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1. Introduction 
 

The idea of statistical convergence was introduced by 

Steinhaus and also independently by Fast [4] for real or 

complex sequences. Statistical convergence is a 

generalization of the usual notion of convergence, which 

parallels the theory of ordinary convergence. 

 

A biquadratic sequence (real or complex) can be defined as a 

function x: N×N ×N×N → R(C), where N, R and C denote 

the set of natural numbers, real numbers and complex 

numbers respectively. The different types of notions of triple 

sequence and biquadratic sequences were introduced and 

investigated by Sahiner [3], Esi [1], Datta [2], Debnath [7] 

and many others. 

 

Let K be a subset of the set𝑁 × 𝑁 × 𝑁 × 𝑁, and let us denote 

the set   𝑚,𝑛, 𝑘, 𝑙  ∈ 𝐾:𝑚 ≤ 𝑝,𝑛 ≤ 𝑞, 𝑘 ≤ 𝑟, 𝑙 ≤ 𝑠   by 

𝐾𝑝𝑞𝑟𝑠 . Then the natural density of K is given by 𝛿 𝐾 =

𝑙𝑖𝑚𝑝𝑞𝑟𝑠 →∞
|𝐾𝑝𝑞𝑟𝑠 |

𝑝𝑞𝑟𝑎
, where |𝐾𝑝𝑞𝑟𝑠 | denotes the number of 

elements in Kpqrs. Clearly, a finite subset has natural density 

zero and we have 𝛿 𝐾𝑐 = 1 − 𝛿(𝐾), where 𝐾𝑐 =  𝑁 𝐾  is 

the complement of K. If 𝐾1  ⊆ 𝐾2 , then 𝛿 𝐾1 ≤ 𝛿(𝐾2).  

 

Consider a biquadratic sequence 𝑥 =  𝑥𝑚𝑛𝑘𝑙   such that 

𝑥𝑚𝑛𝑘𝑙 ∈ 𝑅,m,n, k, l∈N. A biquadratic sequence 𝑥 =  𝑥𝑚𝑛𝑘𝑙   
is said to be statistically convergent to 0 ∈R, written as 

st−lim x = 0, provided that the set  

  𝑚,𝑛,𝑘, 𝑙 ∈ 𝑁4: |𝑥𝑚𝑛𝑘𝑙 − 0| ≥ 𝜖  
has natural density zero for any 𝜖 > 0. In this case, 0 is 

called the statistical limit of the biquadratic sequence x. 

 

If a biquadratic sequence is statistically convergent, then 

for every 𝜖 > 0, infinitely many terms of the sequence 

may remain outside the 𝜖 –neighbourhood of the statistical 

limit, provided that the natural density of the set 

consisting of the indices of the set terms is zero. This is an 

important property that distinguishes statistical 

convergence from ordinary convergence. Because the 

natural density of a finite set is zero, we can say that every 

ordinary convergent sequence is statistically convergent. 

If a biquadratic sequence 𝑥 = (𝑥𝑚𝑛𝑘𝑙 )satisfies some 

property P for all m, n, k, l except a set of natural density 

zero, then we say that the biquadratic sequence x  satisfies 

P for “almost all (m, n, k, l)” and we abbreviate this by “ 

a.a. (m,n,k,l).” 

 

Let  (𝑥𝑚 𝑡𝑛𝑢 𝑘𝑣 𝑙𝑤 ) be a sub sequence of x = (xmnk).If the 

natural density of theset  

 𝐾 =    𝑚𝑡 ,𝑛𝑢 , 𝑘𝑣 , 𝑙𝑤 ∈ 𝑁
4:  𝑡,𝑢,𝑣,𝑤 ∈ 𝑁4  

Is different from zero, then (𝑥𝑚𝑡𝑛𝑢 𝑘𝑣 𝑙𝑤 )
´

is called a non thin 

sub sequence of a biquadratic  sequence x. 

 

c ∈R is called a statistical cluster point of a biquadratic  

sequence x = (xmnkl) provided that the natural density of 

the set 

  𝑚,𝑛,𝑘, 𝑙 ∈ 𝑁4:  𝑥𝑚𝑛𝑘𝑙 − 𝑐 < 𝜖  
is different from zero for every 𝜖>0.We denote the set of 

all statistical cluster points of the sequence x by Γx. 

 

A biquadratic sequence x=(xmnkl) is said to be 

statistically analytic if there exists a positive number M 

such that 

𝛿    𝑚,𝑛,𝑘, 𝑙 ∈ 𝑁4:  𝑥𝑚𝑛𝑘𝑙  
1
𝑚+𝑛+𝑘+𝑙 ≥ 𝑀  = 0 

 

The theory of statistical convergence has been 

discussed in trigonometric series, summability theory, 

measure theory, turnpike theory, approximation theory, 

fuzzy set theory and so on. 

