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Abstract: We have presented two fluid Bianchi Type III Cosmological Model coupled with two noninteracting fluids, namely, bulk 

viscous and dark energy fluid. In order to obtain deterministic solution of the field equations we determine the Bianchi-III space-time by 

considering the mixture of exponential and hyperbolic scale factor to find the physical parameters and metric potentials defined in the 

space-time.  Furthermore, we have discussed the physical behaviours of the models. Consequently, it is believed that the models obtained 

are physically acceptable models of the universe. 
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1. Introduction 
 

In an attempt to produce Dark Energy (DE), in 1980 energy 

components might occur and their role as possible DE 

candidates was raised by Caldwell at the end [1]. In theory, 

despite the observational constraints, extensions of general 

relativity are the prime candidate class of theories consistent 

with PDL crossing [2]. On the other hand, while the current 

cosmological data from SNIa (Supernova Legacy Survey, 

Gold sample of Hubble Space Telescope) [3, 4], CMB 

(WMAP, BOOMERANG) [5, 6] and large scale structure 

(SDSS) [7] data rule out the w ≪ −1, they mildly favour 

dynamically evolving DE crossing the PDL (see [8, 9], [10, 

11] for theoretical and observational status of crossing the 

PDL).  

 

The theory of DE is a widely accepted theory to describe the 

observed acceleration expansion of the Universe. But a 

complete understanding on the nature of dark energy is still 

remain a challenge to the researchers. Recent Planck results 

estimate a maximum contribution of 68% for DE in the 

cosmic mass energy budget [12]. Observations have 

confirmed that the cosmic speed up is a late time phenomena 

and has occurred at a redshift of the order 𝑧𝑡∼ 0.7. This 

indicates that, the Universe has undergone a transition from 

a decelerated phase of expansion to an accelerating phase in 

the recent past. This cosmic transit phenomenon speculates 

an evolving deceleration parameter with a signature flipping. 

The rate at which the transition occurs usually determines 

the transit redshift 𝑧𝑡 . 

 

In fact this isotropization of the Bianchi metrics is due to the 

implicit assumption that the DE is isotropic in nature. If the 

implicit assumption that the pressure of the DE is direction 

independent is relaxed, the isotropization of the Bianchi 

metrics can be fine tuned to generate arbitrary ellipsoidality 

(eccentricity). Therefore, the CMB anisotropy can also be 

fine tuned, since the Bianchi universe anisotropies determine 

the CMB anisotropies. The price of this property of DE is a 

violation of the null energy condition (NEC) since the DE 

crosses the Phantom Divide Line (PDL), in particular 

depending on the direction [13].  

 

The simplest candidate for dark energy is the energy density 

of the quantum vacuum (or cosmological constant) for 

which 𝑝 =  −𝜌. However, the inability of particle theorists 

to complete the energy of the quantum vacuum - 

contributions from well understood physics amount to 1055 

times critical density - casts a dark shadow on the 

cosmological constant. In addition to this, a number of 

viable models for DE have been fabricated. These scenarios 

include, quintessence [14, 15], modified gravity [16]−[22], 

tachyon [23], cosmological nuclear energy [24], equation of 

state (EoS) parameter [25]−[35], braneworld [36, 37] and 

interacting dark energy models [38]−[44]. Therefore some 

form of dark energy whose fractional energy density is about 

Ω(𝑑𝑒)  =  0.70 must exist in the Universe to drive this 

acceleration. This fact can be put in agreement with the 

theory, if one assumes that the Universe is basically filled 

with so-called dark energy. Evolution of the equation of 

state (EoS) of dark energy 𝜔 (𝑑𝑒)  =  𝑝 (𝑑𝑒) 𝜌(𝑑𝑒) 

transfers from 𝜔 (𝑑𝑒)  >  −1 in the near past (quintessence 

region) to 𝜔 (𝑑𝑒)  <  −1 at recent stage (phantom region) 

[45]−[47]. So another cosmological coincidence problem 

may be proposed: why 𝜔 (𝑑𝑒)  =  1 crossing is occurred at 

the present time [48]. When SNe results are combined with 

five-year WMAP, it is found that −1.38 <  𝜔(𝑑𝑒)  <
 0.86 [49]−[51]. For recent review, the readers are advised to 

see the references of Padmanabhan [52], Copeland et al. 

