On the Diophantine Equations $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{4}$ and $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}=\frac{1}{4}$
 Dr. Rajive Atri

Associate Professor and Head, Department of Mathematics, C.S.S.S. (PG) College, Machhra, Meerut, India rajiveatri20[at]gmail.com

Abstract

In this paper, the above Diophantine equations have been discussed for integral solutions.

Keywords: Diophantine equation and integral solution.

1. Introduction

Erdos \& Straus (1950) conjectured that for all integers $n \geq 2$, the rational number $\frac{4}{n}$ can be expressed as sum three unit fractions. Thus the conjecture formally states that for every integer $n \geq 4$, there exists positive integers x, y and z such that $\frac{4}{n}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}$.

Monks, M. \& Velingker, A. examined the solutions of the above equation for prime n. Hari Kishan et. al. (2011) discussed the Diophantine equations of second and higher degree of the form $3 x y=n(x+y)$ and $3 x y z=$ $n(x y+y z+z x)$ etc. Rabago, J. F.T. \& Tagle, R.P. (1913) discussed the area and volume of a certain regular solid and the Diophantine equation $\frac{1}{2}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}$. Sander, J. (1913) discussed the Diophantine equation $\frac{1}{2}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}$ and obtained solutions of this Diophantine equation.

In this paper, the above problem has been extended for the Diophantine equations $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{4}$ and $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}=\frac{1}{4}$.

Analysis:

Case 1: First, the Diophantine equation $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{4}$ has been discussed. Suppose $x \leq y \leq z$. Then $\frac{1}{x}<\frac{1}{4}$. This implies that $x \geq 5$. Also $\frac{3}{x} \geq \frac{1}{4}$. This implies that $x \leq 12$. Thus $x=\{5,6,7,8,9,10,11,12\}$. Thus there may be the following cases:

$$
\begin{array}{ll}
\text { For } & x=5, \frac{1}{y}+\frac{1}{z}=\frac{1}{20}, \\
\text { For } & x=6, \frac{1}{y}+\frac{1}{z}=\frac{1}{12}, \\
\text { For } & x=7, \frac{1}{y}+\frac{1}{z}=\frac{3}{28}, \\
\text { For } & x=8, \frac{1}{y}+\frac{1}{z}=\frac{1}{8}, \\
\text { For } & x=9, \frac{1}{y}+\frac{1}{z}=\frac{5}{36}, \\
\text { For } & x=10, \frac{1}{y}+\frac{1}{z}=\frac{3}{20}, \\
\text { For } & x=11, \frac{1}{y}+\frac{1}{z}=\frac{7}{44}, \\
\text { For } & x=12, \frac{1}{y}+\frac{1}{z}=\frac{1}{6} . \tag{8}
\end{array}
$$

Equations (1), (2), (4) and (8) imply the following relations: $(y-20)(z-20)=400$,

$$
\begin{align*}
& (y-12)(z-12)=144 \tag{10}\\
& (y-8)(z-8)=64 \tag{11}\\
& (y-6)(z-6)=36 \tag{12}
\end{align*}
$$

From (9), the following cases may be possible:
$(y-20)=1,(z-20)=400 ;(y-20)=2,(z-20)=200$;
$(y-20)=4,(z-20)=100 ;(y-20)=5,(z-20)=80$;
$(y-20)=8,(z-20)=50 ;(y-20)=10,(z-20)=40$;
$(y-20)=20,(z-20)=20$.
Thus we have the following solutions:
$(x, y, z)=(5,21,420),(5,22,220),(5,24,120),(5,25,100)$, $(5,28,70)$,
$(5,30,60),(5,40,40)$.
From (10), the following cases may be possible:
$(y-12)=1,(z-12)=144 ;(y-12)=2,(z-12)=72$;
$(y-12)=3,(z-12)=48 ;(y-12)=4,(z-12)=36$;
$(y-12)=6,(z-12)=24 ;(y-12)=8,(z-12)=16$;
$(y-12)=12,(z-12)=12$.
Thus we have the following solutions:
$(x, y, z)=(6,13,156),(6,14,84),(6,15,60),(6,16,48)$, $(6,18,36)$,
$(6,20,28),(6,24,24)$.
From (11), the following cases may be possible:
$(y-8)=1,(z-8)=64 ;(y-8)=2,(z-8)=32$;
$(y-8)=4,(z-8)=16 ;(y-8)=8,(z-8)=8$.
Thus we have the following solutions:
$(x, y, z)=(8,9,72),(8,10,40),(8,12,24),(8,16,16)$,
From (12), the following cases may be possible:
$(y-6)=1,(z-6)=36 ;(y-6)=2,(z-6)=18$;
$(y-6)=3,(z-6)=12 ;(y-6)=4,(z-6)=9$;
$(y-6)=6,(z-6)=6$.
Thus we have the following solutions:
$(x, y, z)=(12,7,42),(12,8,24),(12,9,18),(12,10,15)$, $(12,12,12)$.

Similarly the solutions the solutions for $x=6,7,8,9,10,11$ and 12 can be obtained. The solutions can further be obtained by using the equations (3), (5), (6) and (7). Since x,
y and z are symmetric in the Diophantine equation there are $3!=6$ cases for each solution.

