and data of patients in Table 4-6 were used as the test set. 

The ratio of training set to test set was 4: 1 for data 

preparation. The experimental results are shown in Figure 

4-8.  

 

It can be seen from Figure 4-8 that TLSTM and 

causal-NET_I models without Causal weights perform best 

when the patient samples in the training set and test set are of 

the same disease background, namely, data set A, and the 

evaluation indexes such as Accuracy, AUC and Recall all 

reach the maximum value. At the same time, it can be found 

that the model TLSTM and causal-NET_I without Causal 

weights in the rest of the test sets, that is, when the patient 

samples in the training set and the test set have different 

disease backgrounds, the model performance is significantly 

different from that in the test set A. When the Causal stability 

learning module is added to the model, which refers to 

TLSTM_I and causal-net, it can be seen from the figure that 

the evaluation indexes of the model on different test sets are 

relatively similar in size, which can reflect the stability of the 

model to a certain extent. By comparing the two groups of 

models, namely, model TLSTM and TLSTM_I, and model 

causal-net and causal-net_i, it can be seen that the model 

based on Causal stability and time awareness has more stable 

and better index performance, and can better complete the 

task of risk assessment of diabetic cardiovascular disease.  

 

a) Model Accuracy on different test sets b) Model AUC on different test sets 

 

Model Recall on different test sets Model F1-Score on different test sets 

Figure 4- 8: Comparison of models in different disease backgrounds6 

 

5.3.4 Overall comparison of models 

In order to further observe the performance of the 

causes-NET model in the risk assessment task of diabetic 

cardiovascular disease, this section evaluates the 

causes-NET model proposed in this chapter on different 

baseline models, including LR, RF, GBDT and RNN, GRU, 

RNN and RNN. Four deep learning methods, LSTM and 

TLSTM, were proposed in this section. The experimental 

results are shown in Table 4-7. The performance of disease 

risk assessment tasks on machine learning is almost worse 
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than that of the deep learning model, which is considered 

because the machine learning model loses the timing 

information of medical visits and the individual 

characteristics of patients. At the same time, the results in the 

table show that TLSTM is superior to LSTM model, which 

indicates the importance of irregular visit time information in 

patients' medical data in the risk assessment task of diabetic 

cardiovascular disease. In addition, it should be noted that 

the individual feature fusion method of TLSTM model here 

is "Concat" method, which has a better performance in the 

previous section. In this case, Causal Net, the model 

proposed in this chapter, also shows a significant advantage.  

 

Table 4-7: Comparison of models on target tasks4 

Model Accuracy Recall F1-Score AUC 

LR 0.8497 0.7485 0.7913 0.8302 

RF 0.8608 0.8010 0.8225 0.8489 

GBDT 0.8603 0.8147 0.8352 0.8565 

RNN 0.9078 0.8441 0.8895 0.9009 

GRU 0.9031 0.8548 0.8858 0.8979 

LSTM 0.9152 0.8550 0.8959 0.9075 

TLSTM 0.9243 0.8656 0.9069 0.9180 

Causal-Net 0.9433 0.8984 0.9333 0.9390 

 

In conclusion, in this section, the important modules and 

their overall performance of the model Causal-Net are 

experimentally analyzed and compared. At the same time, 

the model parameter selection is compared, and the optimal 

parameter is selected. The comparative experimental results 

with the baseline model provide evidence for the 

effectiveness and superiority of the cause-NET model in the 

target task.  

 

6. Summarizes 
 

In this study, we propose a novel deep learning model for the 

risk assessment of diabetic cardiovascular disease. Our 

feasible model was divided into three stages. In the first stage, 

the patient's visit record and the time between visits were 

taken as the input, and a set of causal weights were obtained 

based on the covariate balance, which were used to weaken 

the confounding influence between variable features and the 

target task, and enhance the stable learning of the model. In 

the second stage, the causal weights obtained in the previous 

stage and the individual characteristics of patients were used 

as inputs, and through the redesigned CA-TLSTM unit, the 

effective information in the current patient visit data was 

focused on learning, and the preliminary disease information 

feature vector was obtained. Then, combined with the 

individual feature interaction layer, the individual features of 

patients and the current disease information features are 

interacted and integrated to obtain a more comprehensive 

and accurate disease risk feature representation of the final 

feature information. In the third stage, the fully connected 

layer is used for our final disease risk prediction. 

Experimental results show that our model based on causally 

enhanced CA-TLSTM and individual interaction design can 

better learn effective features, making it consistently better 

than the basic model. Compared with other models, our 

model also consistently performs better on this task, with the 

experimental evaluation index reaching 94.33%, 89.84%, 

93.33% and 93.90% in model accuracy, recall, F1 score and 

receiver operation feature curve, respectively.  

 

Our proposed model effectively takes the causal relationship 

between risk factors and the risk of diabetic cardiovascular 

disease into account in the learning of the model, and 

enhances the stable learning of the model. At the same time, 

the integrated learning of individual characteristics of 

patients strengthened the attention to the heterogeneity of 

individual characteristics of patients, emphasized the clinical 

significance of individual characteristics, and solved the 

problems of confounding association between risk factors 

and personalized auxiliary diagnosis. In clinical practice, we 

hope that our model can help physicians identify patients at 

high risk of diabetes cardiovascular disease to prevent or 

delay the occurrence of adverse outcomes. In the future, the 

adaptability and effectiveness of our model in cross-hospital 

and cross-disease problems need to be further verified on a 

larger scale, so as to better promote the application of 

artificial intelligence models in the field of diabetes 

complication risk prediction.  
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