[53], Perivolaropoulos [54], Jassal et al. [55] and Miao et al. 

[56]. 

 

In earlier, Xin [57] studied an interacting two-fluid scenario 

for quintom dark energy. Xin-He et al. [58] considered 

Friedmann cosmology with a generalized EoS and bulk 

viscosity to explain DE dominated universe. Recently, 

several authors [59]−[65] have examined and discussed the 

DE models in different context of use. Letelier [66] has 

examined some two-fluid cosmological models, which have 

similar symmetries to those Bianchi type-III models, where 

Paper ID: SR221017220146 DOI: 10.21275/SR221017220146 832 

mailto:mathsvbmvpk@gmail.com
mailto:mamta.palaspagar@rssc.edu.in


International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2022): 7.942 

Volume 11 Issue 10, October 2022 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

the distinct four-velocity vectors of the two non-interacting 

perfect fluids generate an axially symmetric anisotropic 

pressure. 

 

In mixed fluid environment such as dark fluid matter along 

with usual ordinary matter (Baryonic matter), a number of 

literature has motivated the researchers to investigate 

different models in the back drop of General Relativity with 

different Bianchi forms.  

 

In the present paper we have used anisotropic Bianchi type 

III space time. Many researchers are using Bianchi type III 

space time because this space time model allows not only 

expansion but also rotation and shear. Amirhashchi and 

Pradhan [67] have investigated Dark Energy model in 

general theory of relativity. DE models with constant 

deceleration parameter have been constructed and 

investigated by Akarsu and Kilinc [68, 69] for Bianchi type I 

and III space time. With a variable Equation of State (EoS) 

parameter, Yadav et al. [70] constructed BV DE 

cosmological models where the deceleration parameter was 

assumed to be constant. Several theoretical two fluids DE 

models either interacting or non-interacting have been 

discussed widely in the literature [71–75]. Mishra et al. [76, 

77] have constructed DE cosmological models with two non 

interacting fluid situations such as DE fluid with cosmic 

string and nambu string. In both the models, they have 

shown that the models are mostly dominated by Phantom 

behaviour. In a similar approach of two fluid, DE 

cosmological models were constructed in different general 

scale factors [78]. Pawar and Dagwal [79] investigated 

Bianchi type IX two fluids cosmological models in general 

relativity. Most of the models have been studied by 

considering perfect fluid but it is not sufficient to describe 

the dynamics of an accelerating universe. This motivates the 

researchers to consider the models of the universe filled with 

Bulk Viscous and DE. In the present paper we have 

investigated Bianchi type III anisotropic space timecoupled 

with two noninteracting fluids, namely, bulk viscous and 

dark energy fluid. With this motivation, here we have 

considered the BIII space time as 

𝑑𝑠2 = −𝑑𝑡2 + 𝐴2𝑑𝑥2 + ⅇ−2𝛼𝑥𝐵2𝑑𝑦2 + 𝐶2𝑑𝑧2,  (1) 

here 𝐴, 𝐵, 𝐶 are cosmic scale factors are the functions of 

cosmic time 𝑡. 