Case 2: Second, the Diophantine equation $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{t}=\frac{1}{4}$ has been discussed. Suppose $x \leq y \leq z \leq t$. Then $\frac{1}{x}<\frac{1}{4}$. This implies that $x \geq 5$. Also $\frac{4}{x} \geq \frac{1}{4}$. This implies that $x \leq 16$. Therefore $x=\{5,6,7,8,9,10,11,12,13,14,15,16\}$. Thus there may be the following cases:
For $\quad x=5, \frac{1}{y}+\frac{1}{z}+\frac{1}{t}=\frac{1}{20}$,
For $\quad x=6, \frac{1}{y}+\frac{1}{z}+\frac{1}{t}=\frac{1}{12}$,
For $\quad x=7, \frac{1}{y}+\frac{1}{z}+\frac{1}{t}=\frac{3}{28}$,
For $\quad x=8, \frac{1}{y}+\frac{1}{z}+\frac{1}{t}=\frac{1}{8}$,
For $\quad x=9, \frac{1}{y}+\frac{1}{z}+\frac{1}{t}=\frac{5}{36}$,
For $\quad x=10, \frac{1}{y}+\frac{1}{z}+\frac{1}{t}=\frac{3}{20}$,
For $\quad x=11, \frac{1}{y}+\frac{1}{z}+\frac{1}{t}=\frac{7}{44}$,
For $\quad x=12, \frac{1}{y}+\frac{1}{z}+\frac{1}{t}=\frac{1}{6}$,
For $\quad x=13, \frac{1}{y}+\frac{1}{z}+\frac{1}{t}=\frac{7}{78}$,
For $\quad x=14, \frac{1}{y}+\frac{1}{z}+\frac{1}{t}=\frac{2}{21}$,
For $\quad x=15, \frac{1}{y}+\frac{1}{z}+\frac{1}{t}=\frac{1}{10}$,
For $\quad x=16, \frac{1}{y}+\frac{1}{z}+\frac{1}{t}=\frac{1}{16}$,
Equation (13) gives $\frac{1}{y}<\frac{1}{20}$. This implies that $y \geq 21$. Also $\frac{3}{y} \geq \frac{1}{20}$. This implies that $y \leq 60$. Therefore $y=$ $\{21,22,23, \ldots, 60\}$. Thus there may be the following cases:

For $y=21, \frac{1}{z}+\frac{1}{t}=\frac{1}{420}$,
For $y=22, \frac{1}{z}+\frac{1}{t}=\frac{1}{220}$,
For $y=23, \frac{1}{z}+\frac{1}{t}=\frac{3}{460}$,
For $y=24, \frac{1}{z}+\frac{1}{t}=\frac{1}{120}$,
For $y=28, \frac{1}{z}+\frac{1}{t}=\frac{1}{70}$,
For $y=32, \frac{1}{z}+\frac{1}{t}=\frac{3}{160}$,
For $y=40, \frac{1}{z}+\frac{1}{t}=\frac{1}{40}$,
For $y=56, \frac{1}{z}+\frac{1}{t}=\frac{9}{280}$,
For $y=60, \frac{1}{z}+\frac{1}{t}=\frac{1}{30}$,
Equations (25), (26), (28), (29), (31) and (33) imply the following relations:

$$
\begin{align*}
& (z-420)(t-420)=176400 \tag{34}\\
& (z-220)(t-220)=48400 \tag{35}\\
& (z-120)(t-120)=14400 \tag{36}\\
& (z-70)(t-70)=4900 \tag{37}\\
& (z-40)(t-40)=1600 \tag{38}\\
& (z-30)(t-30)=900 \tag{39}
\end{align*}
$$

From equation (37), the following cases may be possible:
$(z-70)=1,(t-70)=4900 ;(z-70)=2,(t-70)=2450$;
$(z-70)=4,(t-70)=1225 ;(z-70)=5,(t-70)=980$;
$(z-70)=7,(t-70)=700 ;(z-70)=10,(t-70)=490$;
$(z-70)=14,(t-70)=350 ;(z-70)=20,(t-70)=245$;
$(z-70)=28,(t-70)=175 ;(z-70)=35,(t-70)=140$;
$(z-70)=49,(t-70)=100 ;(z-70)=70,(t-70)=70$.

Thus we have the following solutions:

$$
\begin{gathered}
(x, y, z, t)=(5,28,71,4970),(5,28,72,2520),(5,28,74,1295), \\
(5,28,75,1050),(5,28,77,770),(5,28,80,560),(5,28,84,420),(5,28,90,325) \\
,(5,28,98,245),(5,28,105,210),(5,28,119,170),(5,28,140,140)
\end{gathered}
$$

Similarly the other solutions can be obtained for other values of x and y and for relations (25), (26), (29), (31) and (33). Since x, y, z and tare symmetric in the Diophantine equation there are $4!=24$ cases for each solution.

2. Concluding Remarks

Here the two Diophantine equations have been discussed for integral solutions for certain values of variables x and y. More solutions can further be obtained for other values of variables x and y and for other relations in the variables.

References

[1] Guy, R.K. (1994): Unsolved Problems in Number Theory. Springer, Verlag, New Yark
[2] Kishan, H., Rani, M. and Agarwal, S. (2011): The Diophantine Equations of Second and Higher Degree of the form $3 x y=n(x+y)$ and $3 x y z=n(x y+y z+$ $z x$ etc. Asian Journal of Algebra, 4(1), 31-37.
[3] Rabago, J. F.T. \& Tagle, R.P.(2013): The area and volume of a certain regular solid and the Diophantine
equation $\frac{1}{2}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}$. Notes on Number Theory and Discrete Mathematics, 19(3), 28-32.
[4] Sander, J. (1913): A Note on a Diophantine equation. Notes on Number Theory and Discrete Mathematics, 19(4), 1-3.
[5] Erdos, P. \& Straus, E.G. (1950): On a Diophantine Equation. Math. Lapok, 1, 192-210.

