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Abstract: Agriculture is considered to be the backbone of the Indian economy, with more than half of the country’s population 

depending on agriculture. Crop production can be forecasted by utilizing machine learning (ML) methods rely upon parameters like 

meteorological conditions, rainfall, and crop. The powerful and most popular supervised ML technique, Random Forest, can do both 

regression and classification tasks. It can be used in crop selection for reducing crop yield output losses, irrespective of the distracting 

atmosphere. Meteorological conditions and other related environmental components bring a significant danger to the long-term viability 

of agriculture. ML is significant as renders a decision-support tool for Crop Yield Prediction (CYP), which will help to make decisions 

like which crops have to be cultivated and during the crop's growing season. This manuscript develops a new Henry Gas Solubility 

Optimization with Deep Learning Model (HGSO-DLM) technique to predict crop yield and classify crop types. In the presented HGSO-

DLM model, two major processes are involved. At the initial level, the presented HGSO-DLM model employs a deep stacking auto-

encoding (DSAE) model for yield prediction and crop classification. Next, in the second stage, the HGSO algorithm is applied for 

effectual hyper parameter optimization of the DSAE model. To exhibit the improvements of the HGSO-DLM model, a wide range of 

simulation results were performed and the comparison study reported the improvements of the HGSO-DLM model. 
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1. Introduction 
 

Agriculture is considered to be the main sector as it provides 

a substantial amount of food. Presently, many counties are 

seeming to be hungry till now because of the lack or scarcity 

of food with an increasing populace [1]. The consolidated 

influences of an increasing populace, natural climate 

variability, soil loss, and climate-changing demand methods 

for ensuring production and crop growth in an opportune 

and dependable manner [2]. It even needs to donate to 

mount farming food production sustainability. Such 

necessities denoted that land valuation, crop protection, and 

crop yield estimation are highly important to worldwide 

food manufacture [3]. Therefore, a precise crop yield 

forecast was obligatory to depend on by the nation’s 

politicians to get suitable import and export assessments to 

enhance national food security. But, because of many 

multifaceted issues, the forecast of crop yield was made 

difficult. Essentially, the crop yield was reliant on many 

aspects, including genotype, sceneries, soil quality, pest 

infestations, accessibility and eminence of water, climatic 

circumstances, harvest preparation, and many more [4]. 

Crop yield procedures and techniques are fundamentally 

nonlinear and time-specific. These plans are too compound 

as the combination of a big variety of unified influences 

which can be affected and described by non-arbitration and 

outside features [5]. Before, agriculturalists hinge on their 

knowledge and reliable historic data for crop yield forecasts 

and relaxed on the important farming choices as per the 

estimation. Yet, in current years, the development of novel 

inventions, counting crop method simulation and ML has 

seemed to forecast yield more exactly, together with the 

capability for examining an enormous volume of data 

utilizing high-performance computing [6]. 

 

Lately, ML methods were implemented for crop yield 

prediction which includes artificial neural networks, 

multivariate regression, association rule mining, and 

decision tree [7]. A salient feature of ML techniques was 

that they indulgence the output (crop yield) as an implied 

function of input variables (environmental components and 

genes), which is a highly complex and non-linear function 

[8]. The authors hired a neural network (NN) with one 

hidden layer for predicting corn yield utilizing input data on 

weather, soil, and management. ML was a technology that 

delivers schemes with the capability to automatically 

improve and learn from experience by recurrently training 

[9]. It comprises a set of well-defined techniques that gather 

precise statistics and smear exact procedures to attain 

anticipated outcomes. ML approaches were implemented in 

the agriculture field for enhancing the quality and 

productivity of the crops full-grown [10]. The techniques in 

ML were employed to regulate a specific crop under which 

circumstances the finest harvest is produced. 

 

This manuscript develops a new Henry Gas Solubility 

Optimization with Deep Learning Model (HGSO-DLM) 

technique to predict crop yield and classify crop types. In the 

presented HGSO-DLM model, two major processes are 

involved. At the initial level, the presented HGSO-DLM 

model employs a deep stacking auto-encoding (DSAE) 

model for yield prediction and crop classification. Next, in 
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the second stage, the HGSO algorithm is applied for 

effectual hyper parameter optimization of the DSAE model. 

To exhibit the improvements of the HGSO-DLM model, a 

wide range of simulation results were performed. 