 

The exponent 𝛼 ≠  0 in (1) is an arbitrary constant. The 

total energy momentum tensor (EMT) in presence of both 

the viscous and DE fluids can be expressed as, 

𝑇𝑖𝑗 = 𝑇𝑖𝑗
𝑣𝑖𝑠 + 𝑇𝑖𝑗

𝑑𝑒             (2) 

where, EMT of barotropic bulk viscous fluid is 

 

𝑇𝑖𝑗
𝑣𝑖𝑠 =  𝜌 + 𝑝  𝑢𝑖𝑢𝑗 − 𝑝 𝑔𝑖𝑗           (3) 

and EMT of DE fluid is 

𝑇𝑖𝑗
𝑑𝑒 = 𝑑𝑖𝑎𝑔[−𝜌𝐷𝐸 , 𝑝𝐷𝐸 𝑥 , 𝑝𝐷𝐸 𝑦 ,    𝑝𝐷𝐸(𝑧)] 

𝑇𝑖𝑗
𝑑𝑒 = 𝑑𝑖𝑎𝑔[−1, 𝜔𝐷𝐸 𝑥 , 𝜔𝐷𝐸 𝑦 ,    𝜔𝐷𝐸(𝑧)]𝜌𝐷𝐸  

𝑇𝑖𝑗
𝑑𝑒 = 𝑑𝑖𝑎𝑔 −1, (𝜔𝐷𝐸 + 𝛿 , (𝜔𝐷𝐸 + 𝛾), (𝜔𝐷𝐸 + 𝜂)]𝜌𝐷𝐸  (4) 

 

Here, 𝑢𝑖  is the four velocity vector of the fluid in a 

comoving coordinate system. 𝜔𝐷𝐸  and 𝜌𝐷𝐸  are respectively 

the EoS parameter of the DE fluid and DE density 

parameter. The skewness parameters δ on x-axis, γ from y-

axis and η on z-axis are deviations from the EoS parameter 

𝜔𝐷𝐸  on these three directions. With these considerations on 

the parameters, in the subsequent section, we have 

developed the mathematical formalism of the problem. 

 

In Sect. 2, the basic equations for BIII space time in 

presence of viscous fluid and DE fluid are formulated along 

with the physical and kinematic parameters. In Sect. 3, the 

scale factor known as hybrid is used to obtain a viable 

solution. The physical importance of the scale factor also 

discussed. Moreover, the characteristics of deceleration 

parameter is presented w.r.t. the hybrid scale factor. The 

functional form of the skewness parameter and EoS 

parameter are expressed. At the end, Conclusion is presented 

in Sect. 4. 

 

2. Basic Formalism of the Model 
 

In the two fluid description of the total energy momentum 

tensor (EMTs) as discussed in the previous section, 

Einstein’s field equations of General Relativity, for the 

space–time (1) can be calculated as 
𝐴 

𝐴
+

𝐵 

𝐵
+

𝐴 𝐵 

𝐴𝐵
−

𝛼2

𝐴2 = −𝑝 + 3𝜍𝐻 − (𝜔𝐷𝐸 + 𝜂)𝜌𝐷𝐸  (5) 

𝐵 

𝐵
+

𝐶 

𝐶
+

𝐵 𝐶 

𝐵𝐶
= −𝑝 + 3𝜍𝐻 − (𝜔𝐷𝐸 + 𝛿)𝜌𝐷𝐸   (6) 

𝐴 

𝐴
+

𝐶 

𝐶
+

𝐴 𝐶 

𝐴𝐶
= −𝑝 + 3𝜍𝐻 − (𝜔𝐷𝐸 + 𝛾)𝜌𝐷𝐸   (7) 

𝐴 𝐵 

𝐴𝐵
+

𝐵 𝐶 

𝐵𝐶
+

𝐴 𝐶 

𝐴𝐶
−

𝛼2

𝐴2 = 𝜌 + 𝜌𝐷𝐸    (8) 

𝛼  
𝐴 

𝐴
−

𝐵 

𝐵
 = 0     (9)   

where an over dot represents the derivatives of 

corresponding field variable with respect to 𝑡. It can be 

noted that the product of the field variables 𝐴, 𝐵 𝑎𝑛𝑑 𝐶 gives 

the volume scale factor from where the average scale factor 

can be deduced as 𝑅 =  𝑉
1

3. If 𝐻1  , 𝐻2  𝑎𝑛𝑑 𝐻3respectively 

denotes the Hubble parameter in the direction of 𝑥, 𝑦 𝑎𝑛𝑑 𝑧 

respectively, then the mean Hubble parameter  

 

