
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 10, October 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Twin Pairing Algorithm for Longest Common

Subsequence

Sathya Narayanan P S

Abstract: Words are the building blocks of every language. Those words are built up by letters (characters). Those characters varying

in their distribution based on the laws of permutation and combination give various Sequences. Those sequences might be either

meaningful or even absurd in human language, but all of such Sequences are extremely meaningful when it comes to the world of

computer processing and Analysis. Each of those sequences might carry something useful for any personnel from a specific domain.

The Longest Common Subsequence which is shortly termed as the LCS is one such type of sequences where there are set of characters

that appear in same order relatively but they might or might not be in contiguous form. This scenario occurs between more than one or

multiple sequences. Such type of sequence is known to be an LCS or Longest Common Subsequence. This LCS is mostly used in the

domains like linguistics, bioinformatics, Common sequence identification, biometrics, revision control systems/Version control systems

(GIT). The Twin Pairing algorithm can find the LCS between strings at an efficient Space Complexity and Time Complexity when

compared to the Traditional Algorithms such as Dynamic Programming approach and the recursion. The Twin Pairing algorithm can

achieve the job of finding the LCS at an unbelievable Space Complexity of O(1) which is actually Constant Space Complexity and Time

Complexity O (n log(m) + m log(n))where m and n are lengths of string1 and string2 among which LCS is to be obtained.

Keywords: Twin Pairing algorithm, Longest Common Subsequence, Constant Space Complexity, Space Complexity

1. Introduction

The Longest Common Subsequence is actually a common

Sequence between all the strings among which it needs to be

derived. In this paper to explain the Twin Pairing algorithm

the conventional way is followed. As per the conventional

way the number of strings among which the LCS is to be

found is considered to be Two (2). Any one string is

imagined to be written character by character in a horizontal

line and the other is written in a vertical line in the same

manner. There are two pointers for tracing both of them.

One pointer moves horizontally and the other moves

vertically (assumption). Since it is known that LCS is a

common sequence in both the strings every character of the

LCS is said to be a twin. It is said to be a twin because it is

occurring one time in each of the string. Once in the

horizontally written string and the next time in the vertically

written string.(1 + 1 =2) if its‟ 2 then it may be said as a

Twin. Both the pointers keep progressing until one such

Twin pair is found. Once the Twin pair is found the

character is appended into the variable that is reserved

priorly for finding the LCS. Then after this the pointer that

was used to iterate over rows is moved in such a way that it

points the next row of the current row which also skips the

left-out characters in the current row before this movement.

This is done because it is understood that there is no

character of LCS involved in any of the remaining

characters of that row, Similarly an adjustment in the pointer

that is pointing to the current column is also made by

pointing that pointer to one column ahead of the column

where the Twin was found recently. The process of iteration

is continued in the same manner. To find the next twin there

is only one condition that the indices (row and column) of

both the characters involved in the Twin pairing should be

greater than that of their previous respective twin‟s index. If

this condition is satisfied then it is considered to be another

twin pair and that character is also appended into the same

reserved string. This process is continued in the same

manner until the strings are exhausted. Swapping of the

primarily input strings is done and the same process is

repeated with using another separate reserved variable for

the answer of LCS this time. The sizes between both of

those answer variables is compared and the one with greater

size is declared to be the LCS.

2. Methodology

As per the logic of Twin Pairing Algorithm only the Twin

Pairs of characters are considered to be a part of the LCS.

