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Abstract: This research paper and its subsequent implementation is aimed at employing a combination of neural networks and natural 

language processing methodologies to successfully identify and categorize tags found in unmarked news articles and can be extended to 

other literary publications as well. These methodologies will then be applied onto the specific dataset containing a collection of news 

headlines associated with a brief description of the article along with other associated information. The result of this implementation 

will allow us to identify such tags in the future for unmarked articles. Unmarked news articles are becoming increasingly common these 

days and thus, make it even more difficult for the everyday user to identify and read forth articles that are of importance and of interest 

to him. In the present day, people are attracted to news articles based on their headlines primarily, and unmarked articles are a means of 

representation for unambiguous statements found not only in the headlines but also in the description of the article as well. Thus, the 

goal of this implementation is to successfully classify the tags found in both the headlines and description and to produce a clear 

representation regarding the category the article belongs under. Once the models have been successfully built, we will then evaluate 

their accuracy and hence determine their effectiveness for the use of similar datasets in the future. An extension of this paper can be 

used to identify the type of language being used in the articles in order to identify the different writing styles present. After the models 

have been successfully implemented their accuracy will be used to determine their effectiveness in predicting such similar datasets in the 

future. In this paper, the methods being used are Text based Convolutional Neural networks, Bidirectional Gated Research Unit (GRU) 

and a Long Short-Term Memory (LSTM) with Attention. The performance is then the topic of discussion based on how effectively the 

testing data is handled as visualized by the confusion matrices of the respective models.  
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1. Introduction 
 

Most news publications have been moving towards the 

online market increasingly and have been a major source 

of internet traffic. These days, people don’t have the time 

to visit shops and newsstands and browse through several 

newspaper publications just to find a paper that slightly 

interests them. Thus, the shift to online has increased sales 

for the companies by providing a simplified, easy to view 

and interpret reading experience with bold headlines to 

attract the user. From the consumer’s perspective based on 

the majority's fast paced lives, they would first look at the 

headlines and then decide whether or not to view the 

article. But a majority of the headlines are literally 

ambiguous to the reader. The interpretation of the 

headlines themselves are varied to each user and are 

affected by factors such as the previously mentioned 

interpretability of the user, knowledge of the user on the 

particular subject etc. From the writer’s perspective not 

only must they have a knack for writing brilliant headlines 

that drive the user’s interest, but they must also employ 

the art of compression and allusion to make immediate 

sense to attract the reader to tell the news. From the paper 

by Mazhar Iqbal Rana et. al [3] we were able to gain the 

current state of working on the topic of text classification 

for news headlines and also how the efficiency and 

accuracy of a model would end up when analyzing over 

large quantities of text. In the paper by Petr Kroha et. al 

[2] we are evaluating the similarity of good news and bad 

news and their approach using classification methods and 

retrieving market news and as a result we were able to 

gain insight into the effect of considering the document 

frequency and similarity of those documents before the 

classification process. In the paper by Geert Brone and 

Seana Coulson [1], they have highlighted their experiment 

on the ambiguity found in the creation of headlines not 

only was it a complex process but also found that subjects 

were aware of the ambiguity in the headlines and lost 

interest when they encountered it and even the subjects 

who tried interpreting it failed multiple times. The 

example presented by them is as follows-take for example 

the headline “Russia takes the froth of Carlsberg results”, 

this can be interpreted as either a major effect on Russia or 

it refers to the beer company Carlsberg. For our approach, 

we are not focusing on only the headlines as that would 

result in a simple text classification problem but to add 

complexity, we have extended onto the description that 

follows the headline in order to obtain the context of the 

article and to identify the style and category it belongs to. 

News Classification is not a new subject or topic of 

interest that has suddenly emerged to the forefront but has 

been there for many years and has seen many variations. 

But in this paper, we aim to use specific neural network 

models that should provide us a decent accuracy and 

performance that enables us to use the said models on 

similar datasets in the future. Most of these said papers 

and implementations aim to use machine learning models 

such as Naïve-Bayes Classifier, Logistic Regression etc. 

and have achieved an accuracy mostly around 75%. There 

are also papers done with neural network implementations 

like the one done by Svitlana Volkova et. al [9]. where 

they have used CNN’s and LSTM to classify suspicious 

and trusted news posts from twitter. Their paper provided 

valuable insight into how the separation of the categories 

was to be made and how the embedding framework was 

supposed to work with GloVe embeddings [11]. The paper 

by Peng Zhou et. al [6] was referenced in order to gain 

knowledge on how bidirectional neural nets [5] take place 
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and how the addition of Attention to the network makes a 

difference when coupled with a regular LSTM [7]. 