𝐻 =  𝐻𝑖 =
𝑅 

𝑅
 , 𝑤ℎ𝑒𝑟𝑒 𝑖 =  1, 2, 3.   (10) 

 

The proper pressure p, in case of barotropic cosmic fluid, is 

given as, 𝑝 =  𝜉𝜌, (0 ≤  𝜉 ≤  1). Moreover, the bulk 

viscosity related to energy density with the help of Hubble’s 

parameter as 3𝜁 𝐻 =  𝜀0𝜌. So, the effective pressure which 

is the mixture of proper pressure and barotropic bulk viscous 

pressure can be written as,  

 

𝑝 =  𝑝 − 3𝜁 𝐻 =  (𝜉 − 𝜀0)𝜌 = 𝜀 𝜌,  (11) 

 

where, can be considered as effective viscous coefficient. It 

can be noted that, 3𝜁 𝐻 is the bulk viscous pressure which is 

considered in the present work to be a barotropic one.  Now, 

replacing pressure terms (𝑝 −  3𝜁 𝐻) in field equations as 𝑝  
and framing field variables in terms of Hubble parameter, 

we obtain 
6𝑘

(2𝑘+1)
𝐻 +

27𝑘2

(2𝑘+1)2 𝐻2 −
𝛼2

𝐴2 = −𝑝 − (𝜔𝐷𝐸 + 𝜂)𝜌𝐷𝐸   (12) 

3(𝑘+1)

(2𝑘+1)
𝐻 +

9(𝑘2+𝑘+1)

(2𝑘+1)2 𝐻2 = −𝑝 − (𝜔𝐷𝐸 + 𝛿)𝜌𝐷𝐸   (13) 

3(𝑘+1)

(2𝑘+1)
𝐻 +

9(𝑘2+𝑘+1)

(2𝑘+1)2 𝐻2 = −𝑝 − (𝜔𝐷𝐸 + 𝛾)𝜌𝐷𝐸   (14) 

9𝑘(𝑘+2)

(2𝑘+1)2 𝐻2 −
𝛼2

𝐴2 = 𝜌 + 𝜌𝐷𝐸                   (15) 
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The energy conservation equation for viscous fluid, 

𝑇;𝑗
𝑖𝑗 (𝑣𝑖𝑠)

= 0 , and dark energy fluid 𝑇;𝑗
𝑖𝑗 (𝑑𝑒 )

= 0 can be 

obtained respectively as 

𝜌 + 3 𝑝 + 𝜌 𝐻 = 0   (16) 

𝜌  𝐷𝐸 + 3𝜌𝐷𝐸 𝜔𝐷𝐸 + 1 𝐻 + 𝜌𝐷𝐸 𝛿𝐻1 + 𝛾𝐻2 + 𝜂𝐻3 = 0 

(17) 

The spatial volume 𝑉  and the average Hubble’s parameter 

𝐻 are defined as 

𝑉 = 𝑎3 = 𝐴𝐵𝐶,      (18) 

3𝐻 =
𝑉 

𝑉
=

𝐴 

𝐴
+

𝐵 

𝐵
+

𝐶 

𝐶
     (19) 

 

The shear scalar 𝜎 and anisotropy parameter 𝐴𝑚 are defined 

as follows 

𝜎2 =
1

2
  

𝐴 

𝐴
 

2

+  
𝐵 

𝐵
 

2

+  
𝐶 

𝐶
 

2

 −
1

6
𝜃2  (20) 

𝐴𝑚 =
1

3
  

△𝐻𝑖

𝐻
 

23

𝑖=1
    (21) 

where △ 𝐻𝑖 = 𝐻𝑖 − 𝐻, (𝑖 = 1, 2, 3)  and 𝐻1 =
𝐴 

𝐴
, 𝐻2 =

𝐵 

𝐵
 and 

𝐻3 =
𝐶 

𝐶
 are the directional Hubble parameters. 