 

The idea of rough convergence was introduced by Phu 

[9], who also in- traduced the concepts of rough limit 

points and roughness degree. The idea of rough 

convergence occurs very naturally in numerical 

analysis and has interesting applications. Aytar [1] 

extended the idea of rough convergence into rough 

statistical convergence using the notion of natural 

density just as usual convergence was extended to 

statistical convergence. Paletal.[8] extended the notion 

of rough convergence using the concept of ideals which 

automatically extends the earlier notions of rough 

convergence and rough statistical convergence. 
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n o n o 

In this paper, we introduce the notion of rough statistical 

convergence of biquadratic sequences. Defining the set of 

rough statistical limit points of a biquadratic sequence, we 

obtain rough statistical convergence criteria associated 

with this set. 

 

Throughout the paper r be a non negative real number. 

 

2. Definitions and Preliminaries 
 

Definition 2.1: A biquadratic sequence x = (xmnkl) is said 

to be rough convergent (r -convergent) to a 

(Pringsheim’s sense), denoted as xmnkl→ a, provided 

that 

              ∀ 𝜖 > 0,∃ 𝑖𝜖 ∈ 𝑁 ∶ 𝑚,𝑛, 𝑘, 𝑙 ≥ 𝑖𝜖  ⟹  𝑥𝑚𝑛𝑘𝑙 − 𝑎 
< 𝑟 + 𝜖 

Or equivalently, if  

lim sup 𝑥𝑚𝑛𝑘𝑙 − 𝑎 ≤ 𝑟. 
Here r is called the roughness of degree. If we take r=0, 

then we obtain the ordinary convergence of a 

biquadratic sequence. 

 

Definition 2.2: It is obvious that the r –limit set of a 

biquadratic sequence is not unique. The r –limit set of 

the biquadratic sequence x =(xmnkl) is defined as LIM
r 

xmnkl={a∈R:xmnkl→
r
a}. 

 

Definition 2.3: A biquadratic sequence x=(xmnkl)is said 

to be r-convergent if 𝐿𝐼𝑀𝑟𝑥 ≠ 0. In this case, r is 

called the convergence degree of the biquadratic 

sequence x= (xmnkl). For r =0, we get the ordinary 

convergence. 

 

Definition 2.4: A biquadratic sequence (xmnkl) is said to 

be r-statistically convergent to a, denoted by xmnkl→
rst

 

a, provided that the set 

  𝑚,𝑛,𝑘, 𝑙 ∈ 𝑁4:  𝑥𝑚𝑛𝑘𝑙 − 𝑎 ≥ 𝑟 + 𝜖  
has natural density zero for every 𝜖>0, or equivalently, if 

the condition 

 st − lim sup 𝑥𝑚𝑛𝑘𝑙 − 𝑎 ≤ 𝑟. 
is satisfied. 

 

In addition, we can write xmnkl→
rst

a if and only if the 

inequality 

 𝑥𝑚𝑛𝑘𝑙 − 𝑎 < 𝑟 + 𝜖 

 

Holds for every𝜖>0 and almost all (m,n,k, l).Here r is 

called the roughness of degree. If we take r =0, then we 

obtain the statistical convergence of biquadratic 

sequences. 

 

In a similar fashion to the idea of classical rough 

convergence, the idea of rough statistical convergence of 

a biquadratic sequence can be interpreted as follows: 

 

Assume that a biquadratic sequence y= (ymnkl) is 

statistically convergent and cannot be measured or 

calculated exactly; one has to do with an approximated 

(or statistically approximated) biquadratic sequence x 

=(xmnkl) satisfying |xmnkl−ymnkl|≤r for all m, n, k, l(or for 

almost all (m,n,k, l),i.e., 

𝛿   𝑚,𝑛,𝑘, 𝑙 ∈ 𝑁4:  𝑥𝑚𝑛𝑘𝑙 − 𝑦𝑚𝑛𝑘𝑙  ≥ 𝑟  = 0. 

Then the biquadratic sequence x is not statistically 

convergent any more, but as the inclusion 

  𝑚,𝑛,𝑘, 𝑙 ∈ 𝑁4:  𝑦𝑚𝑛𝑘𝑙 − 𝑎 ≥ 𝜖 

⊇   𝑚,𝑛,𝑘, 𝑙 ∈ 𝑁4:  𝑥𝑚𝑛𝑘𝑙 − 𝑎 

≥ 𝑟 + 𝜖  

Holds and we have  

 

𝛿   𝑚,𝑛,𝑘, 𝑙 ∈ 𝑁4:  𝑥𝑚𝑛𝑘𝑙 − 𝑎 ≥ 𝑟  = 0. 
i.e., we get  

 

𝛿   𝑚,𝑛,𝑘, 𝑙 ∈ 𝑁4:  𝑥𝑚𝑛𝑘𝑙 − 𝑎 ≥ 𝑟 + 𝜖  = 0. 
i.e., the biquadratic sequence spaces x is r-statistically 

convergent in the sense of definition (2.3). 

