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Abstract: Error calculation is extremely important. It gives feedback about the quality of the scientific procedure, whether it is an 

experiment or any other technique. Finding the right kind of error metric, however, can be challenging. In the case of mesh 

simplification, losing even a small amount of accuracy might cause problems, for example, the incapability of 3D printing. 
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1. Symbols and abbreviations 
 

Label Name Symbol 

 

 

 

 

Abbreviation 

Mean Squared Error MSE 

Root Mean Square Error RMSR 

Mean Absolute Error MAE 

Mean Absolute Scaled Error MASE 

Mean Absolute Percentage Error MAPE 

Symmetric Mean Absolute Error SMAE 

Quadric Error Metric QEM 

Quadric Error Collapse Decimation QWCD 

Discrete Differential Error Metric DDEM 

 
 

 

 

Mathematical 

object 

Quadric error metric matrix Q 

Vertex coordinates v 

Plane P 

Error metric ∆ 

Tangential error metric matrix T 

Discrete curvature error matrix C 

 
Miscellaneous matrix transpose T 

 

2. Introduction 
 

2.1 Measurement vs. ideality 

 

Nothing is without flaws in reality. There is always some 

uncertainty and some errors that can and will occur. Every 

scientific experiment, regardless of high technology, has its 

limits. When measurements are made, scientists can 

approach them in two different ways: they either already 

know what to expect to some certain extent, and they need 

certainty by making a theory practice, or they try to explain 

their results by building a hypothesis around the experiment. 

In the first scenario, the measured data set has to be fitted to 

a presumed relation between events, in other words, to an 

already existing function. This is a more likely approach, 

since experiments are very demanding, and without proper 

reasoning, they do not materialize. The second approach 

ends up having a bunch of data where scientists have to 

guess what kind of pattern they follow. The function that 

was at least assumed in the other case, is missing here, 

which complicates things. 

 
Figure 1: The two cases of experiments. The measured data points (red dots) are the same on both plots, but with the 

assumption of a pre-existing relation, it is easy to check the validity and correctness of the experiment via examination of the 

errors of the data set. After introducing the mathematical background, it turns to one specific error metric. The main goal is to 

find a good error metric to define the quality of a data set but on a 3D surface. Let us go back to Figure 1a. The dots are not 

perfect. They do not lie on the blue line which is caused by measurement errors. These errors in real practice can come from 
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equipment, environment, human limitations, or human negligence. In this current study, the origins of errors are irrelevant, 

and their discussions are omitted. What matters is that they are present, and their extension should be somehow qualified. 

 

2.2 Error metrics 

 

A way to measure the error of a model is the error metric. 

There are several types, such as Mean Squared Error 

(MSE): is probably the most well-known metric. It 

measures the mean of the squares of the deviations. 

 

MSE = 1/n Σ (yi – y˜i) ^2 

 

where n is the number of data points, yi is the measured 

value (or vector of measured values),and y˜i is the predicted 

value (vector of values). In later section, matrix notation will 

be used. In order to make comparison easier, let us write 

MSE as a product of matrices. 

 

MSE = 1/n e^Te 

 

where e is an n × 1 matrix with elements ei =yi - ˜yi. This 

metric is used in this assignment’s programming task as 

well, when the ideal function for a specific train data set was 

determined. An ideal function was selected for a specific 

data set if it had the lowest MSE.  

 

Root Mean Square Error (RMSE): is the square root of 

MSE. 

 

RMSE = √MSE 

 

The advantage of using this metric is its dimension. It is 

calculated in the same unit as the values are measured. It is 

more intuitive to calculate the average deviation than the 

average squared deviation. 

 

Mean Absolute Error (MAE): averages out the absolute 

deviations. 

 

MAE = 1/n Σ |yi − y˜i | 

 

 Mean Absolute Scaled Error (MASE) 

 Mean Absolute Percentage Error (MAPE)   

 Symmetric Mean Absolute Percentage Error (SMAPE) 

 

3. Measurements 
 

3.1 In two dimensions 

 

What all of these error metrics have in common is that their 

definitions are based on a distance measure. In the case of 

Figure 1a, the distance measured is the distance between a 

red dot (measured value) and the blue line at the same x-

coordinate. Let us look at this from a different perspective. 

Let us consider a random curve that is the ideal result of a 

measurement. 

 

 The curve that would be ideally measured without errors.  

 A measured curve with some errors.  

 A measured curve with higher errors.  

 

The rougher the curve, the higher the errors that are made 

during measurement. Calculating an error metric on a 

rougher curve gives a higher result. 

 

3.2 In three dimensions 

 

Similarly, to a curve - that is a two-dimensional object -, a 

surface in three dimensions can also be the desired result of 

a measurement. Let us consider the following: the roughness 

of a brand-new aluminium plate is to be checked before it 

goes out of the factory. For the eye, a well-manufactured 

product of such is flat, but it does indeed have irregularities 

on its surface for a coloured plot of the result of such 

measurement. The error is related to the distance between 

the position of the new vertex and the faces connecting to 

that vertex. What if, however, a vertex is on a perfectly flat 

surface? In this case, it does not matter, where the vertex is 

positioned, since it would always be the closest possible to 

all faces: on them directly. With that, the matrix is 

unfortunately not invertible. If roughness is too much, the 

surface is to be smoothed out. The effort to put into the 

process would be higher with higher roughness which is, in 

fact, the error. 