Finally, the paper by Bin He et. al was referenced in order 

to gain knowledge into the working and known usage of 

the BiGRU layer and how it would affect a model [4]. 

 

The dataset that has been used in this implementation is a 

relatively new dataset and hasn’t been cited in any papers 

as of yet at the time of this paper. The goal of this paper is 

to develop a model that provides significantly high 

accuracy as there hasn’t been any attempt as of yet and so 

that we can create a framework and also to understand 

which approach is most suitable for this type of dataset 

and such similar datasets. In section II we discuss the 

dataset attributes and description in detail. In section III 

we discuss the data preprocessing steps that were applied 

before building the model while in section IV we explain 

a detailed picture of the models themselves and their 

working and in section V we put forth the implementation 

details and model building and how the model was trained 

and tested and their results followed by a discussion and 

possible interpretation of the said results is performed in 

section VI. Finally, in the conclusion of section VII we 

present on how likely and what model would be the most 

appropriate for applying the model onto similar datasets in 

the future and also the goals of this paper in the future and 

its benefits and applications. The appendix contains code 

that was developed using Spyder IDE which can be 

executed onto any similar python IDE for corroboration of 

the said results.  

 

2. The Data Set 
 

The dataset used for this paper was obtained from the 

HuffPost an online newspaper which produces articles 

regularly, and the data was obtained by means of a crawler 

and uploaded to Kaggle from where it was downloaded 

for this implementation [10]. The dataset is a Json format 

file containing over 200, 000 records of news articles, all 

of which are categorical values and each instance of the 

record has six features. These entries depict relative info 

about each article such as the headlines, links, descriptions 

etc. The articles themselves encompass a wide variety of 

topics ranging from sports to lifestyle to cooking to 

technology to education etc. The timeline for the data of 

the news articles is from the years 2012 to 2018. This 

research is instrumental in explaining the importance of 

tags to a news article and the reach it can get and the type 

of language that it can utilize. This paper also explains 

how to apply the below mentioned features of the dataset 

in order to identify the optimal model with its accuracy 

when applied to such types of datasets. The features of the 

dataset are as follows- 

 

● Category: This attribute specifies the type of category 

the respective article belongs to. For example-Politics, 

entertainment, travel etc. are some of the categories. 

Overall there are 31 such categories.  

● Headline: This attribute represents the headline of the 

specific news article.  

● Authors: This attribute depicts the authors who have 

written the specific article.  

● Link: This attribute provides a link to the respective 

article.  

● Short_description: This attribute provides a brief 

summary of the respective article.  

● Date: This attribute provides the date the article was 

published on.  

 

Figure 1 depicts a snapshot of the dataset and its 

associated attributes along with their respective values. As 

mentioned previously all the data in the dataset are present 

as categorical values and none are recurring. When 

proceeding further in the following sections we will be 

employing a way for our models to interpret the data but 

not in the categorical format as it is difficult for a neural 

network model to be able to map the individual words to 

their corresponding meaning. Thus, we will be 

representing each word by a vector space and will be 

explained further in detail in the following sections. When 

applying this dataset to our models we wish to correctly 

map the words to their respective tags present in the 

articles so as to not develop a model which misinterprets 

tags found in an unmarked article. 

 

 
Figure 1: Dataset Description 

 

3. Data Preprocessing Stage 
 

As mentioned earlier, the dataset is completely categorical 

in nature and as such if we want our model to produce an 

efficient implementation then conversion of the 

categorical data into numeric data is highly necessary and 

so even before the training and test split followed by some 

data preprocessing. In this data preprocessing we have 

used primarily Keras version 2.2.4 with Tensorflow 1.5 as 

the backend and all their associated libraries. Initially, for 

the purpose of data visualization we extracted all the 

unique categories present in the dataset. Figure 2 

illustrates the result after printing the categories and the 

number of articles associated with each category. 
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Figure 2: Categories and number of articles 

  

From Figure 2 it is apparent that the categories “The 

WorldPost” and “WorldPost” are the same category. Thus, 

the next transformation made to the dataset is the 

combination of the mentioned two categories into a single 

category labeled as “WorldPost”. Once accomplished we 

now have to move onto the text processing part. The data 

variable text was created as an amalgamation of the 

headline and associated description of each respective 

article. Thus, now each text variable represents a typical 

bag of words type model. Now in order to convert the 

categorical variables we employ the method of word 

embedding. Word embedding is a class of approaches for 

the representation of words and documents as a vector 

space method. Thus, here the text variables are 

represented as dense vectors where the vector represents 

the projection of the continuous vector space. This 

position of the word with respect to the vector space is 

called an embedding [16]. We have chosen to go with the 

Keras embedding scheme with the Tokenizer API to 

perform the data preparation for converting the text data 

into their individual words and then into sequences. The 

Tokenizer API then passes it to the Keras embedding layer 

which initializes the weights randomly. As for the learning 

of the embeddings themselves, we have chosen to go with 

the Global Vectors for Word Representation (GloVe). 