 

From (16), incorporating the relation between Hubble 

parameter and scale factor, we get the energy density for the 

matter field as, 

𝜌 =
𝜌0

 𝑒 𝐻𝑑𝑡  
3(𝜀+1) ,    (22) 

where 𝜌0 is the integration constant or rest energy density of 

present time. 

 

From (15) and (22), we can retrieve, the DE density as, 

𝜌𝐷𝐸 =
9𝑘(𝑘+2)

(2𝑘+1)2 𝐻2 −
𝜌0

 𝑒 𝐻𝑑𝑡  
3 𝜀+1 −

𝛼2

𝐴2   (23) 

 

With the help of the second part of conservation equation 

(17), which corresponds to the deviation of equation of the 

state parameter, we formalize the EoS parameter of DE as, 

𝜔𝐷𝐸 = −
1

𝜌𝐷𝐸
 

6𝑘

(2𝑘+1)
𝐻 +

27𝑘2

(2𝑘+1)2 𝐻2 +
𝜀𝜌0

 𝑒 𝐻𝑑𝑡  
3 𝜀+1 −

𝛼2

𝐴2       (24) 

 

With the help of Eqs. (23)–(24), Eqs. (12)–(14) can be 

formulated as: 

𝛿 = 𝛾 =
1

(2𝑘−1)𝜌𝐷𝐸
 

3(𝑘−1)

(2𝑘+1)
𝐻 +

9(2𝑘2−𝑘−1)

(2𝑘+1)2 𝐻2 −
𝛼2

𝐴2   (25) 

𝜂 =
−2𝑘

(2𝑘−1)𝜌𝐷𝐸
 

3(𝑘−1)

(2𝑘+1)
𝐻 +

9(2𝑘2−𝑘−1)

(2𝑘+1)2 𝐻2 −
𝛼2

𝐴2   (26) 

 

Scalar Expansion 𝜃 and Shear Scalar 𝜎 can be defined 

respectively as 

𝜃 = 3𝐻      (27) 

𝜎2 =
1

2
 

(2𝑘2+1)

(2𝑘+1)2 −
1

6
 9𝐻2    (28) 

 

3. Hybrid Scale Factor and Anisotropy Effect 
 

The variation of Hubble law may not be consistent with 

observations. However, it has the advantage of providing 

simple functional form of the time evolution of the scale 

factor. Also, in order to explain the late time cosmic 

acceleration a simple parametrization of Hubble parameter is 

needed. Hence, in order to construct the cosmological 

models of the universe, in this section, we have considered 

the scale factor which is a combination of two factors: one is 

the generalized form of exponential function and the  second 

one is hyperbolic function. The scale factor can be defined 

as 

𝑎 = 𝑒𝑚𝑡 sech⁡(𝑛𝑡)    (29)  

 

So, the Hubble parameter becomes 

𝐻 = 𝑚 − 𝑛tanh⁡(𝑛𝑡)    (30) 

 

The directional Hubble parameters take the form 

𝐻1 = 𝐻2 =
3𝑘

(2𝑘+1)
[𝑚 − 𝑛tanh⁡(𝑛𝑡)],     𝐻3 =

3

(2𝑘+1)
[𝑚 −

𝑛tanh⁡(𝑛𝑡)]    (31) 

 

Using (29) and (30) Bianchi type III cosmological model in 

(1) takes the form 

𝑑𝑠2 = −𝑑𝑡2 + 𝛽2𝑘𝑒
6𝑚𝑘𝑡

(2𝑘+1) sech 𝑛𝑡  
6𝑘

(2𝑘+1)𝑑𝑥2

+ ⅇ−2𝛼𝑥𝛽2𝑘𝑒
6𝑚𝑘𝑡

(2𝑘+1) sech 𝑛𝑡  
6𝑘

(2𝑘+1)𝑑𝑦2 

              + 𝛽2𝑒
6𝑚𝑡

2𝑘+1[sech 𝑛𝑡 ]
6

(2𝑘+1)𝑑𝑧2  
     (32) 

