
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.803

Volume 11 Issue 1, January 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Bridging the Gap between Event-Based

Programming and Functional Programming

Abhishek Shukla

Abstract: Functional programming and event-based programming are considered two widely used paradigms in software development.

Moreover, each of them contains its strengths and weaknesses. Based on the information, the article will explore the convergence of

these two paradigms in detail by highlighting their commonalities and providing information on how they can complement each other to

create a more robust and maintainable software system. Furthermore, through leveraging functional concepts like pure functions,

immutability, and higher-order functions, the developers can easily bridge the gap between functional and event-based programming

which will lead towards more efficient and reliable software solutions. Also, the article will discuss the key challenges and provide a

comprehensive practical example to show the benefits of this synergy in detail.

Keywords: Functional programming, Event-Based Programming, Pure Functions, Immutability, and Convergence

1. Introduction

In the software development landscape, event-based

programming and functional programming have long been

regarded as distinct paradigms. From this, event-based

programming is linked with asynchronous and event-driven

systems that can excel at handling real-time events and user

interactions. Due to this, it is suitable for applications like

GUI development and server-side applications. Secondly,

functional programming focuses on immutability,

declarative programming, and pure functions. Therefore, it is

promoting a clean and maintainable code. However, these

paradigms contain some merits and they can be viewed as

mutually exclusive [1]. Under these facts, the article will

explore the idea of bridging the gap between functional

programming and event-based programming. Also, provide

information about how these two paradigms can be used in

tandem for creating more reliable, maintainable, and

efficient software systems. Therefore, by embracing

functional programming principles within an event-driven

context, it is simple for developers to reap the benefits of

both worlds. Such convergence will lead to code that is

easier to understand, and maintain so it will improve

software quality with developer productivity [2].

2. Literature Review

Over the last few years, there are a lot of authors talked

about the convergence of event-based programming and

functional programming. Therefore, many studies and

articles have highlighted its important challenges and

benefits.

Based on the information, one author talked about functional

reactive programming. This programming laid the

foundation for combining the principle of functional

programming with reactive systems. The author presented

information about higher-order functions and monads from

the functional programming paradigm that can be applied to

event-driven programming that will result in more

expressive and modular code [3].

Another author talked about the push-pull functional

reactive programming in detail. For this, the author explored

the integration of event-driven programming by using

functional reactive programming. By using the framework

presented by the author, it is possible to handle events and

asynchronous data streams while maintaining functional

purity. The author introduced the important concept of the

push and pull system so developers can apply flexibility for

managing event flows within functional paradigms [4].

According to academic research, there are some piratical

implementations of the convergence between functional

programming and event-based programming have emerged

by the author. The author discussed the main frameworks

and libraries including JavaScript, React, RxJS, and RxJava.

All these libraries and frameworks have gained

comprehensive popularity for their ability to apply reactive

and functional programming concepts to event-driven

systems. Secondly, these tools empower the developers so

they can work with asynchronous data streams in a proper

functional manner to enhance the scalability and

maintainability of the code [5].

Moreover, some real-world success stories about the benefits

of merging these paradigms were mentioned by the authors.

Also, companies like Microsoft and Netflix have embraced

functional reactive programming for building responsive

applications. Netflix is using RxJava extensively in its

backend services for handling the complex event-driven

nature of streaming media platforms [6].

Paper ID: SR231116134821 DOI: https://dx.doi.org/10.21275/SR231116134821 1595

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.803

Volume 11 Issue 1, January 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 1: Information about some effects in the case studies with relative conversion functions

3. Experimental Setup

For the experimental setup, Case studies are applied.

According to this, the validation benchmark suit is made up

from 4 OO reactive applications. All these applications are

implemented initially based on events only and afterwards

refactored is applied for introducing signals combined with

events by using conversion functions [4].

Firstly, the Universe simulation is applied. In this

simulation, there are some various stages present that are

connected with each element and one function is linked with

the other following a loop structure. This structure is

enabling proper functioning of the system and also

expressing different aspects of computational functionality.

This means that the functional style and the OO must be

linked properly [4].

Furthermore, it shows that RSS is only read by the

ReactRSS and it is only displaying the required list of

channels. These channels are checking the updates properly

and showing information to the user. It contains some

fetched items in the system are immediately displayed to the

users in a sidebar. Due to this fact when the user is selecting

any one channel, then HTML content will be displayed on

the main menu. [4].

The small drawing programs are relate to ReactShapes. With

these programs it is possible to generate various shape that

can be linked and combine with other objects. Moreover, it

is also possible to drag and drop the relative object and make

various shapes on Canvas. These shapes can be connected

easily with lines and possible to stroke width properly. It is

also possible to check the history and apply undo function in

this program that will provide flexibility to the developers. It

is possible to share drawing canvas with other clients who

are participating in the same task remotely. This means that

the required case studies are covering all kind of reactive

behavior of the function properly. Furthermore, in different

cases, the desktop software are providing various facilities to

reactivity of the system to apply successful functions by

using mouse and keyboards. [5]. ReactRSS, ReactEdit, and

ReactShapes are covering the main points present in the data

and it will be useful for the system for proper functioning.

With such functionally of the data, some external events will

be displayed like various messages from the network. It may

create problems and proper information is not displayed [2].

Figure 2: For the use singles information about Signals to

Event function and Event to Signal Function

The above diagram shows the two scenarios, the first one is

from events to signals and from signals to events. Therefore,

the functions that are changing from one function to another

function. Such conversion of the function will be used for

refracting some reactive functionality of the signal. In

various cases, the function is showing a unique response and

it is changing its path regularly and showing some deflection

[2].