This is actually a package of pretrained words converted 

into a vector space in order to accelerate the learning of 

the words. In the sense of a definition it can be expressed 

as an unsupervised learning algorithm for obtaining vector 

representation of words. Basically, instead of us 

converting each word into a vector representation we use 

the GloVe package to correlate the words in our document 

and retrieve the vector representation of a word and thus 

reducing the time complexity of the entire program. Also, 

we use a padding length of 50 to fill the empty vector 

values. Once this is done, we then call the Keras 

embedding layer passing the index of the word vectors. 

The vector word index then becomes our independent 

variable labelled as ‘X’. With regards to our dependent 

variable we have converted our categories into an integer 

representation for the purpose of our validation. Once the 

word index has been created along with the embedding 

vector’s we now have to determine the size of each of 

them and thus, we have obtained 86627 unique tokens and 

400, 000 word vectors. Once the embedding layer is 

completed, we will begin the split of the dataset into 

training and test set. Choosing an optimal split of 

paramount importance and thus we have chosen to go with 

the test size as being 20% causing the training size to be 

80%.  

 

4. Neural Network Techniques 
 

1) Text CNN 

 

Convolution Neural networks are a class of supervised 

deep learning neural networks that are usually used for 

analyzing visual imagery. They combine three 

architectural methods for ensuring that some degree of 

shift and distortion invariance, local receptive fields, 

shared weights and spatial and temporal subsampling take 

place efficiently [12]. The CNN basically consists of 

input, output and several hidden layers. These hidden 

layers typically consist of convolutional layers, an 

activation layer i. e. RELU, pooling layers, fully 

connected layers and normalization layers. This 

convolutional layer emulates the response of an individual 

neuron to stimuli, which in the case of this paper would be 

the word vectors themselves. The easiest way to interpret 

it would be to consider a convolution as a sliding window 

function that slides over the embedding matrix of vectors 

and simplifies into a convolved feature. This layer learns 

the features and identifies the parameters and 

hyperparameters that can be used to classify the data. The 

pooling layers are used to reduce the dimensionality of the 

data. It does this by combining the outputs of the 

convolution layer into a single neuron for the next layer 

and it combines these values either using the max or 

average of each convolution cluster of neurons. The 

convolution layers can be added at multiple times among 

the model building layers to improve the learning rate of 

the features and to generate a fully-connected output with 

the proper training weights. The RELU layer, an 

abbreviation for Rectified linear unit, is an activation 

function that can be used when the generated convolution 

matrix is predominant with negative values which can 

then be converted to zero values by the RELU function. In 

this paper we have elected to go with the RELU function 

as it trains the model faster than other activation functions 

like hyperbolic and sigmoid. After several iterations of the 

convolution and pooling layers we have to initiate the full 

connection of all the layers as this is how all the outputs of 

the previous layers will be transferred to the 

corresponding layer.  

 

2) Bidirectional GRU with convolution 

 

Recurrent Neural networks (RNN) are a class of 

supervised neural network models which behave similarly 

to feedforward networks but the difference between the 

conventional feedforward network is that the connections 

between the nodes form a directed graph amongst 

particularly a sequence i. e. these are networks with a loop 

feeding the output back to the input [20]. Figure 3 

illustrates the typical structure of an RNN unit node. 
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Figure 3: RNN unit node [17] 

 

A Gated Recurrent Unit (GRU) is a variation of the RNN 

model and was proposed by Cho et al. [2014]. In this 

variation we make each recurrent unit to adaptively 

capture dependencies of different time scales [15]. The 

benefit of the GRU scheme is its ability to handle the 

vanishing gradient problem often faced by the standard 

RNN and also the difficulty in memorizing words from far 

away in the sequence [14]. Similar to the RNN LSTM 

model, a GRU also has several gating units that modulate 

and control the flow of information inside the unit but 

without having separate units handling this information. 

The main difference in these gating units is the presence 

of the update and reset gate. Figure 4 illustrates the typical 

unit of an GRU node. 

 

 
Figure 4: Gated Recurrent Unit [13] 

 

With respect to the Update gate, this gate helps the model 

identify how much of the past information needs to be 

passed along to the future. This is an important 

contribution as it helps address the issue of the vanishing 

gradient by holding the current memory content and the 

memory content from the previous steps and deciding 

which subset of the information needs to be saved for 

future determination. The below mathematical 

representation depicts the update gates operation in 

processing the information. 