Twin Pairs are the characters that occur in all the strings at-

least once. In the Twin Pairing algorithm there are two

strings declared for getting the input strings from user since

the number of strings here on among which the LCS needs

to be found is considered to be two. A variable named

current_twin is declared and initialized to be -1. This

variable current_twin is used to store the index on which the

current twin is occurring. The index stored into that is

actually the columnar index. In other words only the index

of the horizontally written strings‟ character for which

another similar character which is actually said to be it‟s

twin partner can be found in the vertically written string is

stored into the variable named current_twin. Two variables

named ans1 and ans2 are declared to store the results of the

algorithm in each time the algorithm is implemented. The

lengths of both the input strings are calculated for iterating

both the strings to their correct length. Two pointers named i

and j are declared and initialized to be 0. These two pointers

are declared for iterating both of the input strings among

which the LCS is to be found. Now iteration is done over

both the strings simultaneously in such a manner that every

character of one string is compared with every character of

the other string. Once the loop1 is entered into the starting

index for iteration of loop2 is set to be one ahead of the

current Twin Pair‟s index. That is actually set as

j=current_twin + 1. Once an equivalence between the

characters of both the string is encountered it is considered

to be the Twin Pair and that character is appended into the

string named ans1. This same way is continued until all the

characters of the string which is considered to be written in

an vertical manner is exhausted. In simple words this is

repeatedly done until the string which is iterated by the

pointer i has finished comparing all its‟ characters.

Paper ID: SR221023221422 DOI: 10.21275/SR221023221422 1009

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 10, October 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Swapping of both the input strings is done. After swapping

the same process is repeated, but this time the result is stored

in the variable named ans2. Among ans1 and ans2 the

sequence that has the longest length is declared to be the

Longest Common Subsequence. The other sequence is just a

Common Subsequence but not the Longest Common

Subsequence.

Pseudo Code of the Implementation:

Input: string1 and string2.

Function:Twin_Pairing_LCS(string1,string2).

Output:Longest Common Subsequence.

Return type of the Function:string.

Space Complexity: O(1).

Time Complexity:O(n log(m) + m log(n)).
1) Get the string inputs among which the LCS is to be

found (say it str1 and str2).

2) Declare two string variables namely ans1 and ans2

3) Declare a variable named LCS for storing the LCS.

4) ans1 = Twin_Pairing_LCS (str1, str2).

5) ans2 = Twin_Pairing_LCS (str2, str1).

6) if (ans1.size() > ans2.size())

1) LCS = ans1

7) else

1) LCS = ans2

8) Display the LCS and its‟ size.

function: Twin_Pairing_LCS (str1, str2)

1) Declare a string named ans to store and return the

answer after Algorithm application.

2) Declare a variable current_twin and initialize it to be -1.

3) Declare two pointers i and j.

4) Initialize i to be 0.

5) for i 0 upto str1.size()

1) j = current_twin + 1

2) while (j < str2.size())

1) if (str1[i] equal_to str2[j])

1) if (j > current_twin)

1) assign current_twin = j

2) assign ans = ans + str2[j]

3) break from the loop.

 2)increment j by 1.

6) Return the ans.

Explanation with an Example: For explaining the Twin

Pairing algorithm with utmost clarity we use a worked-out

example here. It is actually a dry run or tracing of the

algorithm with an example. To do so let us consider two

strings namely string1 = “abcdaf” and string2 = “ acbcf “.

string1 is iterated by using i-pointer and string2 is iterated

using j-pointer. At first the pointer i is set to be 0.Pointer

current_twin is set to be -1. Both the string literals are

iterated one by one in a manner on which every character of

one string can be compared with every character of other

string. Below is the given pictorial representation of the

implementation of Twin Pairing Algorithm.

Figure 1

In the Fig. 1 the string1 = “ abcdaf “ is considered to be

written in a vertical manner and is iterated by the i-pointer as

per the Twin Pairing algorithm, similarly string2 = “ acbcf “

is considered to be written in an horizontal manner and is

iterated by the j-pointer of the algorithm. In the above figure

the iterations in which a twin pair is found is indicated in

green coloured curves and the iterations in which no twin

pair is found is indicated by black colour curves.

As per the Twin Pairing algorithm in the first iteration itself

a twin pair namely „a-a‟ is found, so the character „a‟ is

appended into the ans1 string which was initially empty.