 

In general, the rough statistical limit of a biquadratic 

sequence may not unique for the roughness degree 

r >0.So we have to consider the so called r- statistical 

limit set of a biquadratic sequence x = (xmnk), which is 

defined by  

𝑠𝑡 − 𝐿𝐼𝑀𝑟𝑥 = {𝐿 ∈ 𝑅:𝑥𝑚𝑛𝑘𝑙 →
𝑟𝑠𝑡 𝑎} 

 

The biquadratic sequence x is said to be r-statistically 

convergent provided that𝑠𝑡 − 𝐿𝐼𝑀𝑟𝑥 ≠ ∅. It is clear that if 

𝑠𝑡 − 𝐿𝐼𝑀𝑟𝑥 ≠ ∅  for a biquadratic sequence 𝑥 =   𝑥𝑚𝑛𝑘𝑙   
of real numbers, then we have 

𝑠𝑡 − 𝐿𝐼𝑀𝑟𝑥 = [𝑠𝑡 − lim 𝑠𝑢𝑝 𝑥 − 𝑟, 𝑠𝑡 − lim 𝑖𝑛𝑓 𝑥 + 𝑟] 
 

We know that 𝐿𝐼𝑀𝑟𝑥 = ∅. for an unbounded 

biquadratic sequence x = (xmnkl).But such a biquadratic 

sequence might be rough statistically convergent. For 

instance, define 

𝑥𝑚𝑛𝑘𝑙 =  
 −1 𝑚𝑛𝑘𝑙  , 𝑖𝑓  𝑚,𝑛, 𝑘, 𝑙 ≠  𝑡,𝑢, 𝑣,𝑤 2

 𝑚𝑛𝑘𝑙 ,                                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

 

in R. Because the set{1,64,739,· · ·}has natural density 

zero, we have 

 

𝑠𝑡 − 𝐿𝐼𝑀𝑟𝑥 =  
𝜑,                                  𝑖𝑓 𝑟 < 1

 1 − 𝑟, 𝑟 − 1 ,         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

 

And LIM
r
x=φ for all r≥0. 

 

A scan be seen by the example above, the fact that 

𝑠𝑡 − 𝐿𝐼𝑀𝑟𝑥 ≠ ∅. Does not imply 𝑠𝑡 − 𝐿𝐼𝑀𝑟𝑥 ≠
∅..Because a finite set of natural numbers has natural 

density zero, 𝑠𝑡 − 𝐿𝐼𝑀𝑟𝑥 ≠ ∅. Implies 𝑠𝑡 − 𝐿𝐼𝑀𝑟𝑥 ≠
∅.. Therefore, we get𝐿𝐼𝑀𝑟𝑥 ⊆ 𝑠𝑡 − 𝐿𝐼𝑀𝑟𝑥.This obvious 

fact means    𝑟 ≥ 0: 𝐿𝐼𝑀𝑟𝑥 ⊆ {𝑟 ≥ 0: 𝑠𝑡 − 𝐿𝐼𝑀𝑟𝑥}     in 

this language of sets and yields immediately  

𝑖𝑛𝑓  𝑟 ≥ 0: 𝐿𝐼𝑀𝑟𝑥 ≠ 𝜑 ≥ 𝑖𝑛𝑓{𝑟 ≥ 0: 𝑠𝑡 − 𝐿𝐼𝑀𝑟𝑥 ≠ 𝜑} 

 

Moreover, it also yields directly diam (LIM
r
x) ≤ diam 

(st−LIM
r
x). 

 

3. Main Results 
 

Theorem 3.1: For abiquadratic sequence spaces x = 

(xmnkl), we have diam(st−LIM
r
x) ≤2r. In general diam 

(st−LIM
r
x) has an upper bound. 

 

Proof: Assume that diam (st−LIM
r
x)>2r.Then∃ 𝑤, 𝑦 ∈
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 𝑠𝑡– 𝐿𝐼𝑀𝑟𝑥suchthat|w−y|>2r.  Take 𝜖 ∈   0,
 𝑤−𝑦 

2
− 𝑟 . 

Because  𝑤, 𝑦 ∈  𝑠𝑡– 𝐿𝐼𝑀𝑟𝑥  we have δ(K1)= 0 and δ(K2) 

= 0 for every  𝜖> 0 where 

           𝐾1 =   𝑚,𝑛,𝑘, 𝑙 ∈ 𝑁4:  𝑥𝑚𝑛𝑘𝑙 −𝑤 ≥ 𝑟 + 𝜖  

𝑎𝑛𝑑 

𝐾2 =   𝑚,𝑛,𝑘, 𝑙 ∈ 𝑁4:  𝑥𝑚𝑛𝑘𝑙 − 𝑦 ≥ 𝑟 + 𝜖  
 

Using the properties of natural density, we get 𝛿 𝐾1
𝑐 ∩ 𝐾2

𝑐 =
1.    Thus we can write,  

 

 𝑤 − 𝑦 ≤  𝑥𝑚𝑛𝑘𝑙 −𝑤 + |𝑥𝑚𝑛𝑘𝑙 − 𝑦| 
 

< 2 𝑟 + 𝜖 = 2 
 𝑤 − 𝑦 

2
 = |𝑤 − 𝑦| 

For all (𝑚,𝑛, 𝑘, 𝑙) ∈ 𝐾1
𝑐 ∩ 𝐾2

𝑐 , which is a contradiction. 