 

                            
 

Where xt is plugged into the network unit multiplied by its 

own weight and the same goes for h (t-1). For the reset gate 

it is used to determine how much of the past information 

to forget and works hand in hand with the update gate to 

determine how much information to send to the next layer 

of nodes. The mathematical representation of the reset 

gate is as below.  

 

                             
 

The above representation is similar to the update gate’s as 

the weight and gate usage is similar to it, but the 

difference is in their working. Now that we have a 

thorough and in-depth understanding of the basic principle 

of how the GRU works so we can now look at how 

bidirectional GRU affects a model along with 

convolution. Bidirectional GRU is realistically putting two 

independent GRU units together, but the working is such 

that the input sequence is fed in the normal i. e. positive 

time order sequence for one of the units and in the reverse 

time order for the other unit. The outputs of these two 

nodes are concatenated at each time order. The benefit of 

this structure allows the network to have both backward 

and forward information about each sequence at each time 

step. Thus, for the use of our paper, we have opted for 

bidirectional GRU as a hypothetical test to see if the 

addition of the reversed copy of the input sequence of 

word index will help the learning rate coupled with the 

time it might take to finish the computation. The idea for 

the implementation is to pass each line of the word index 

into the two parts of the BiGRU nodes providing each of 

them the word index and the reversed copy of the same 

part. As explained earlier traditional convolutional layers 

are used to test the features and their respective role in the 

dataset and by applying non-linearity and invariance to a 

regular CNN, but as in the paper by Gil Keren et. al, they 

proposed a model that enhances this feature extraction 

process for the case of sequential data by feeding patches 

of data into a regular RNN and using the outputs or the 

hidden layers of the recurrent units to compute the 

extracted features [8]. Thus, in this paper, we propose to 

use the same technique but with some modification as 

here we will use the convolution layer to slide through 

part of the word index (after the BiGRU layer has been 

fitted to the embedding layer) and build the convolutional 

layer followed by the pooling layer.  

 

3) LSTM with Attention 

 

The final model in our implementation is again a variation 

of Recurrent Neural networks called Long Short-Term 

Memory (LSTM) [19]. This special type of RNN is a 

network model capable of learning long-term 

dependencies and it does so due to the fact that they 

contain four neural network layers in each unit and are the 

most suitable for transferring entire vectors amongst the 

models themselves. Figure 5 contains the diagrammatic 

representation of the typical LSTM network along with a 

cross-sectional view of the underlying networks present in 

it. 

 

 
Figure 5: LSTM Neural Network [17] 

 

The benefit of LSTM for our implementation is its ability 

to memorize large sequences of data thus allowing it to 
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store our large word vectors. For its working, it too 

contains gates that control the movement and modulation 

of the data that is flowing through it. The gates in this 

model are the input, output and forget gate. Each cell is 

capable of and responsible for maintaining the 

dependencies between the elements in the input sequence. 

The input gate controls the extent to which a new value is 

allowed to flow into the cell, the forget gate controls the 

time period the new value is allowed to remain in the cell 

and the output gate controls the extent to which the value 

in the cell is used to compute the output activation of the 

LSTM unit. The activation function used in our 

implementation is the softmax function. The addition of 

the attention mechanism is done to provide an extra sense 

of interoperability with the LSTM network. Attention is 

essentially a vector which is a byproduct of using the 

softmax activation function. Without the addition of 

Attention, the LSTM network would have to go through 

all the word vectors and compute the dependencies among 

the vectors. This is especially difficult if the sentence that 

we are processing is a large one with several hundreds of 

words. Thus, this would lead to a large amount of 

information loss, inadequate translation etc. The addition 

of attention does not combat all these problems or make a 

huge impact on the performance of a regular network, but 

still it has a way of correlating the dependencies found 

among words. The cost of the addition of attention is the 

bottleneck caused by the compulsory computation of the 

attention weight values at each cell of the LSTM i. e. we 

need to calculate the attention weight value for each 

combination of the input and output word. For example, if 

we had a 50-word input sentence and generated a 50-word 

output sentence then we would have 2500 attention 

values. But when it proceeds into hundreds of words then 

it would get computationally intensive. The other 

drawback being that if the attention vector is focused on a 

particular correlation and omits another correlation that 

might have the same weight as the other then we would 

have some significant loss in our output.  