 

4. Quadric Error Metric 
 

4.1 Modelling 

 

What do all of these mean in practice? There are cases when 

it is clear what the outcome of a measurement is supposed to 

be. In this case, measured data must be fitted to a given 

curve/surface/etc. A good example of such use of this error 

measure is 3D modelling. In this field, people work with so-

called meshes that represent an object in three-dimensional 

space. A common type of mesh is triangular. The error is 

related to the distance between the position of the new 

vertex and the faces connecting to that vertex. In this case, it 

does not matter, where the vertex is positioned, since it 

would always be the closest possible to all faces: on them 

directly. A real sphere is as smooth as no mesh can be. A 

triangle in a mesh of a ball is just an approximation of the 

real surface. It should be divided into infinitely many 

smaller triangles in order to have the same resolution as a 

mathematically perfect sphere. In this case, the difference 

between them is the error; but how can this error be 

qualified? Here comes the Quadric Error Metric (QEM) into 

the picture. 

 

4.2 Application simplification 

 

In 3D modelling, it has been a big struggle to find a way to 

simplify a mesh without losing too much of its integrity and 

resolution. The more vertices a mesh contains, the slower 

any computation is on it. Especially in real-time rendering, 

this can be unacceptable. So, what can one do? There are 

many ways to simplify a mesh. There exist many algorithms 

with all kinds of benefits of using them. Each one, however, 

has its own disadvantages as well. In this section, the already 

mentioned QEM will be explained in more detail. The 

algorithm using QEM is called Quadric Error Collapse 
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Decimation (QECD). It is based on contracting edges. At the 

beginning of the process, the required number of faces/edges 

has to be given, so that the algorithm knows how many 

iterations have to be done. It starts with calculating the error 

for all vertices and then for all edges using the faces 

connected to each vertex and edge. Then by going in 

ascending order - from lowest error to highest -, each edge is 

collapsed into one ideally positioned vertex. In order to find 

the ideal position of the new vertex, ∆ has to be 

minimalised. In mathematics, that is differentiation. Since a 

surface is quadratic, the error function is also quadratic, 

therefore finding its minimum is linear.  

 

4.2.1 New ideal vertex position 

The very first question could be: what does an ideal position 

really mean? A position is considered ideal to a vertex if it is 

the closest possible to all connecting faces at once. In the 

case of an edge, that consists of two vertices, the collapsed 

position is ideal if it is the closest possible to all faces 

touching the edge. Defining the cost of an edge contraction 

is calculating the error. Let us describe this error with a 4 × 4 

matrix Q. To each vertex exists a symmetric Qv in a specific 

form. It can be derived from the faces connected to the 

vertex. There exist many algorithms with all kinds of 

benefits of using them. Each one, however, has its own 

disadvantages as well. In this section, the already mentioned 

QEM will be explained in more detail. Given a face 

described as a plane. 

P : ax + by + cz + d = 0,  

where a^2 + b^2 + c^2 = 1.   

 

The distance between a given point in space v = (v1, v2, v3, 

1) and plane P = (a, b, c, d) is 

Pov = (av1, bv2, cv3, d) 

 

It is considered best to use its square, since error may be 

negative this way. The new equation with matrix notation is 

the following: 

(P^Tv)^2 = (P^Tv)^T(P^Tv) = (vP^T)(P^Tv) = v^T(PP^T)v 

= v^TKpv 

 

This gives the error metric matrix of v with respect to plane 

P. Calculating the error metric matrix of a given vertex is to 

sum up all its faces’ error metric matrices.  

Qv = Σ ∀P KP 

 

For a given edge, the error metric matrix is the sum of its 

two vertices’ error metric matrices.  

Q = Q1 + Q2 

 

The error metric of an edge collapse is therefore  

∆ = v^TQv 

 

In order to find the ideal position of the new vertex, ∆ has to 

be minimalised. In mathematics, that is differentiation. Since 

a surface is quadratic, the error function is also quadratic, 

therefore finding its minimum is linear.  

 

∂∆/∂x = ∂∆/∂y = ∂∆/∂z = 0 

 

This, however, implies that Q has to be invertible. If this is 

not the case, another method is to be used. 

 

4.2.2 Noninvertible error metric matrix 

Noninvertible error metric matrix in simpler mesh 

simplification algorithms, an edge is collapsed into one of its 

vertices or in the middle. This, however, might not be where 

the error is the smallest. In the case of a noninvertible QEM 

matrix, this might be the only solution. A common type of 

mesh is triangular. The error is related to the distance 

between the position of the new vertex and the faces 

connecting to that vertex. In this case, it does not matter, 

where the vertex is positioned, since it would always be the 

closest possible to all faces: on them directly. A real sphere 

is as smooth as no mesh can be. The process is quite similar, 

though, instead of calculating Q first, the ideal position (the 

positions of the two vertices and the middle of the edge) is 

calculated and from that the QEM matrix and the error itself. 