 

Now let us prove the second part of the theorem. Consider a 

triple sequence x =(xmnkl) such that st−limxmnkl=a. Let 𝜖>0. 

Then we can write 

𝛿   𝑚,𝑛,𝑘, 𝑙 ∈ 𝑁4:  𝑥𝑚𝑛𝑘𝑙 − 𝑎 ≥ 𝜖  = 0. 
We have 

 𝑥𝑚𝑛𝑘𝑙 − 𝑦 ≤  𝑥𝑚𝑛𝑘𝑙 − 𝑎 +  𝑎 − 𝑦 ≤  𝑥𝑚𝑛𝑘𝑙 − 𝑎 + 𝑟 

For each 𝑦 ∈ 𝐵𝑟 𝑎 =  𝑦 ∈ 𝑅3:  𝑦 − 𝑎 ≤ 𝑟 .                                           

Then we get  𝑎– 𝑦 < 𝑟 + 𝜖 for each  𝑚,𝑛, 𝑘, 𝑙 ∈
  𝑚,𝑛, 𝑘, 𝑙 ∈ 𝑁4:  𝑥𝑚𝑛𝑘 − 𝑙 < 𝜖 . 

 

Because the biquadratic sequence spaces x is statistically 

convergent to a, we have 

𝛿   𝑚,𝑛,𝑘, 𝑙 ∈ 𝑁4:  𝑥𝑚𝑛𝑘𝑙 − 𝑎 ≥ 𝜖  = 1. 

 

Therefore we get𝑦 ∈  𝑠𝑡– 𝐿𝐼𝑀𝑟𝑥. Hence, we can write 

𝑠𝑡– 𝐿𝐼𝑀𝑟𝑥 = 𝐵𝑟   (a) 

 

Because diam𝐵𝑟     𝑎 = 2𝑟, this shows that in general, 

the upper bound 2r of the diameter of the set 

𝑠𝑡– 𝐿𝐼𝑀𝑟𝑥is not an lower bound. 

 

Theorem 3.2: Let r>0.Then a biquadratic sequence x= (xmnk) 

is r-statistically convergent to a if and only if there exists a 

biquadratic sequence y= (ymnkl) such that 𝑠𝑡– lim 𝑦 =  𝑎 and 

 𝑥𝑚𝑛𝑘𝑙 – 𝑦𝑚𝑛𝑘𝑙  ≤ 𝑟for each  𝑚,𝑛, 𝑘, 𝑙 ∈ 𝑁4. 

 

Proof:   Necessity:    Assume that  𝑥𝑚𝑛𝑘𝑙 →
𝑟𝑠𝑡 𝑎. Then 

we have  

(3.1)𝑠𝑡– lim sup |𝑥𝑚𝑛𝑘𝑙 − 𝑎| ≤ 𝑟 

Now we define,  

𝑦𝑚𝑛𝑘𝑙 =  

𝑎,   𝑖𝑓 |𝑥𝑚𝑛𝑘𝑙 − 𝑎| ≤ 𝑟

𝑥𝑚𝑛𝑘𝑙 + 𝑟  
𝑎 − 𝑥𝑚𝑛𝑘𝑙
 𝑥𝑚𝑛𝑘𝑙 − 𝑎 

 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
  

Then, we write  

|𝑦𝑚𝑛𝑘𝑙 − 𝑎|

=  

 𝑎 − 𝑟 ,                         𝑖𝑓  𝑥𝑚𝑛𝑘𝑙 − 𝑎 ≤ 𝑟

 𝑥𝑚𝑛𝑘𝑙 − 𝑎 + 𝑟  
 𝑎 − 𝑟 −  𝑥𝑚𝑛𝑘𝑙 − 𝑎 

 𝑥𝑚𝑛𝑘𝑙 − 𝑎 
 
 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 . 

 

i.e.,  

 

|𝑦𝑚𝑛𝑘𝑙 − 𝑎|

=  

    0,                         𝑖𝑓  𝑥𝑚𝑛𝑘𝑙 − 𝑎 ≤ 𝑟

 𝑥𝑚𝑛𝑘𝑙 − 𝑎 − 𝑟  
 𝑥𝑚𝑛𝑘𝑙 − 𝑎 

 𝑥𝑚𝑛𝑘𝑙 − 𝑎 
 

 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 . 

 

i.e.,  

 

|𝑦𝑚𝑛 𝑘𝑙 − 𝑎| =  
 0,                         𝑖𝑓  𝑥𝑚𝑛𝑘𝑙 − 𝑎 ≤ 𝑟
 𝑥𝑚𝑛𝑘𝑙 − 𝑎 − 𝑟, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

 

We have   

 𝑦𝑚𝑛𝑘𝑙 − 𝑎 ≥  𝑥𝑚𝑛𝑘𝑙 − 𝑎 − 𝑟 
⇒  𝑥𝑚𝑛𝑘𝑙 − 𝑎 − 𝑦𝑚𝑛𝑘𝑙 + 𝑎 ≤ 𝑟. 