 

2. Related Works 
 

Kim et al. [11] relate distinct AI techniques for developing 

an optimum crop yield predictive method in the Midwestern 

US. With the experimental for examining the impacts of 

phenology utilizing 3 distinct periods, the authors chose the 

July–August (JA) dataset as an optimum month for 

predicting soybean and corn yields. 6 various AI techniques 

for crop yield prediction were tested during this study. 

Afterward, an entire and objective comparison was 

conducted betwixt the AI techniques. Especially for the 

DNN technique, the author implemented an optimized 

procedure for ensuring optimum configurations for the 

layered infrastructure, activation function, cost function, 

drop-out ratio, and optimizer. Sinwar et al. [12] recognize 

the past developments and evolving AI-based approaches 

from precision agriculture definitely to yield predictive and 

smart irrigation. The AI-based method offers appropriate 

data on crop harvest at a primary step and their connected 

smart irrigation management method was effective in 

judicious utilization of important resources like energy and 

water for cultivation. 

 

Alreshidi [13] discovers the present IoT or AI technical 

implemented for SSA and then, recognizes IoT/AI 

technologies structure able of supporting the progress of the 

SSA platform. Along with contributing to the present body 

of data, this study review investigation, and progress in SSA 

and offers an IoT/AI infrastructure for establishing a Smart, 

Sustainable Agriculture environment as a solution. Sharma 

et al. [14] concentrations on the consumption of predicting 

computational intelligence system to estimate nitrogen status 

from wheat yield. The estimation is dependent upon the 

examination of crop images taken in an area at different 

lighting illumination. The wheat yield was primarily 

exposed to HSI color normalization, and then the optimized 

method utilizing GA and ANN-based predictive and crop 

accuracy status classifier. This ANN-based optimization 

method is considerably distinguished betwixt the wheat 

yields in another unwanted plant and weed but recognizes 

the crop harvest age as a categorical class. Abbaszadeh et al. 

[15] examine an infrastructure that utilizes the Bayesian 

Model Averaging (BMA) and a group of Copula purposes 

for integrating the outcomes of multiple DNNs comprising 

the 3DCNN and ConvLSTM and offer a probabilistic 

evaluation of soybean crop harvest. 

 

3. The Proposed Model 
 

In this manuscript, a new HGSO-DLM technique has been 

developed to predict crop yield and classify crop types. In 

the presented HGSO-DLM model, two major processes are 

involved. At the initial level, the presented HGSO-DLM 

model employed the DSAE model for yield prediction and 

crop classification. Next, in the second stage, the HGSO 

algorithm is applied for effectual hyperparameter 

optimization of the DSAE model.  

 

3.1. Yield Prediction and Crop Type Classification 

 

The presented HGSO-DLM model employed the DSAE 

model for yield prediction and crop classification. The AE is 

an FFNN that has more than one hidden unit [16]. It is a 

kind of unsupervised neural network, wherein the network 

efforts to match output to input vector wherever possible. 

Furthermore, it is utilized to produce a lower or higher 

dimension depiction of the input dataset. The usage of 

unsupervised learning of compressed data encoding makes 

neural networks extremely versatile. Additionally, this 

network is trained single layer successively that minimalized 

the computation resource required for designing an efficient 

mechanism. Once the hidden layer is of lesser dimension 

when compared to the input and output layers, the network 

is utilized for encoding the dataset. Multi-layered AE is 

sequentially trained, which allows for the gradual 

compression of data, generating what is named an SAE. The 

self-encoding models consist of output, input, and hidden 

layers as follows: 

𝑥𝑖 =  𝑥𝑖1 , 𝑥𝑖2 , … , 𝑥𝑖𝑗  2
𝑇

                           (1) 

 

Whereas i indicates the 𝑖-𝑡𝑕 flow table feature vectors, and j 

signifies all the flow table features. The vector encompasses 

𝑗-𝑡𝑕 features. The hidden layers encode and compress the 

input features of the flow table based on the following 

expression: 

 

𝑒𝑛𝑐𝑜𝑑𝑒𝑟 =  𝑊1𝑥𝑖 + 𝑏1                             (2) 

 

Now W1 indicates the weight interconnecting the input and 

hidden layers, 𝑥𝑖 indicates the input features of 𝑖-𝑡𝑕 flow 

table, and 𝑏1 represent the bias of hidden layers. Afterward, 

the encoding is accomplished and defined on the output 

outcome of the hidden layers, the output layers are decoded 

and recreated to generate an output of similar size as input 

layers: 

 

𝑑𝑒𝑐𝑜𝑑𝑒𝑟 =  𝑓 𝑊2 𝑒𝑛𝑐𝑜𝑑𝑒𝑟 𝑖 + 𝑏2                   (3) 

 

Here, 𝑓 indicates the activation function, 𝑊2 denotes the 

weight between the hidden and output layers, (encoder)i 

shows the stream table feature compressed through the 

hidden units, and 𝑏2 indicates the bias of output layers. 