    

With the hybrid scale factor the energy density of the matter 

from (22) would be 

𝜌 =
𝜌0[cosh ⁡(𝑛𝑡 )]3(𝜀+1)

𝑒3(𝜀+1)𝑚𝑡    (33) 

Subsequently, DE density and the effective EoS parameter 

can be written as, 

𝜌𝐷𝐸 =
9𝑘(𝑘+2)

(2𝑘+1)2 [𝑚 − 𝑛tanh⁡(𝑛𝑡)]2 −
𝜌0[cosh ⁡(𝑛𝑡 )]3(𝜀+1)

𝑒3(𝜀+1)𝑚𝑡 −

𝛼2

𝛽2𝑘𝑒

6𝑚𝑘𝑡
(2𝑘+1) sech  𝑛𝑡   

6𝑘
(2𝑘+1)

   (34) 

 

 
Figure 1: DE density parameter vs. Time 

 

In fig (1), We have observed, respectively, that the dark 

energy density𝜌𝐷𝐸   remain positive till  the phase of cosmic 

evolution for the representative value of the constants 

(𝑚 = 1.5, 𝑛 = 0.9, 𝑘 = 1.1,   (𝜀 = −1, −
1

3
, −2/3), 𝜌0 =

0.1, 𝛼 = 0.1, 𝛽 = 0.5). Hence, it indicates that both weak 

energy condition (WEC) and null energy condition (NEC) 

are satisfied in the derived model. Further, 𝜌𝐷𝐸  decrease 

with increase in time and slowly reach small positive values 

in the present epoch, which indicates that the considered two 

fluids affect the dark energy density. It is worth noting here 

that, irrespective of the value of the viscous coefficient 𝜀, the 

behaviour of 𝜌𝐷𝐸  remains alike. So, in fig (1), we have 

chosen the value of the viscous coefficient to be −1. −1/
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3, −2/3. However, a small effect of viscous fluid in dark 

energy density cannot be ruled out. 

𝜔𝐷𝐸 = −
1

𝜌𝐷𝐸
 −

6𝑘𝑛2

(2𝑘+1)
 sech 𝑛𝑡  2 +

27𝑘2

(2𝑘+1)2 [𝑚 −

𝑛tanh⁡(𝑛𝑡)]2+𝜀𝜌0 cosh⁡(𝑛𝑡)]3(𝜀+1)𝑒3(𝜀+1)𝑚𝑡−𝛼2𝛽
2𝑘𝑒6𝑚𝑘𝑡(2𝑘+1)sech𝑛𝑡6𝑘(2𝑘+1)(35) 

 

 
Figure 2: DE EoS parameter vs. time for different viscous 

coefficient 

 

Fig.(2) represents variation of EoS parameter (𝜔𝐷𝐸  ) w.r.t 

appropriate choices of bulk viscous coefficients 𝜀 =

−1, −
1

3
, −2/3. The  behaviour of EoS parameters are 

directly proportional to the increasing values of viscous 

coefficient. At early phase of cosmic evolution, the EoS 

parameters gathered some amount of energy; however, at 

late phase, they behave differently. The reason why the 

dynamics of EoS are greatly affected at early phases is that 

the bulk viscous fluid has a substantial contribution to the 

density parameter at that corresponding phase. But, at late 

phase, the dark energy dominates in spite of the presence of 

bulk viscous fluid. Hence, cosmic bulk viscous fluid has a 

very little impact on the dynamics of EoS parameter. The 

EoS parameter starts in the negative region and stays in the 

acceptable range [80]. Hence, it can be infer that the matter 

evolves in the quintessence region at early time and remains 

in the same domain till late phase of cosmic time and 

approaching towards phantom barrier. The parameter 

evolves dynamically with the expansion of the universe. 