 

(3.2) 𝑥𝑚𝑛𝑘𝑙 −𝑦𝑚𝑛𝑘𝑙  ≤ 𝑟 

 

For all 𝑚,𝑛, 𝑘, 𝑙 ∈ 𝑁. By equation (3.1) and by definition 

of 𝑦𝑚𝑛𝑘𝑙 , we get 

𝑠𝑡 − lim𝑠𝑢𝑝|𝑦𝑚𝑛𝑘𝑙 − 𝑎| = 0. 

 

⇒ 𝑠𝑡 − lim 𝑦𝑚𝑛𝑘𝑙 ⟶
𝑟  𝑎. 

 

Sufficiency- Because  𝑠𝑡 − lim 𝑦𝑚𝑛𝑘𝑙 = 𝑎, we have 

 

𝛿   𝑚,𝑛,𝑘, 𝑙 ∈ 𝑁4:  𝑦𝑚𝑛𝑘𝑙 − 𝑎 ≥ 𝜖  = 0. 

 

For each 𝜖 > 0. It is easy to see that the inclusion  

 

  𝑚,𝑛,𝑘, 𝑙 ∈ 𝑁4:  𝑦𝑚𝑛𝑘𝑙 − 𝑎 ≥ 𝜖 

⊇   𝑚,𝑛,𝑘, 𝑙 ∈ 𝑁4:  𝑥𝑚𝑛𝑘𝑙 − 𝑎 

≥ 𝑟 + 𝜖  

 

Holds. Because 

𝛿   𝑚,𝑛,𝑘, 𝑙 ∈ 𝑁4:  𝑦𝑚𝑛𝑘𝑙 − 𝑎 ≥ 𝜖  = 0. 

 

We get 

𝛿(  𝑚,𝑛,𝑘, 𝑙 ∈ 𝑁4:  𝑥𝑚𝑛𝑘𝑙 − 𝑎 ≥ 𝑟 + 𝜖 ) = 0. 
 

 

Theorem3.3: For an arbitrary c∈Γx of biquadratic 

sequence x=(xmnkl) we have 

|a −c| ≤r for all l∈st−LIM
r
x. 

 

Proof: Assume on the contrary that there exist a point 

c∈Γx and l∈ 

st−LIM
r
x such that|a−c|>r. 

 

Define𝜖 =
 𝑎−𝑐 −𝑟

3
 

Then  

 

(3.3)  𝑚,𝑛,𝑘, 𝑙 ∈ 𝑁4:  𝑦𝑚𝑛𝑘𝑙 − 𝑎 ≥ 𝜖 ⊇

  𝑚,𝑛,𝑘, 𝑙 ∈ 𝑁4:  𝑥𝑚𝑛𝑘𝑙 − 𝑎 ≥ 𝑟 + 𝜖  
 

Since  𝑐 ∈ Γ𝑥 , we have 

 

𝛿   𝑚,𝑛,𝑘, 𝑙 ∈ 𝑁4:  𝑥𝑚𝑛𝑘𝑙 − 𝑐 < 𝜖  ≠ 0. 
 

Hence, by (3.3), we get  
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𝛿(  𝑚,𝑛,𝑘, 𝑙 ∈ 𝑁4:  𝑥𝑚𝑛𝑘𝑙 − 𝑎 ≥ 𝑟 + 𝜖 ) ≠ 0, 
 

Which contradicts the fact  𝑎 ∈ 𝑠𝑡 − 𝐿𝐼𝑀𝑟𝑥. 
 

Proposition 3.4: If a biquadratic sequence x=(xmnk) is 

analytic, then there exist0s non-negative real number r 

such that 𝑠𝑡– 𝐿𝐼𝑀𝑟𝑥 ≠ 𝜑..  

 

Proof: If we take the biquadratic sequence is to be 

statistically analytic, then the of proposition holds. 

Thus we have the following theorem. 

 

Theorem 3.5: A biquadratic sequence x = (xmnk) is 

statistically analytic if and only if there exists a non-

negative real number r such that 𝑠𝑡– 𝐿𝐼𝑀𝑟𝑥 ≠ 𝜑.. .  

 

Proof: Since the biquadratic sequence x is statistically 

analytic, there exists a  positive  real number M such that 

𝛿    𝑚,𝑛,𝑘, 𝑙 ∈ 𝑁4:  𝑥𝑚𝑛𝑘𝑙  
1
𝑚+𝑛+𝑘+𝑙 ≥ 𝑀  = 0, 

 

Define 

𝑟′ = sup{ 𝑥𝑚𝑛𝑘 𝑙  
1
𝑚+𝑛+𝑘+𝑙 : (𝑚,𝑛, 𝑘, 𝑙) ∈ 𝐾𝑐}, 

Where 

𝐾 = { 𝑚,𝑛,𝑘, 𝑙 ∈ 𝑁4:  𝑥𝑚𝑛𝑘𝑙  
1
𝑚+𝑛+𝑘+𝑙 ≥ 𝑀} 

 

Then the set st−LIM
r
x contains the origin of R. So we 

have 𝑠𝑡– 𝐿𝐼𝑀𝑟𝑥 ≠ 𝜑. 