Lastly, the aim of training the self-encoding mechanism can 

be accomplished by minimalizing the loss function as 

follows: 

 

𝑙𝑜𝑠𝑠 =   𝑥𝑖 −  𝑑𝑒𝑐𝑜𝑑𝑒𝑟𝑖  
2

𝑛

𝑖=1

            (4) 

From the expression, 𝑛 indicates the amount of flow table 

features, 𝑥𝑖  denotes the input flow table features, and 

(decoder) denotes the flow table features 𝑥𝑖  via self-

encoding. To accomplish feature extraction and 

dimensionality reduction while creating the algorithm, the 

study presents a deep stack auto-encoding method. The 

DSAE method can be made using stacked the input and 

hidden layers of the self-encoding model. All the self-

encoding models generate a hidden unit. Fig. 1 illustrates the 

structure of DSAE. 
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Figure 1: Architecture of DSAE 

 

3.2 Hyperparameter Tuning using HGSO Algorithm 

 

Here, the HGSO algorithm is applied for effectual 

hyperparameter optimization of the DSAE model. The 

HGSO technique is a novel metaheuristic technique 

introduced in 2019 [17]. This metaheuristic approach is 

created based on physical or biological phenomena. The 

probabilistic factor in the evolutionary procedure allows 

escaping from the local optima that offer the advantage of 

good generalization, simple operation, and generalization. 

The well-known physics law, Henry’s law, stimulates the 

HGSO approach that describes the solubility phenomenon of 

the gas in a liquid under specific pressure. The mathematical 

expression of the abovementioned Henry’s law can be given 

in the following: 

 

Step 1: Initialization. 𝑋𝑖  location of 𝑖𝑡𝑕  gas particles in the 

initial population can be expressed as follows: 

 

𝑋𝑖
0 𝑡 + 1 = 𝑙𝑏 + 𝑟𝑎𝑛𝑑 n, 𝑑𝑖𝑚 ∗  𝑢𝑏 − 𝑙𝑏            (5) 

 

Where, 𝑢𝑏, 𝑙𝑏, and 𝑑𝑖𝑚 show the upper limit, the lower 

limit, and the problem dimension, correspondingly. The 

preliminary value of Henry’s constant 𝐻𝑗  for 𝑗-𝑡𝑕 clusters, 

the 𝑃i,jthe partial pressure of 𝑖-𝑡𝑕 gas in 𝑗-𝑡𝑕 clusters, and 

𝐶𝑗 the constant value of 𝑗-𝑡𝑕 clusters is equated by the 

following:  

 

𝐻𝑗
0(𝑡) = 𝑙1 ∗ 𝑟𝑎𝑛𝑑(𝑚, 1), 𝑃𝑖 ,𝑗

0 = 𝑙2 ∗ 𝑟𝑎𝑛𝑑(𝑛, 1), 𝐶𝑗
0

= 𝑙3 ∗ 𝑟𝑎𝑛𝑑(𝑚, 1)    (6) 

 

From the expression, 𝑚 indicates the gas cluster count. 

𝑙1 , 𝑙2, 𝑙3 denotes the constant equivalent to 5e‐03, 100, le‐02, 

correspondingly. 

 

Step 2: Clustering. The gas particle with 𝑛 population is 

disseminated with 𝑚 cluster as gas types. All the clusters 

havethe same amount of candidate particles with the similar 

𝐻𝑗  Henry’s coefficient and 𝐶𝑗  constant values. Every cluster 

gas has a constant value 𝐻𝑗  and 𝐶𝑗 . 