According to this, the ReactRSS must require some

important updates taken from various websites that are

monitored. Due to such, operation, a lot of time will be

consumed and application is not installed properly.

Furthermore, it also displays a message that is showing how

the signal will be used to express the fetching state. The

main source of the signal is connected with the signal and

show message at the start and end of the fetching phase.

Therefore, whenever these events are composed, then they

always hold conversion function for comparing the main

state of the RSS fetcher in detail.

Paper ID: SR231116134821 DOI: https://dx.doi.org/10.21275/SR231116134821 1596

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.803

Volume 11 Issue 1, January 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

On the other hand, such functions that are converting from a

signal to an event, these functions will be used whenever,

the function is using reactive functioning and correct

information is not obtained about RSS fetcher. This scenario

is briefly explained in the above case study related to

Universe. Furthermore, it is showing an important problem

related to the time management and it will be upgraded with

changing the path of the signal and it is changed with its

functionality. If the creature are moving in certain directions

based on the system, then less time will be consumed and

they are moving in a typical OO style [2].

Such a solution is providing a brief information about the

functions used to transfer the information to one application

to another. Moreover, each creature present in the simulation

is involved in assessing the board and also changing the

required state without carrying the board information as a

main parameter for every composition. Due to this

domineering design system of the board, it is possible to

gain signal-based time management system before

connecting with the board. Therefore, proper results will be

obtained. The below images show the code lines that will be

used to convert the signal to events in refactoring and code

for user interaction in a ReactEdit Case study in detail [5].

However, there are some expectations present in the system.

It shows there are about two refactorings are present named

State of the canvas, and Statistics Tracker. There is a need to

explain the reasons related to Statistics Tracker which is a

refactoring of ReactEdit. Secondly, the next case related to

ReactShapes case study is not digital. Due to this, they are

not discussed in detail. The refactoring statistic tracker is

focusing on such application’s part that is linked with

displaying relative information of the function and text. This

text includes various characters and line numbers. Therefore,

it is possible to access the required information with ease.

On the other hand, it can be noted that these values are

present as signal in the system that may require refactoring

of the signal so correct information is obtained. Based on

the reason, there is no need of any conversion function

because they are consuming a lot of time. however, these

conversion functions can be applied in event’s second

refactoring.. This refactoring is coming from user

interaction. Therefore, they are not directly required in the

second refactoring for the events that are coming from user

interaction. Due to this, they are required to turn on the

refactoring of the system linked with Statistics tracker [5].

Another point is that there is still no proper information

present about the refactoring under consideration. It means

that there is no need for 𝑆 → 𝐸 conversions. Therefore, the

main case study is about OO case study and it is providing

efficient results in signal-based computation. The problem is

that it is producing a side effect at various portions of the

data that can create different problems. Due to this, there is a

need to use signal-to-even conversions. With these

conversions, the data can be applied easily to gain valuable

information. It shows that with the help of OO graphic

libraries, it is possible to convert the signals to event

functions and better results will be obtained with swing

library for supporting the signal. [3].

Figure 3: Code for refactoring the function signal to events

Figure 4: Code for ReactEdit study about user interaction

4. Conclusion

Summing up all the discussion from above, it is concluded

that the convergence of event-based programming and

functional programming represented a promising approach

for developing more maintainable and robust software

systems. Secondly, by embracing functional programming

principles like pure functions, immutability and higher-order

functions within event-driven contexts, the developers can

easily unlock the potential for modular, cleaner and more

predictable code for the future.

However, there are also some challenges including the

learning curve linked to functional programming concepts

and the adaptation of existing event-driven codebases. Due

to this, it is important to bridge the gap between these two

programming systems. There are a lot of benefits obtained

from it that will lead towards improved code quality,

increased developer productivity, and enhanced testability.

Secondly, they are providing some ultimate results in

software applications so they are easy to maintain.

Lastly, with time, the software development landscape

continues to evolve. Therefore, the synergy between

functional programming, and event-based programming

offers a compelling path forward and enables the developers

to harness the strengths of both paradigms for creating

software solutions that can be applied in real-time event

processing while maintaining the reliability and

maintainability provided by functional programming. Also,

such convergence is promising a brighter future for software

development in which event-driven systems are not only

efficient but also maintainable and reliable.

References

[1] G. Salvaneschi and a. M. M. Gerold Hintz, “REScala:

Bridging between object-oriented and functional style in

reactive applications.,” In Proceedings of the 13th

International Conference on Modularity, 2014.

[2] I. Perez and A. H. Nilsson, "Bridging the GUI gap with

reactive values and relations," In Proceedings of the

2015 ACM SIGPLAN Symposium on Haskell, 2015.

[3] A. Podkopaev and A. V. V. Ori Lahav, "Bridging the

gap between programming languages and hardware

weak memory models," Proceedings of the ACM on

Programming Languages, 2019.

Paper ID: SR231116134821 DOI: https://dx.doi.org/10.21275/SR231116134821 1597

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.803

Volume 11 Issue 1, January 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

[4] Z. Hu and A. M. W. John Hughes, "How functional

programming mattered," National Science Review,

2015.

[5] E. T. Ingvarsson and A. E. J. Fernandez., "Bridging the

gap between laboratory and applied research on

response‐independent schedules.," Journal of Applied

Behavior Analysis 56, 2023.

[6] V. Gruhn and M. H. M. R. G. W. J. Y. a. L. Z. Yanbo

Han, "Bribot: Towards a service-based methodology for

bridging business processes and IoT big data," In

International Conference on Service-Oriented

Computing, 2021.

Paper ID: SR231116134821 DOI: https://dx.doi.org/10.21275/SR231116134821 1598