If 𝑠𝑡–𝐿𝐼𝑀𝑟𝑥 ≠ 𝜑 for some 𝑟 ≥ 0, then there exists a 

such that 𝑎 ∈ 𝑠𝑡– 𝐿𝐼𝑀𝑟𝑥 i.e., 

𝛿    𝑚,𝑛,𝑘, 𝑙 ∈ 𝑁4:  𝑥𝑚𝑛𝑘𝑙 − 𝑎 
1
𝑚+𝑛+𝑘+𝑙 ≥ 𝑟 + 𝜖  

= 0, 
for each 𝜖 >  0. Then we say that almost all 𝑥𝑚𝑛𝑘𝑙 are 

contained in some ball with any radius greater than r. 

So the biquadratic sequence x is statistically analytic. 

 

Remark 3.6: If 𝑥 ′ =  𝑥𝑚𝑡𝑛𝑢𝑘𝑣𝑙𝑤   is a non-thin subsequence 

of biquadratic sequence  𝑥 =  𝑥𝑚𝑛𝑘𝑙  , then 𝐿𝐼𝑀𝑟𝑥 ⊆
𝐿𝐼𝑀𝑟𝑥 ′ . But it is not valid for statistical convergence.  

 

For example: we define 

𝑥𝑚𝑛𝑘𝑙 =  
 −1 𝑚𝑛𝑘𝑙  , 𝑖𝑓  𝑚,𝑛, 𝑘, 𝑙 ≠  𝑡,𝑢, 𝑣,𝑤 2

 𝑚𝑛𝑘𝑙 ,                                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

Of real numbers. Then the biquadratic sequence  𝑥 =
 1,64, 739,…   is a subsequence of x. we have  𝑠𝑡 −
𝐿𝐼𝑀𝑟𝑥 =  −𝑟, 𝑟 and  𝑠𝑡 − 𝐿𝐼𝑀𝑟𝑥 = 𝜑. 
 

Theorem 3.7:  If 𝑥 ′ =  𝑥𝑚𝑡𝑛𝑢𝑘𝑣𝑙𝑤   is a non-thin 

subsequence of biquadratic sequence  𝑥 =  𝑥𝑚𝑛𝑘𝑙  , then 

𝑠𝑡 − 𝐿𝐼𝑀𝑟𝑥 ⊆ 𝑠𝑡 − 𝐿𝐼𝑀𝑟𝑥 ′ . 
Proof. 

 

Theorem 3.8: The r-statistical limit set of biquadratic 

sequence  𝑥 =  𝑥𝑚𝑛𝑘𝑙  , is closed. 

Proof. If𝑠𝑡– 𝐿𝐼𝑀𝑟𝑥 ≠ 𝜑., then it is true. Assume that 

𝑠𝑡– 𝐿𝐼𝑀𝑟𝑥 ≠ 𝜑, then we can choose a biquadratic 

sequence spaces 𝑦𝑚𝑛𝑘𝑙  ⊆ 𝑠𝑡–𝐿𝐼𝑀𝑟𝑥 such 

that𝑦𝑚𝑛𝑘𝑙 ⟶
𝑟 𝑎as𝑚,𝑛,𝑘, 𝑙 → ∞. If we prove that 

𝑎 ∈ 𝑠𝑡– 𝐿𝐼𝑀𝑟𝑥, then the proof will be complete. 

Let𝜖 >  0begiven.Because𝑦𝑚𝑛𝑘𝑙 ⟶
𝑟 𝑎,∀𝜖 >  0,∃𝑖𝜖 ∈

 𝑁:𝑚,𝑛, 𝑘, 𝑙 ≥ 𝑖𝜖  

Such that 

 𝑦𝑚𝑛𝑘𝑙 − 𝑎 <
𝜖

2
for all 𝑚,𝑛, 𝑘, 𝑙 ≥ 𝑖𝜖  

Now choose an  (𝑚0𝑛0𝑘0𝑙0) ∈ 𝑁 such that 𝑚0,𝑛0, 𝑘0, 𝑙0 ≥ 𝑖𝜖  

. Then we can write  

 

 𝑦𝑚0𝑛0𝑘0𝑙0 − 𝑎 <
𝜖

2
. 

On the other hand, because𝑦𝑚𝑛𝑘𝑙 ∈ 𝑠𝑡 − 𝐿𝐼𝑀𝑟𝑥, we have 

𝑦𝑚0𝑛0𝑘0𝑙0 ∈ 𝑠𝑡 − 𝐿𝐼𝑀𝑟𝑥, 

 

(3.4)𝛿    𝑚,𝑛,𝑘, 𝑙 ∈ 𝑁4:  𝑥𝑚𝑛𝑘𝑙 − 𝑦𝑚0𝑛0𝑘0𝑙0 ≥ 𝑟 +

𝜖2=0. 