 

5. Experimental Setup 
 

This dataset was obtained in the json format and the 

pandas library was used to obtain access to its contents 

(which are depicted in Figure 1). The major libraries being 

used for the implementation are the Keras version 2.2.4 

with the tensorflow backend, Scikit-learn, seaborn, 

matplotlib and Numpy. The code was programmed in 

Spyder IDE. The next step that was performed was the 

data preprocessing phase as explained in section III. This 

phase was performed to bring the categorical data into a 

vectorized matrix of embeddings for the words present in 

the dataset. With this done we proceeded to split the 

dataset with the sklearn. model_selection library for the 

training and testing parts opting to go for the testing size 

as 20% of the dataset. Once this milestone was completed, 

we now proceeded to build each of our models as 

described in section IV of their working and merits. The 

goal of building the three models is to compare their 

respective accuracy and determine how good they are and 

also as to our approach about how the article information 

was processed. 

 

The first model that was developed was the Text based 

CNN model. We have passed the embedding layer input 

to the input variable for the CNN model thus storing the 

word vectors in a list for processing by the convolutional 

layer. Thus, the next step is to call the convolutional layer. 

But before that we have set a varying kernel size integer 

values, those being 2, 3 and 4 just to find the best possible 

value for the convolution window. We then call the 

convolution layer with 64 filters and padding being ‘same’ 

meaning that the output of the convolution step will be 

padded to the same length as the input (i. e.50 as set 

previously for the vectors). For the activation function we 

have chosen to go with ‘RELU’ as it would help adjust the 

negative values present amongst our vectors to come forth 

to zero values. We are applying the convolution layer to 

the embedding matrix. This convolution layer is then 

passed to the pooling layer, which has a pool size of 3 

indicating that the ‘max’ pooling scheme that is being 

applied will have a window size of 3X3. Before 

proceeding we have to first flatten the output so that we 

are left with a one-dimensional view of the pooled layers. 

The regularization scheme being used is Dropout 

Regularization with a value set to 0.1 indicating that 10% 

of our nodes are to be released as they may cause 

overfitting and unnecessary adaptations amongst our 

vectors. The next step involves creating the Dense layer 

with a softmax activation layer. While the compilation of 

our model is set to happen the parameters chosen for the 

factors such as accuracy, loss and optimizer are 

respectively set to categorical cross entropy (for loss) and 

adam (for optimizer). Figure 6 illustrates the summary of 

the Text CNN model before the fitting process has been 

applied. 

 

 
Figure 6: Text CNN Summary 

 

The final step is to fit the model to our training set 

variables X_train and Y_train. Regarding the parameters 

we have set the number of epochs initially to 20 and the 

batch size being 120. The batch size indicates the number 

of samples to be considered at each gradient update. Thus, 

for the first run we have placed it at 120 and will progress 

to 150 for the next run to see if there is any significant 

change to the accuracy and loss. Similarly, we shall 

observe if there is any change in the accuracy by the 
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increase in the number of epochs when set at 50. For the 

validation data we have set it to X_test and Y_test in order 

to test the variation of the loss at the end of each epoch. 

We have also made use of the ‘Timeit’ library to identify 

the total run time in nanoseconds for all the models. The 

results and discussions for all the models will be presented 

in the next section. 

 

The next model to be implemented was the Bidirectional 

Gated Recurrent Units (BiGRU) with convolution. 

Initially, we call the SpatialDropout function to drop the 

excess number of feature maps present in the embedding 

matrix with the value set to 20%. Then we call the BiGRU 

function of keras which has a recurrent dropout of 10% 

which tells it to drop a fraction of the units for each 

recurrent unit and set the dimensionality of the output 

space as 128 units. We have also set the last output in the 

output sequence to be returned to the next unit as memory 

for the next unit. The bidirectional aspect comes from the 

reversal of the sequence being passed as the input to the 

current GRU layer. Then once the BiGRU layer has been 

built we then build the convolution layer with window 

size as half the size passed to the BiGRU layer as we will 

be processing only the changes from the previous i. e. 

BiGRU layer. And we have set the kernel window size as 

a fixed value of 3. Finally, we construct the Dense layer 

with the ‘softmax’ activation function. For the 

compilation of the model we have used the same 

parameters as we did in the previous model i. e. loss as 

categorical cross entropy and the optimizer as ‘adam’. 

Figure 7 illustrates the summary of the BiGRU with a 

convolution model before fitting it to the dataset. 

 

 
Figure 7: BiGRU with convolution Summary 

 

The next step involves fitting the model to our training set 

and this involves the same condition as the previous 

model wherein we rotate the values for the batch size and 

the number of epochs and see the effect they have on the 

accuracy and loss of the model. 