 

Step 3: Evaluation. In all 𝑗-𝑡𝑕 clusters, the better candidate 

particle 𝜒𝑗 ,𝑏𝑒𝑠𝑡  that attains the better fitness values in 𝑗-𝑡𝑕 

clusters is assessed for finding the global better gas‐particle 

𝜒𝑔,𝑏𝑒𝑠𝑡 amongst 𝑛 population. 

 

Step 4: Upgrade Henry's coefficient. In distinct iterations 

and clusters, Henry’s coefficient is upgraded to Henry’s law 

as follows: 

𝐻𝑗  𝑡 + 1 = 𝐻𝑗  𝑡 × 𝑒𝑥𝑝  −𝐶𝑗 ×  
1

𝑇𝑡
−

1

𝑇𝜃
       (7) 

Where 𝑇𝜏 =  exp (
−𝑡

𝑖𝑡𝑒𝑟
) changes in all the iterations, 𝑇 

demonstrates the temperature, and 𝑇𝜃  indicates a constant 

number of 298.15. 

 

Step 5: Update solubility. The solubility 𝑆i,𝑗  of 𝑖-𝑡𝑕 gas 

particle in 𝑗-𝑡𝑕 clusters are arithmetically formulated by:  

 

𝑆𝑖 ,𝑗  𝑡 = 𝐾 × 𝐻𝑗  𝑡 × 𝑃𝑖 ,𝑗  𝑡                     (8) 

Where 𝐾 indicates a constant value equivalent to one. 

 

Step 6: Updating location. The following location of 𝑖𝑡𝑕  gas 

particles in 𝑗𝑡𝑕  clusters are upgraded by the following 

equation [18]:  

𝑋𝑖,𝑗 (𝑡 + 1) = 𝑋𝑖 ,𝑗 (𝑡) + 𝑓 × 𝑟𝑎𝑛𝑑 × (𝜙𝑖𝐼𝑗
× (𝑥𝑗 ,𝑏𝑒𝑠𝑡

− 𝑥𝑖 ,𝑗 (𝑡)) + 𝑓𝑙𝑎𝑔 × 𝑟𝑎𝑛𝑑 × 𝛼 × (𝑆𝑖 ,𝑗 (𝑡) 

× 𝑥𝑏𝑒𝑠𝑡 (𝑡) − 𝑋𝑖,𝑗 (𝑡))𝑡(𝜙𝑖,𝑗

= 𝛽 × 𝑒𝑥𝑝  −
𝐹𝑏𝑒𝑠𝑡  𝑡 + 𝜀

𝐹𝑖,𝑗  𝑡 + 𝜀
     (9) 

From the expression, 𝑓 indicates a flag index equivalent to 

−1 or 1, that is employed for changing the direction of the 

searching agent. 𝑟𝑎𝑛𝑑 indicates arbitrary numbers within 

zero and one, and each 𝑟𝑎𝑛𝑑 signifies a dissimilar arbitrary 

number. 𝜙𝑖 ,𝑗  represent the capability of 𝑖-𝑡𝑕 gas particles in 
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the 𝑗-𝑡𝑕 clusters.  𝛼 represent the effect of another gas 

particle on 𝑖𝑡𝑕  gas candidates that are fixed as 1. 𝛽 and 𝜀 are 

constant coefficients equivalent to 1 and 0.05, 

correspondingly. 

 

Step 7: Attain the worst agent. 𝑁𝑤 the worst agent can be 

ordered and applied in the optimization technique to prevent 

local optimal which is shown below:  

 

𝑁𝑤 = 𝑛 ×  𝑟𝑎𝑛𝑑 ×  𝑐2 − 𝑐1 + 𝑐1                (10) 

 

Now, 𝑐1 and 𝑐2 is continually equivalent to 0.1 and 0.2, 

correspondingly. Each 𝑟𝑎𝑛𝑑 function in the model 

representsan arbitrary vector within [0,1]. 

 

Step 8: Upgrade the worst location. The location of the 

worst particles is upgraded using an arbitrary number as 

follows: 

𝑋𝑤 = 𝑙𝑏 + 𝑟𝑎𝑛𝑑 ×  𝑢𝑏 − 𝑙𝑏                 (11) 
 

Afterward the abovementioned process, the location 𝑋𝑖+1 of 

(𝑖 + 1)𝑡𝑕  gas particles are initialized. 