This is basically governed by the rest energy density that 

appears in the denominator of eqn. (35). 

Similarly, the skewness parameters can be expressed as, 

𝛿 = 𝛾 =
1

(2𝑘−1)𝜌𝐷𝐸
 
−3(𝑘−1)𝑛2

(2𝑘+1)
 sech 𝑛𝑡  2 +

9(2𝑘2−𝑘−1)

(2𝑘+1)2 [𝑚 −

𝑛tanh⁡(𝑛𝑡)]2−                
𝛼2𝛽2𝑘𝑒6𝑚𝑘𝑡(2𝑘+1)sech𝑛𝑡6𝑘(2𝑘+1) (36) 

𝜂 =
−2𝑘

(2𝑘−1)𝜌𝐷𝐸
 
−3(𝑘−1)𝑛2

(2𝑘+1)
 sech 𝑛𝑡  2 +

9(2𝑘2−𝑘−1)

(2𝑘+1)2 [𝑚 −

𝑛tanh⁡(𝑛𝑡)]2−𝛼2𝛽2𝑘𝑒6𝑚𝑘𝑡(2𝑘+1)sech𝑛𝑡6𝑘(2𝑘+1)
  (37) 

 

 
Figure 3: DE skewness parameters vs. time 

 

The plot for the skewness parameters and cosmic time has 

been represented in fig (3). The corresponding skewness 

parameters are shown for bulk viscous coefficient 𝜀 =
−2/3.It is also very much notable that the  skewness 

parameters γ and η are found to be like mirror image of each 

other. It is certain that, the behaviour of η is just opposite to 

that of γ. γ is positive whereas η is negative all through the 

cosmic evolution. This may be due to the fact that the 

anisotropic parameter 𝑘 = 1.1 , which will describe the 

small anisotropic nature of the universe. The constants 

(model parameters) are adjusted in such a way that the 

present numerical values of the cosmological parameters lie 

in the neighbourhood of predicted values by the 

observational data.𝛿, γ ‘s are less affected by the presence of 

cosmic fluid compared to η’s . The DE pressures along 

directions x and z are mostly affected. The reason behind the 

sensitivity may be due to the consideration of assuming 

mean Hubble parameter the same as directional Hubble 

parameter along x, y axis. Due to presence of bulk viscous 

fluid, the anisotropy in DE pressure continues along with the 

cosmic expansion and decreases slowly at the later period as 

shown in fig (3). 

 

The scalar expansion and shear scalar are respectively given 

by, 

𝜃 = 3[𝑚 − 𝑛tanh⁡(𝑛𝑡)]   (38) 

 

The shear scalar 𝜎 and anisotropy parameter 𝐴𝑚 can be 

expressed as 

𝜎2 =
9 8𝑘2−4𝑘+5 

2(2𝑘+1)2 [𝑚 − 𝑛tanh⁡(𝑛𝑡)]2 (39) 

𝐴𝑚 = 6  
(𝑘−1)

(2𝑘+1)
 

2

     (40) 

 

The deceleration parameter 𝑞 = − 
𝐻 +𝐻2

𝐻2

 
 describes the 

cosmic dynamics of universe. Positive value of it indicates 

decelerating universe where as negative values confirms the 

accelerated expansion of the universe. In view of the 

observations of high red shift supernova, Type Ia supernova 

observations combined with BAO and CMB, models 

transiting from early decelerating universe to late time 

accelerating universe gained much importance in recent 

times. The deceleration parameter for the hybrid scale factor, 

turns to be 

𝑞 = −  
 𝑚2−𝑛2 +2𝑛tanh ⁡(𝑛𝑡 )(𝑛 tanh  𝑛𝑡  −𝑚 )

[𝑚−𝑛tanh ⁡(𝑛𝑡 )]2    (41) 
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Figure 4: Deceleration parameter vs. time 