 

The final model that was implemented was the Long 

Short-term Memory (LSTM) with Attention. Before 

building the model and its associated layers we first have 

to build the Attention class so that we will be able to call it 

when our model is being built. For the Attention module 

we first build the weight and bias regularizer along with 

its associated constraints and the fact that it can acquire 

the feature maps i.e. the word vectors for our 

implementation when we pass the LSTM layer to it. We 

then build the masking layer and the build that performs 

the correlations and the handling of the additional 

dependencies present on the input dimension. Then we 

finally proceed to the LSTM layer. The parameters we are 

passing to the LSTM layer are more or less the same as 

the GRU layer in the previous model. This is no surprise 

as the LSTM and GRU are variations of the RNN model. 

For the LSTM layer we have specified a dimension size 

for output space as 300 due to the additional weights that 

have to be stored due to the addition of the attention 

module. The recurrent dropout is set to 25% so as to drop 

any units for the linear transformation of the input space 

and the return sequence type is also used to return the last 

sequence of the output sequence to the attention module 

so that it stores the correlation value vector. We then 

apply the LSTM layer to the embedding matrix and after 

applying the Attention module we use dropout to remove 

the problem of overfitting if it ever comes forth. We also 

apply BatchNormalization for maintaining the mean close 

to zero at each batch layer. We then build the Dense layer 

with the ‘softmax’ activation function. We then compile 

the model with the same parameters as the previous 

models. Figure 8 illustrates the summary of the LSTM 

model before it is fit to the training set. 

 

 
Figure 8: LSTM with Attention Summary 

 

For the fitting of the model we have applied the same 

parameters as in the previous models so as to maintain the 

consistency across the models so that their evaluation and 

comparison is thorough and accurate. For each model we 

have also created plots for the training and validation 

accuracy along with the plots for the training and 

validation loss. And we have derived the confusion 

matrices for each of the models and will be illustrated in 

the next section along with the discussion for them as 

well.  

 

6. Experimental Results 
 

The models that were implemented in the previous section 

were used for the training and testing of the news article 

dataset and have successfully classified the over 200, 000 

instances with 6 features each present in the dataset. For 
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the purpose of corroboration of results, we have 

successfully plotted their confusion matrix for each model 

along with their respective accuracy and loss plots and 

finally computed their overall accuracy for each model 

along with their runtime for each of them. The entire 

program was run on a Windows 64-bit environment with 

the CPU as Intel i7-5500u with clock speed as 2.40 GHz 

and RAM at 8 GB and a Nvidia 850m GPU. For the Text 

CNN model, Figure 9 illustrates the confusion matrix that 

was obtained after fitting the model to the dataset. 

 

 
Figure 9: Confusion Matrix for Text CNN model 

 

From the above figure it is readily observable that the 

classifier has predicted the majority of the samples of the 

test set into the right class, but still a large number of 

samples were misclassified especially for the eighth and 

seventeenth class. The optimal confusion matrix for this 

type of problem would be if the matrix would be a sparse 

matrix where the diagonal holds the majority of the 

samples. Figure 10 and 11 depicts the plot of the accuracy 

and loss for this model.  

 

 
Figure 10: Text CNN accuracy 

 

 
Figure 11: Text CNN loss 

 

The plots for the accuracy and loss were obtained when 

the number of epochs was set to 20. But with regards to 

the batch size being either 120 or 150 it generated the 

similar plots for both criteria. From the plot of the 

accuracy we can observe that for the training accuracy we 

are seeing a steep increase in the accuracy as the number 

of epochs progress forth, but while training the accuracy 

starts out at a much higher point due to the fact that for 

training we have tried at three different kernel sizes and 

identified the optimal one when passing it to the 

convolution layer. Thus, the testing stage has learnt the 

right kernel size and put it forth to the layer when 

predicting the output. Table 1 contains the accuracy that 

was obtained for this model. With regards to the loss of 

this model in direct proportion to the accuracy we are 

seeing a sharp decline in the loss as the number of epochs 

progress for the training set and almost similarly for the 

test set as well. Figure 12 and 13 indicates the plots of 

having the number of epochs set to 50 and how it affects 

the learning rate. From the plots below we can see that the 

training accuracy starts at a higher point and we can safely 

assume that the error rates have been minimized and 

hence the model is starting at a higher level as it knows 

the optimal starting point. But the problem arises for the 

testing accuracy wherein we are getting no increase in the 

accuracy of the model and also the problem of overfitting 

has raised, thus the only way to counter this is to increase 

the dropout value and. The total runtime of the whole 

model is depicted in table 2. 

 

 
Figure 12: Text CNN accuracy with epochs as 50 
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Figure 13: Text CNN loss with epochs as 50 

 

For the case of the BiGRU model with convolution, 

Figure 14 illustrates the confusion matrix that was 

extrapolated from the program. The confusion matrix 

when compared to the confusion matrix of the Text CNN 

model is slightly better when it comes to the number of 

samples that have been accurately classified. 