 

Now let us show that the inclusion  

(3.5) 

  𝑚,𝑛,𝑘, 𝑙 ∈ 𝑁4:  𝑦𝑚𝑛𝑘𝑙 − 𝑎 ≥ 𝑟 + 𝜖 

⊇   𝑚,𝑛,𝑘, 𝑙 

∈ 𝑁4:  𝑥𝑚𝑛𝑘 𝑙 − 𝑦𝑚0𝑛0𝑘0𝑙0 ≥ 𝑟 +
𝜖

2
  

Hols. Take   

(𝑡,𝑢,𝑣,𝑤) ∈   𝑚,𝑛,𝑘, 𝑙 ∈ 𝑁4:  𝑥𝑚𝑛𝑘𝑙 − 𝑦𝑚0𝑛0𝑘0𝑙0 

≥ 𝑟 +
𝜖

2
  

 

Then  we have 

  𝑥𝑚𝑛𝑘𝑙 − 𝑦𝑚0𝑛0𝑘0𝑙0 ≥ 𝑟 +
𝜖

2
  

 And hence  

 

 𝑥𝑡𝑢𝑣𝑤 − 𝑎 ≤  𝑥𝑡𝑢𝑣𝑤 − 𝑦𝑚0𝑛0𝑘0𝑙0  +  𝑦𝑚0𝑛0𝑘0𝑙0 − 𝑎 

< 𝑟 +
𝜖

2
+
𝜖

2
< 𝑟 + 𝜖 

 

i.e.,  (𝑡,𝑢,𝑣,𝑤) ∈   𝑚,𝑛,𝑘, 𝑙 ∈ 𝑁4:  𝑥𝑚𝑛𝑘𝑙 −

𝑦𝑚0𝑛0𝑘0𝑙0≥𝑟+𝜖 which proves the equation (3.5).  Hence 

the natural density of the set on the LHS of equation (3.5) is 

equal to 1. So, we get  𝛿    𝑚,𝑛, 𝑘, 𝑙 ∈ 𝑁4:  𝑥𝑚𝑛𝑘𝑙 −

𝑦𝑚0𝑛0𝑘0𝑙0≥𝑟+𝜖=0. 

 

Theorem 3.9: The r-statistical limit set of biquadratic 

sequence  𝑥 =  𝑥𝑚𝑛𝑘𝑙  , is closed. 

 

Proof:    Let𝑦1 ,𝑦2 ∈ 𝑠𝑡– 𝐿𝐼𝑀
𝑟𝑥 for the biquadratic 

sequence 𝑥 =  𝑥𝑚𝑛𝑘𝑙  andlet 

𝜖 > 0 be given. Define 

 

 𝐾1 =   𝑚,𝑛,𝑘, 𝑙 ∈ 𝑁4:  𝑥𝑚𝑛𝑘𝑙 −𝑤 ≥ 𝑟 + 𝜖  
and 

𝐾2 =   𝑚,𝑛,𝑘, 𝑙 ∈ 𝑁4:  𝑥𝑚𝑛𝑘𝑙 − 𝑦 ≥ 𝑟 + 𝜖  

Because 𝑦1 ,𝑦2 ∈ 𝑠𝑡–𝐿𝐼𝑀
𝑟𝑥, we have 𝛿 𝐾1 = 𝛿 𝐾2 =

0. Thus we have  

 

 𝑥𝑚𝑛𝑘𝑙 −   1− 𝜆 𝑦1 + 𝜆𝑦2  
=   1 − 𝜆  𝑥𝑚𝑛𝑘𝑙 − 𝑦1 
+ 𝜆 𝑥𝑚𝑛𝑘𝑙 − 𝑦2  < 𝑟 + 𝜖, 
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For each (𝑚,𝑛,𝑘, 𝑙) ∈ (𝐾1
𝑐 ∩  𝐾2

𝑐)and each 𝜆 ∈  0,1 . 
Because 𝛿 𝐾1

𝑐 ∩  𝐾2
𝑐 = 1, we get  

 

𝛿   𝑚,𝑛,𝑘, 𝑙 ∈ 𝑁4:  𝑥𝑚𝑛𝑘𝑙 −   1− 𝜆 𝑦1 + 𝜆𝑦2  

≥ 𝑟 + 𝜖  = 0. 
 

i.e.,   1 − 𝜆 𝑦1 + 𝜆𝑦2 ∈ 𝑠𝑡 − 𝐿𝐼𝑀𝑟𝑥,Which proves   the 

convexity of the set  𝑠𝑡 − 𝐿𝐼𝑀𝑟𝑥. 

 

Theorem 3.10: A biquadratic sequence  𝑥 =  𝑥𝑚𝑛𝑘𝑙   
statistically convergent to a if and only if  𝑠𝑡 − 𝐿𝐼𝑀𝑟𝑥 =
𝐵𝑟    𝑎 . 
 

Proof:    For the  necessity part of this theorem is in proof of 

the theorem (3.1). 