4. Experimental Validation 
 

This section examines the performance of the HGSO-DLM 

technique. Table 1 and Fig. 2 show the crop classification 

results of the HGSO-DLM technique. The results indicated 

that the HGSO-DLM technique has reached higher 𝑎𝑐𝑐𝑢𝑦  of 

98.07% whereas the NC-SAE, SVM-kernel, SVM, SSAE-

CNN, PCA-CNN, and DT models have obtained lower 

𝑎𝑐𝑐𝑢𝑦  of 94.64%, 91.73%, 89.49%, 90.85%, 88.62%, and 

85.07%. 

 

Table 1: Comparative analysis of HGSO-DLM system with 

existing algorithms 
Methods Accuracy Precision Recall F1-Score 

HGSO-DLM 98.07 98.14 98.22 98.11 

NC-SAE Model 94.64 94.06 94.78 95.49 

SVM-Kernel Model 91.73 91.13 92.42 93.80 

SVM Model 89.49 88.17 88.70 88.46 

SSAE-CNN 90.85 93.86 90.60 92.94 

PCA-CNN 88.62 89.27 87.75 89.08 

DT Model 85.07 84.73 85.91 85.39 

 

 
Figure 2: 𝐴𝑐𝑐𝑢𝑦  analysis of the HGSO-DLM system with existing algorithms 

 

Fig. 3 reports a comparative crop classification performance 

of the HGSO-DLM technique. The experimental outcomes 

reported that the HGSO-DLM technique has surpassed other 

models. Based on 𝑝𝑟𝑒𝑐𝑛 , the HGSO-DLM technique has 

revealed increased 𝑝𝑟𝑒𝑐𝑛  of 98.14% whereas the NC-SAE 

model has reached a reduced 𝑝𝑟𝑒𝑐𝑛  of 94.06%. Meanwhile, 

based on 𝑟𝑒𝑐𝑎𝑙 , the HGSO-DLM method has exposed 

increased 𝑟𝑒𝑐𝑎𝑙  of 98.22% whereas the NC-SAE approach 

has achieved reduced 𝑟𝑒𝑐𝑎𝑙  of 94.78%. Eventually, based on 

𝐹1𝑠𝑐𝑜𝑟𝑒 , the HGSO-DLM methodology has exhibited 

increased 𝐹1𝑠𝑐𝑜𝑟𝑒  of 98.11% whereas the NC-SAE method 

has gained reduced 𝐹1𝑠𝑐𝑜𝑟𝑒  of 95.49%.  
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Figure 3: Comparative analysis of HGSO-DLM system with existing algorithms 

 

The crop yield estimation results of the HGSO-DLM 

technique are examined in Table 2 and Fig. 4. The 

experimental values inferred that the HGSO-DLM technique 

has shown improved performance with an R2 score of 

0.9961, RMSE of 0.8356, and MAE of 0.3011. 

 

Table 2: Result analysis of HGSO-DLM system with 

distinct measures 
Metrics Values 

R2 Score 0.9961 

RMSE 0.8356 

MAE 0.3011 

 

 
Figure 4: Result analysis of HGSO-DLM system with distinct measures 
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Table 3 and Fig. 5 demonstrate the comparative crop yield 

estimation results of the HGSO-DLM technique in terms of 

R2 score. The experimental values indicated that the KNN 

and MLR models have exhibited lower R2 score values of 

87.05% and 89.10%. Along with that, the SVR and ANN 

models have accomplished reasonable R2 score values of 

91.99% and 91.97% respectively. But the HGSO-DLM 

technique has shown maximum performance with an R2 

score of 99.61%.  

Table 3: R2 score analysis of HGSO-DLM system with 

other approaches 
Methods R2 Score 

HGSO-DLM 99.61 

SVR Model 91.99 

KNN Model 87.05 

MLR Model 89.10 

ANN Model 91.97 

 

 
Figure 5: R2 score analysis of HGSO-DLM system with other approaches 

 

5. Conclusion 
 

In this manuscript, a new HGSO-DLM technique has been 

developed to predict crop yield and classify crop types. In 

the presented HGSO-DLM model, two major processes are 

involved. At the initial level, the presented HGSO-DLM 

model employed the DSAE model for yield prediction and 

crop classification. Next, in the second stage, the HGSO 

algorithm is applied for effectual hyperparameter 

optimization of the DSAE model. To exhibit the 

improvements of the HGSO-DLM model, a wide range of 

simulation results were performed and the comparison study 

reported the improvements of the HGSO-DLM model. 
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