 

 
Figure 14: Confusion Matrix of BiGRU model with 

convolution 

 

Just by observation and intuition we can assume that the 

results of the BiGRU model will be slightly better than the 

Text CNN model. Figure 15 and 16 illustrates the plots for 

the accuracy and loss for the BiGRU model with 

convolution when the number of epochs is 20 and the 

batch size is 150.  

 

 
Figure 15: BiGRU with convolution accuracy 

 

 
Figure 16: BiGRU with convolution loss 

 

The plot for the accuracy and loss of the model shows the 

learning rate as being similar to the previous model. For 

the accuracy again we see a sharp increase in the accuracy 

from below 50% all the way to over 65% close to 67%. 

The testing accuracy is starting higher and this is due to 

the addition of the spatial dropout before calling the 

convolution layer. The benefit of the spatial dropout is 

that even though it is deleting the feature maps i. e. the 

word vectors in our case even before the BiGRU layer can 

build the correlation map for these word vectors, we are 

training the model initially such that we prevent co-

adaptation of the vectors amongst its neighbors such that it 

learns as if there are no other feature maps existing 

currently. Thus, we are making the nodes learn and store 

memory initially and for a significant amount of time. The 

other reason that this model could present higher accuracy 

than the previous layer is the fact that we are using the 

keras GlobalMaxpooling and GlobalAveragepooling as 

the pooling layers consecutively. The benefit of these two 

methods is that they take the max and average vector over 

the whole steps dimension i. e. in one go rather than by 

reducing them at each iteration until it finally comes to the 

final reduction step. The accuracy and total time run will 

Paper ID: SR211210154742 DOI: 10.21275/SR211210154742 335 



International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2020): 7.803 

Volume 11 Issue 1, January 2022 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

be illustrated in tables 1 and 2. From the total time taken 

to run the whole model it is evident that the model which 

would have 50 epochs would be computationally intensive 

and could not be run on the current hardware platform but 

would run successfully on high-performance systems.  

 

The final model that was implemented is the LSTM model 

with attention. Figure 17 illustrates the confusion matrix 

of the model.  

 

 
Figure 17: Confusion Matrix of LSTM with attention. 

 

The confusion matrix for this model when compared to 

the confusion matrix of the other models is by far the best 

model when a high percentage of samples being classified 

accurately. The addition of the attention module has 

significantly improved the classification process and 

identified the optimal word vectors and their associated 

correlations that can be used to bring forth the right words 

and their associations so as to identify the important and 

correct words that could be used to predict the headline of 

the given description. Figure 18 and 19 illustrates the 

accuracy and loss of the model. 

 

 
Figure 18: LSTM with attention accuracy 

 

The plot of the accuracy above shows that there is no 

problem of overfitting that may occur as there isn’t much 

overlap of the training and testing parts. Also, the we can 

derive from the graph that the accuracy is the highest for 

this model than all of them and is reaching approximately 

65%. The attention module isn’t the only exquisite thing 

about this model but also the LSTM itself, this LSTM [18] 

is holding the information until the next output sequence 

and then passing the specific part of the sequence as 

determined by the Attention module as the relevant 

information and this again is held by the LSTM in its 

memory and passed to the next node as the input thus 

having multiple layers of processing of each instance of 

the testing dataset. The loss plot as seen below in Figure 

19 corroborates the same information.  

 

 
Figure 19: LSTM with attention loss 

 

The loss coming forth in this model is again the least thus 

depicting that the error rate and number of 

misclassifications will be the least and this is due to above 

stated answer of why this is a good model. predict the 

headline of the given description. Figure 18 and 19 

illustrates the accuracy and loss of the model.  

 

Table 1: Models and their Accuracy Score 
Training Model Model Accuracy (in %) 

Text CNN 

BiGRU with convolution 

LSTM with Attention 

59.055 

63.294 

65.076 

 

Table 2: Time for fitting the model 

Training Model 
Model Fitting Time (in 

nanoseconds) 

Text CNN 

BiGRU with convolution 

LSTM with Attention 

186072.84 

765789.99 

1217550.72 

 

The above tables illustrate the implemented models and 

their respective accuracies and also the total run time for 

the fitting process. The reason to have gone with the 

fitting time rather than the testing time is because when 

running the model, the observation made was that the 

testing and training time was miniscule even on the 

current hardware and even if we were to increase the 

number of computations to be run then hypothetically it 

wouldn’t change much. But the fitting as observed from 

running the program is that the fitting time takes an 

extreme amount of time and computation power. Thus, in 

Paper ID: SR211210154742 DOI: 10.21275/SR211210154742 336 



International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

SJIF (2020): 7.803 

Volume 11 Issue 1, January 2022 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

the future for increasing the scale of this problem and the 

number of computations to be run then having this 

information will be useful and we will be able to plot a 

time-series extrapolation as to how much time it might 

take based on the current hardware and what would 

happen if we were to switch to a high-performance 

system. That being said, from Table 2 we can observe that 

the LSTM model with attention is the most time-

consuming and this is a result of the continuous 

backpropagation of the vectors to the input sequence. 