 

According to recent observational data at present time, the 

most favourable value for 𝑞 to be −0.81 ±  0.14. The 

deceleration parameter in fig (4) lies. Though initially, it 

rises rapidly but at late times it decreases rapidly. At present 

time, the deceleration parameter value found to be in 

(−0.4 ≤ 𝑞 ≤ −1), which is in alignment with the 

observational data.The geometrical behaviour of the DE 

model can be assessed through the state finder diagnostic 

pair (𝑟, 𝑠). The acceptability of corresponding DE Hybrid 

(DEH) model can be decided through the (𝑟, 𝑠) diagnosis 

comparing with the standard ΛCDM model. Hence, we have 

analysed the evolutionary behaviour of both the parameters r 

and s for the DE universe along with ΛCDM universe. Both 

parameters evolve continuously with time from big bang 

time (t → 0) to large value at late time (t → ∞). The pair can 

be obtained as, 

𝑟 = 1 −
3𝑛2 sech  𝑛𝑡   2

 𝑚−ntanh  𝑛𝑡   2 +
2𝑛3[sech ⁡(𝑛𝑡 )]2tanh ⁡(𝑛𝑡 )

[𝑚−𝑛tanh ⁡(𝑛𝑡 )]3   (43) 

 

𝑠 =
2

3

[3𝑛2 sech  𝑛𝑡   2 𝑚−ntanh  𝑛𝑡   2−2𝑛3 sech  𝑛𝑡   2 tanh  𝑛𝑡  ]

 𝑚−ntanh  𝑛𝑡   [2 𝑚2−𝑛2 +4 tanh  𝑛𝑡   tanh  𝑛𝑡  −𝑚𝑛  +(𝑚−ntanh  𝑛𝑡  )2]

     (44) 

 

 
Figure 5: The variation of r vs. s 

 

From Fig. 5, we observe that s is negative when 𝑟 ≥  1. The 

figure shows that the universe starts from an asymptotic 

Einstein static era (𝑟 →  ∞, 𝑠 →  −∞) and goes to the 

𝛬𝐶𝐷𝑀 model (𝑟 =  1, 𝑠 =  0). 

4. Conclusion 
 

The article represent two Fluid cosmological scenario with 

the use of exponential and hyperbolic scale factor.We have 

investigated the anisotropic behaviour of the cosmological 

model constructed in a two fluid situations: the usual bulk 

viscous fluid and DE fluid. A more systematic mathematical 

formulation has been developed to express the physical, 

kinematical parameters as well the metric potentials 

involved in the study. Along, x, y direction, the anisotropy in 

DE pressure increases on the pressure anisotropy  and along 

z-direction decreases at late times. Presence of viscous fluid 

substantially affects the DE density at early phase of cosmic 

evolution; however at late phase DE density dominates over 

viscous fluid. Also, our model is scale factor dependent and 

may change its behaviour in different scale factors; however, 

the formalism developed here clearly indicates the 

accelerating behaviour of the expanding universe. Moreover, 

there is resemblance of data of considered model with 

standard ΛCDM model; our model found here also aligned 

with the present day observational outcomes. 

 

The main features of the model are as follows: 

 For 𝑘 =  1 the anisotropic parameter 𝐴𝑚 tends to zero. 

Hence, the present model is isotropic at 𝑘 =  1. 

 The derived DE model represents an acceleration 

universe (see, fig (4)) which is in good agreement with 

recent observations [3]. 

 The dark energy density 𝜌𝐷𝐸  approaches to 1 for 

sufficiently large time (see, fig (1)) which is reproducible 

with current observations. 

 The Statefinder pair {𝑟, 𝑠} enable the behaviour of 

different stages of the evolution of the universe i.e. the 

universe starts from asymptotic Einstein static era 

(𝑟 →  ∞, 𝑠 →  −∞) and goes to Λ CDM model 

(𝑟 =  1, 𝑠 =  0). 
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