Then the current_twin pointer is set to the columnar index

which is actually the j-pointer of the current index of the

string2 in which a twin pair was found. Now the

current_twin pointe holds the value of 0, so when the

iteration for string2 using the j-pointer starts next time it

starts from the index one ahead of the current_twin pointer‟s

Paper ID: SR221023221422 DOI: 10.21275/SR221023221422 1010

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 10, October 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

value. That is why it is clearly seen in the picture that the

next character (2
nd

) of string1 which is written vertically is

straight away started its‟ comparison with the character „c‟

of string2 and skipped character „a‟ of string1.

There is a twin pair „b-b‟ found in the index1 of string1 and

index2 of string2. Character „b‟ is appended into the string

ans1 and the current_twin pointer value is set to 2. Iteration

on the string2 is started from the 3
rd

 index next time.

Straight away in index2 of string1 and index3 of string2

there is another twin pair namely „c-c‟ found. Character „c‟

is appended into string ans1. The current_twin pointer value

is set to 3, So from the 4
th

 index (last index) of string2 the

next iteration will be started.

On the next couple of iterations the characters „d‟ and „a‟ are

not found to be equivalent to the last character of string2

which is actually „f‟. Hence no changes are done to ans1

string and current_twin pointer. Only j pointer is

incremented in every step upon which the termination

condition of the inner loop would be evaluated to true and

the loop will end.

In the next iteration an equivalence between the character of

string1 and string2 is found, so the „f-f‟ pair is declared as

the twin pair and the current_twin is set to 4 which is the

index of string2 in which character „f‟ was occurring. The

character „f‟ is appended into the string ans1.

At the end of this the ans1 string would be declaring the

Common Subsequence as “ abcf “. The same algorithm

would be implemented after a swapping of string1 and

string2 as shown below in the pictorial representation. The

same Twin Pairing Algorithm‟s implementation is shown in

a tabular form below in Fig. 2.

Figure 2

The Twin Pairing Algorithm follows the same steps as

mentioned above for each and every iteration. Here the only

difference is that both the strings string1 and string2 are

swapped among themselves in such a way such that

contradicting to the first time implementation as above of

the algorithm, this time the same algorithm is implemented

again on the same strings considering string2 of the previous

version to be written character by character vertically and

string1 to be written character by character horizontally.

In Fig. 2 it is shown above in a tabular format. As per the

format every character of both the strings is written into the

first cells of every row and column. Every other cell denotes

an iteration. The cells/iterations in which a twin pair can be

found is denoted by “Twin pair occurrence”. The

cells/iterations in which there occurs no match between

characters is denoted by “Non Equivalence”. The cells that

are empty are the iterations that are skipped and neglected to

save the time and reduce the Time Complexity of the Twin

Pairing algorithm.

After following the algorithm and completing all the steps as

per it, the string ans2 declares “acf” as the Common

Subsequence.

Finally the lengths of ans1 and ans2 is compared. The length

of ans1 which is 4 is found to be greater than length of ans2

which is only 3. Hence the string ans1 is assigned to be the

Longest Common Subsequence (LCS). Thus the between “

acbcf “ and “ abcdf ” is “ abcf ”, its‟ length is 4.

LCS = abcf Length of LCS = 4.

3. Discussion

The LCS is one of the most important and extremely useful

concept in the domain of Stringology and Strings. The same

Paper ID: SR221023221422 DOI: 10.21275/SR221023221422 1011

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2022): 7.942

Volume 11 Issue 10, October 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

LCS can be derived from the strings using various

algorithms. The basic way of attaining the LCS is the naïve

method using the recursion with a Time Complexity of O(n

* 2
n
) where n is the length of the strings. This can be

optimized using the memoization technique in the dynamic

programming approach. In the dynamic programming

approach of finding the LCS the Time Complexity is O(m

* n)and Space Complexity is O(m * n) where m and n is

the length of the strings. The recently found Distant Hit

algorithm (added in the reference section) does the job of

finding the LCS at a Time Complexity of O(m * n) and

Space Complexity of O(m + n) where m and n is the length

of the strings. But this Twin Pairing Algorithm can do the

same task of finding the LCS at a Time Complexity of O(m

log(n) + n log(m)) and Space Complexity of O(1). Here too

m and n are the length of the strings among which LCS is

to be found. Hence its‟ concluded that The Twin Pairing

Algorithm is the most efficient as of now for finding the

LCS.