Unlike the other models in the LSTM model we are not 

applying dropout regularization multiple times and as a 

result it takes longer for the computations to run for each 

epoch. With regards to Table 1, as we noticed from the 

confusion matrices and the plots and as we predicted the 

LSTM model with Attention is the best performing model 

comparatively and as such can be used in the future for 

such similar datasets. The loss also for that model 

indicates that it can be modified further, and the error rate 

is amenable. In the next section we will discuss how these 

results could be used for further and future ideas and 

implementations.  

 

7. Discussions and Conclusions  
 

Upon completion of all the phases namely the 

preprocessing, model building, evaluation and assessment 

of the dataset and the results, we can now begin to discuss 

how exactly this implementation can be put forth for 

further review and how it will benefit the usage of this 

implementation for the real world. The significance of this 

paper was done to help the daily reader of online content 

and as an extrapolation to the physical reader of the 

newspaper as well. It does this by making the headlines of 

an article as appealing to the user as possible so that it not 

only benefits the writers of the article by gaining a larger 

and appropriately targeted audience but also benefits the 

reader as well benefits by gaining essential information as 

and when required. Let’s explain how this implementation 

will help the readers with an example. Consider a natural 

or manmade calamity that has affected an area that may or 

may not be in the immediate surroundings of the reader, if 

the reader casually browses through the newspaper and 

doesn’t come across any article about the disaster that 

interests him then he may not choose to further pursue it 

and in doing so is losing out on crucial information that 

could potentially benefit him and all because even though 

there may have been articles relating to the disaster, but 

the headlines or the following context may not have been 

properly summarized due to improper usage of grammar 

and context thus, leading to a huge impact and loss for 

many people. Thus, with this implementation we are 

providing a way for online worded content to be more 

appealing to the reader by providing at least one model 

that accurately goes through the worded context present in 

the description of an article and puts forth the words that 

have the highest number of correlations such that they can 

then be used as the tags for the headline of the said article. 

With regards to the creation of this paper and what it 

contributes to the field of Natural Language Processing, it 

gives us a way to extract a word with significant meaning 

from any passage or block of text. A good extension of 

this implementation would be the shifting over from the 

news articles section to the extraction of tags that can be 

used while searching for a video in a video platform such 

as YouTube, vine, Periscope, Instagram etc. Basically, on 

platforms such as YouTube where it is possible to 

generate the subtitles of the entire video using Speech 

processing, we can implement this paper onto the subtitles 

which is essentially a block of text such that we can 

generate suitable hashtags and other such markers and 

place them in the database along with the respective 

video. Thus, when any user wishes to view a video with 

those specific hashtags then we can obtain faster lookup 

times due to the presence of syntactically and 

topologically correct wordings based on the context as 

spoken on the video. For the future advancement of this 

paper we have already discussed which model is the most 

apt that being the LSTM model with Attention. The only 

further goal would be to improve the accuracy of the 

model such that we have deeper and much more 

correlations amongst the words that are getting generated 

from the text. The future implementation would be to look 

at how and what would be the effect of the Bidirectional 

nature on the LSTM model and also look at implementing 

spatial dropout initially before the LSTM layer is created. 

The addition of a spatial dropout scheme as used in the 

BiGRU model was found to improve the accuracy as seen 

in Figure 15. Thus, we can test these further and try to 

obtain the accuracy. Thus, for now the optimal model to 

apply on similar such datasets is the LSTM with 

Attention. There were no papers that have been 

implemented before for such an application especially 

using the methods which have been put forth in this paper 

as per the research that has been conducted; we decided 

that this paper would be a new step in this category. But 

with any application there is a drawback and the major 

drawback for this implementation is in its applied usage 

and that being majorly advertisement specifically for the 

online usage, and that being if the publishers are making a 

good turnover in their audience then they would naturally 

attract advertisers and thus we could see an influx of ads 

being posted along with the articles and this could dip the 

interests of the readers.  

 

Appendix 
 

In this paper for the sake of corroboration all the code 

along with the dataset and their associated images have 

been placed in a Google drive folder and made available 

to everyone.  

 

The link is – 

https://drive.google.com/drive/folders/1_xzWgWTyKtj3_

DYUjTFMEwLPJ5YL1YWf. 
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