In this scenario, the position with the lowest QEM is to be 

the position of the new vertex after edge collapse. 

 

4.2.3 Result and Limitation  

Result: - It is visible that more edge contractions were done 

on the sole than on the toes. It is quite predictable since the 

sole of a foot is relatively flat, meanwhile, toes are more 

rounded, so any change in those vertices would disrupt the 

integrity of the mesh more. In other words, changing the 

mesh in the toes will cost more, so the errors are also bigger 

than on the sole. The error is related to the distance between 

the position of the new vertex and the faces connecting to 

that vertex. What if, however, a vertex is on a perfectly flat 

surface? In this case, it does not matter, where the vertex is 

positioned, since it would always be the closest possible to 

all faces: on them directly. With that, the matrix is 

unfortunately not invertible.   

 

Limitation: - As it was mentioned in Section 4.2.2, there is a 

chance that the QEM matrix is not invertible. The question 

is: why can that be? Understanding the reason is really just 

understanding what actually the error is that is to be 

calculated. The error is related to the distance between the 

position of the new vertex and the faces connecting to that 

vertex. What if, however, a vertex is on a (fairly) perfectly 

flat surface? In this case, it does not matter, where the vertex 

is positioned, since it would always be the closest possible to 

all faces: on them directly. With that, the QEM matrix is 

unfortunately not invertible. That means, there is no error to 

be calculated. This is, however, little consolation when 

edges have to be contracted and the mesh does not become 

any simpler. 

 

4.3 Further possibilities 

 

There is another mesh simplification method that uses QEM 

as its base, the Discrete Differential Error Metric (DDEM). 

It is partially a weighted QEM, where each faceis weighted 

with its area. It also contains two more members, the 

Tangential Error Metric and the Discrete Curvature Error 

Metric. 

 

4.4 Final words 

 

Error calculation is extremely important. It gives feedback 

about the quality of the scientific procedure, whether it is an 

experiment or any other technique. Finding the right kind of 

error metric, however, can be challenging. In the case of 
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mesh simplification, losing even a small amount of accuracy 

might cause problems, for example,the incapability of 3D 

printing. 
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Appendix 

 

6.1 Python program code 

 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

train_data=pd.read_csv("train.csv") 

train_data.head() 

test_data=pd.read_csv("test.csv") 

test_data.head() 

ideal_function=pd.read_csv("ideal.csv") 

ideal_function.head() 

# analyzing sidtribution of x 

train_data['x'].hist(bins=50) 

# analyzing training data 

ax1 = train_data.plot(kind='scatter', x='x', y='y1', color='r')     

ax2 = train_data.plot(kind='scatter', x='x', y='y2', color='g', ax=ax1)     

ax3 = train_data.plot(kind='scatter', x='x', y='y3', color='b', ax=ax1) 

ax4 = train_data.plot(kind='scatter', x='x', y='y4', color='y', ax=ax1) 

print(ax1 == ax2 == ax3==ax4) 

# analyzing distribution of y1 

train_data['y1'].hist(bins=50) 

# analyzing distribution of y2 

train_data['y2'].hist(bins=50) 

# analyzing distribution of y3 

train_data['y3'].hist(bins=50) 

# analyzing distribution of y4 

train_data['y4'].hist(bins=50) 

# analyzing testing  data 

ax1 = test_data.plot(kind='scatter', x='x', y='y', color='r')     

print(ax1) 

## Defining function to calculate mean square error 

def calculate_mean_sq_error(y,y_t): 

    diff_sum = 0  #variable to store the summation of differences 

    n = len(y) #finding total number of items in list 

    for i in range (0,n):  #looping through each element of the list 

      diff = y[i] - y_t[i]  #finding the difference between observed and predicted value 

      squared_difference = diff**2  #taking square of the differene  

      diff_sum = diff_sum + squared_difference  #taking a sum of all the differences 

    MSE = diff_sum/n 

    return MSE 

#uses training data to choose the four ideal functions which are the 

#best fit out of the fifty provided 
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def calculate_mean_sq_error_training(y_ideal): 

    mean_er_y1= calculate_mean_sq_error(list(train_data['y1']),y_ideal) 

    mean_er_y2= calculate_mean_sq_error(list(train_data['y2']),y_ideal) 

    mean_er_y3= calculate_mean_sq_error(list(train_data['y3']),y_ideal) 

    mean_er_y4= calculate_mean_sq_error(list(train_data['y4']),y_ideal) 

    mean_error_training = (mean_er_y1 + mean_er_y2 + mean_er_y3 + mean_er_y4)/4 

    return mean_error_training 

ideal_fit_score=[] 

for i in range(50): 

    idle_y = 'y'+str(i+1) 

    train_mean_score = calculate_mean_sq_error_training(list(ideal_function[idle_y])) 

    ideal_fit_score.append(train_mean_score) 

plt.hist(ideal_fit_score) 

# get the four idle which has the lowest mean squared score which has the best fit 

np.array(ideal_fit_score).argsort()[:4] 

# for my given dataset y30,y32,y35, and y44 are the four ideal functions for which training data has the best fit 
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