4. Conclusion

The Universe is expanding every second “ is the believe

that most philosophers have, similarly the domains on

various fields is also supposed to be updating every second

or atleast at an every threshold of a certain time scale as

per various parameters. The domain of technology is not an

exception to it. Thus the Twin Pairing Algorithm for

finding the LCS is also such an updation in this domain.

This updation can be viewed as a contribution in the form

of knowledge to this world of adorable Computer Science

Technology.

References

[1] LCS using Recursion -Print Longest Common

Subsequence in Lexicograpgical Order in Python

(codespeedy.com)

[2] LCS using Dynamic Programming -Longest Common

Subsequence (programiz.com)

[3] Distant Hit Algorithm for LCS -

https://ijsret.com/2022/09/23/ijsret-volume-8-issue-5-

sep-oct-2022/

Author Profile

P. S. Sathya Narayanan (a.k.a Sathya) is an Engineering Graduate

from a reputed College of his locality. Currently he is serving as an

Employee in one of the most rapidly growing IT companies of the

Tech World. Sathya is interested in inventing new ways and new

Solutions for various types of both real life and Technological

problems. Being a Creative and Innovative Individual by nature he

also loves and enjoys this process very much. Technology and the

field of knowledge has given him a living and an identity, So he

wants to contribute back to the same with his creativity and

Innovation as a way of honoring it. Thus he has taken a decision of

doing Research at most of his free times and discovering solutions

to unsolved problems in technology and to discover a much more

optimal solution than the already existing solutions for problems

that are already solved and has a solution.

Paper ID: SR221023221422 DOI: 10.21275/SR221023221422 1012

https://www.codespeedy.com/print-all-the-longest-common-subsequences-in-lexicographical-order-in-python/#:~:text=1.Recursion%201%20Characters%20are%20the%20same%20%E2%80%93%20Add,call%20with%20string%202%20with%20last%20character%20removed%29.
https://www.codespeedy.com/print-all-the-longest-common-subsequences-in-lexicographical-order-in-python/#:~:text=1.Recursion%201%20Characters%20are%20the%20same%20%E2%80%93%20Add,call%20with%20string%202%20with%20last%20character%20removed%29.
https://www.codespeedy.com/print-all-the-longest-common-subsequences-in-lexicographical-order-in-python/#:~:text=1.Recursion%201%20Characters%20are%20the%20same%20%E2%80%93%20Add,call%20with%20string%202%20with%20last%20character%20removed%29.
https://www.codespeedy.com/print-all-the-longest-common-subsequences-in-lexicographical-order-in-python/#:~:text=1.Recursion%201%20Characters%20are%20the%20same%20%E2%80%93%20Add,call%20with%20string%202%20with%20last%20character%20removed%29.
https://www.programiz.com/dsa/longest-common-subsequence#:~:text=Using%20Dynamic%20Programming%20to%20find%20the%20LCS%201,one%20to%20the%20diagonal%20element.%20...%20More%20items
https://www.programiz.com/dsa/longest-common-subsequence#:~:text=Using%20Dynamic%20Programming%20to%20find%20the%20LCS%201,one%20to%20the%20diagonal%20element.%20...%20More%20items
https://www.programiz.com/dsa/longest-common-subsequence#:~:text=Using%20Dynamic%20Programming%20to%20find%20the%20LCS%201,one%20to%20the%20diagonal%20element.%20...%20More%20items
https://ijsret.com/2022/09/23/ijsret-volume-8-issue-5-sep-oct-2022/
https://ijsret.com/2022/09/23/ijsret-volume-8-issue-5-sep-oct-2022/