 

Sufficiency: Because   𝑠𝑡 − 𝐿𝐼𝑀𝑟𝑥 = 𝐵𝑟    𝑎 ≠ 𝜑, then by 

theorem (3.5) we can say that A biquadratic sequence  

𝑥 =  𝑥𝑚𝑛𝑘𝑙   is statistically analytic. Assume on the contrary 

that the A biquadratic sequence  𝑥 =  𝑥𝑚𝑛𝑘𝑙    has another 

statistical cluster point   a' different from a. Then the point  

 

𝒂 = 𝒂 +
𝒓

 𝒂 − 𝒂′  
(𝒂 − 𝒂′) 

Satisfies   

 

𝒂 − 𝒂′ = 𝒂− 𝒂′+
𝒓

 𝒂 − 𝒂′  
(𝒂− 𝒂′) 

 

|𝒂 − 𝒂′ | = |𝒂 − 𝒂′ | +
𝒓

 𝒂 − 𝒂′  
(𝒂 − 𝒂′) 

 

 𝒂 − 𝒂′  =  𝒂 − 𝒂′  + 𝒓 > 𝑟. 
 

Because a’ is statistical cluster point of the biquadratic 

sequence spaces x, by theorem (2.4) this inequality implies 

that 𝑎 ∈ 𝑠𝑡 − 𝐿𝐼𝑀𝑟𝑥. This contradicts the fact  𝑎 − 𝑎 = 𝑟 

and   𝑠𝑡 − 𝐿𝐼𝑀𝑟𝑥 = 𝐵𝑟    𝑎 . Therefore, a is the unique 

statistical cluster point of the biquadratic sequence 𝑥. Hence 

the  statistical cluster point of statistically analytic 

biquadratic sequence  is unique, then the  biquadratic 

sequence spaces x is  statistically convergent to a. 

 

Theorem 3.11:  (a)   If𝑐 ∈ Γ𝑥 then   𝑠𝑡 − 𝐿𝐼𝑀𝑟𝑥 ⊆ 𝐵𝑟    𝑐 . 
(b)𝑠𝑡 − 𝐿𝐼𝑀𝑟𝑥 =  𝑐∈Γ𝑥

𝐵𝑟    𝑐 = {𝑎 ∈ 𝑅4: Γ𝑥 ⊆ 𝐵𝑟    𝑎 }. 

 

Proof. (a) Assume that  𝑎 ∈ 𝑠𝑡 − 𝐿𝐼𝑀𝑟𝑥 and 𝑐 ∈ Γ𝑥 .Then 

by theorem 3.4, we have 

 

 𝑎 − 𝑐 ≤ 𝑟; 
otherwise, we get   

 

𝛿   𝑚,𝑛,𝑘, 𝑙 ∈ 𝑁4:  𝑥𝑚𝑛𝑘𝑙 −   1− 𝜆 𝑦1 + 𝜆𝑦2  

≥ 𝑟 + 𝜖  ≠ 0. 
 

For   𝜖 =
 𝑎−𝑐 −𝑟

3
. This contradicts the fact  𝑎 ∈ 𝑠𝑡 −

𝐿𝐼𝑀𝑟𝑥. 
 

(b) (3.6)                  𝑠𝑡 − 𝐿𝐼𝑀𝑟𝑥 ⊆  𝑐∈Γ𝑥
𝐵𝑟    𝑐  

Now assume that 𝑦 ∈  𝑐∈Γ𝑥
𝐵𝑟    𝑐 .Then we have 

|𝑦 − 𝑐| ≤ 𝑟 

For all 𝑐 ∈ Γ𝑥 , which is equivalent to Γ𝑥 ⊆ 𝐵𝑟   (y), i.e,  

 

(3.7) 𝑐∈Γ𝑥 𝐵𝑟    𝑐 ⊆  𝑎 ∈ 𝑅: Γ𝑥 ⊆ 𝐵𝑟    𝑎  . 

 

Now let 𝑦 ∉ 𝑠𝑡 − 𝐿𝐼𝑀𝑟𝑥. Then there exists an 𝜖 > 0 such 

that 

 

𝛿(  𝑚,𝑛,𝑘, 𝑙 ∈ 𝑁4:  𝑎 − 𝑦 ≥ 𝑟 + 𝜖 ) ≠ 0, 
 

The existence of a statistical cluster point c of the biquadratic 

sequence spaces x with  𝑦 − 𝑐 ≥ 𝑟 + 𝜖, i.e., Γ𝑥  ⊆ 𝐵𝑟   (𝑦) 

and 𝑦 ∉  𝑎 ∈ 𝑅: Γ𝑥  ⊆ 𝐵𝑟    𝑎  . 
 

Hence 𝑦 ∈ 𝑠𝑡 − 𝐿𝐼𝑀𝑟𝑥 follows from 𝑦 ∈  𝑎 ∈ 𝑅: Γ𝑥  ⊆
𝐵𝑟𝑎, i.e., 

 

 𝑎 ∈ 𝑅: Γ𝑥  ⊆ 𝐵𝑟    𝑎  ⊆ 𝑠𝑡 − 𝐿𝐼𝑀𝑟𝑥. 
 

Therefore the inclusion (3.7)- (3.8) ensure that (3.6) holds . 
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