
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.803

Volume 11 Issue 1, January 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

News Articles Tag Categorization using Neural

Networks and Natural Language Processing

Ganesh Manohar Bhat

MSc. Data Science and Computational Intelligence Coventry University, London, England

ganeshmbhat96[at]gmail.com

Abstract: This research paper and its subsequent implementation is aimed at employing a combination of neural networks and natural

language processing methodologies to successfully identify and categorize tags found in unmarked news articles and can be extended to

other literary publications as well. These methodologies will then be applied onto the specific dataset containing a collection of news

headlines associated with a brief description of the article along with other associated information. The result of this implementation

will allow us to identify such tags in the future for unmarked articles. Unmarked news articles are becoming increasingly common these

days and thus, make it even more difficult for the everyday user to identify and read forth articles that are of importance and of interest

to him. In the present day, people are attracted to news articles based on their headlines primarily, and unmarked articles are a means of

representation for unambiguous statements found not only in the headlines but also in the description of the article as well. Thus, the

goal of this implementation is to successfully classify the tags found in both the headlines and description and to produce a clear

representation regarding the category the article belongs under. Once the models have been successfully built, we will then evaluate

their accuracy and hence determine their effectiveness for the use of similar datasets in the future. An extension of this paper can be

used to identify the type of language being used in the articles in order to identify the different writing styles present. After the models

have been successfully implemented their accuracy will be used to determine their effectiveness in predicting such similar datasets in the

future. In this paper, the methods being used are Text based Convolutional Neural networks, Bidirectional Gated Research Unit (GRU)

and a Long Short-Term Memory (LSTM) with Attention. The performance is then the topic of discussion based on how effectively the

testing data is handled as visualized by the confusion matrices of the respective models.

Keywords: Neural Networks, Gated Recurrent Units, Natural Language Processing, Long Short-Term Memory (LSTM), Text CNN,

Tensorflow, Keras

1. Introduction

Most news publications have been moving towards the

online market increasingly and have been a major source

of internet traffic. These days, people don’t have the time

to visit shops and newsstands and browse through several

newspaper publications just to find a paper that slightly

interests them. Thus, the shift to online has increased sales

for the companies by providing a simplified, easy to view

and interpret reading experience with bold headlines to

attract the user. From the consumer’s perspective based on

the majority's fast paced lives, they would first look at the

headlines and then decide whether or not to view the

article. But a majority of the headlines are literally

ambiguous to the reader. The interpretation of the

headlines themselves are varied to each user and are

affected by factors such as the previously mentioned

interpretability of the user, knowledge of the user on the

particular subject etc. From the writer’s perspective not

only must they have a knack for writing brilliant headlines

that drive the user’s interest, but they must also employ

the art of compression and allusion to make immediate

sense to attract the reader to tell the news. From the paper

by Mazhar Iqbal Rana et. al [3] we were able to gain the

current state of working on the topic of text classification

for news headlines and also how the efficiency and

accuracy of a model would end up when analyzing over

large quantities of text. In the paper by Petr Kroha et. al

[2] we are evaluating the similarity of good news and bad

news and their approach using classification methods and

retrieving market news and as a result we were able to

gain insight into the effect of considering the document

frequency and similarity of those documents before the

classification process. In the paper by Geert Brone and

Seana Coulson [1], they have highlighted their experiment

on the ambiguity found in the creation of headlines not

only was it a complex process but also found that subjects

were aware of the ambiguity in the headlines and lost

interest when they encountered it and even the subjects

who tried interpreting it failed multiple times. The

example presented by them is as follows-take for example

the headline “Russia takes the froth of Carlsberg results”,

this can be interpreted as either a major effect on Russia or

it refers to the beer company Carlsberg. For our approach,

we are not focusing on only the headlines as that would

result in a simple text classification problem but to add

complexity, we have extended onto the description that

follows the headline in order to obtain the context of the

article and to identify the style and category it belongs to.

News Classification is not a new subject or topic of

interest that has suddenly emerged to the forefront but has

been there for many years and has seen many variations.

But in this paper, we aim to use specific neural network

models that should provide us a decent accuracy and

performance that enables us to use the said models on

similar datasets in the future. Most of these said papers

and implementations aim to use machine learning models

such as Naïve-Bayes Classifier, Logistic Regression etc.

and have achieved an accuracy mostly around 75%. There

are also papers done with neural network implementations

like the one done by Svitlana Volkova et. al [9]. where

they have used CNN’s and LSTM to classify suspicious

and trusted news posts from twitter. Their paper provided

valuable insight into how the separation of the categories

was to be made and how the embedding framework was

supposed to work with GloVe embeddings [11]. The paper

by Peng Zhou et. al [6] was referenced in order to gain

knowledge on how bidirectional neural nets [5] take place

Paper ID: SR211210154742 DOI: 10.21275/SR211210154742 328

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.803

Volume 11 Issue 1, January 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

and how the addition of Attention to the network makes a

difference when coupled with a regular LSTM [7].

Finally, the paper by Bin He et. al was referenced in order

to gain knowledge into the working and known usage of

the BiGRU layer and how it would affect a model [4].

The dataset that has been used in this implementation is a

relatively new dataset and hasn’t been cited in any papers

as of yet at the time of this paper. The goal of this paper is

to develop a model that provides significantly high

accuracy as there hasn’t been any attempt as of yet and so

that we can create a framework and also to understand

which approach is most suitable for this type of dataset

and such similar datasets. In section II we discuss the

dataset attributes and description in detail. In section III

we discuss the data preprocessing steps that were applied

before building the model while in section IV we explain

a detailed picture of the models themselves and their

working and in section V we put forth the implementation

details and model building and how the model was trained

and tested and their results followed by a discussion and

possible interpretation of the said results is performed in

section VI. Finally, in the conclusion of section VII we

present on how likely and what model would be the most

appropriate for applying the model onto similar datasets in

the future and also the goals of this paper in the future and

its benefits and applications. The appendix contains code

that was developed using Spyder IDE which can be

executed onto any similar python IDE for corroboration of

the said results.

2. The Data Set

The dataset used for this paper was obtained from the

HuffPost an online newspaper which produces articles

regularly, and the data was obtained by means of a crawler

and uploaded to Kaggle from where it was downloaded

for this implementation [10]. The dataset is a Json format

file containing over 200, 000 records of news articles, all

of which are categorical values and each instance of the

record has six features. These entries depict relative info

about each article such as the headlines, links, descriptions

etc. The articles themselves encompass a wide variety of

topics ranging from sports to lifestyle to cooking to

technology to education etc. The timeline for the data of

the news articles is from the years 2012 to 2018. This

research is instrumental in explaining the importance of

tags to a news article and the reach it can get and the type

of language that it can utilize. This paper also explains

how to apply the below mentioned features of the dataset

in order to identify the optimal model with its accuracy

when applied to such types of datasets. The features of the

dataset are as follows-

● Category: This attribute specifies the type of category

the respective article belongs to. For example-Politics,

entertainment, travel etc. are some of the categories.

Overall there are 31 such categories.

● Headline: This attribute represents the headline of the

specific news article.

● Authors: This attribute depicts the authors who have

written the specific article.

● Link: This attribute provides a link to the respective

article.

● Short_description: This attribute provides a brief

summary of the respective article.

● Date: This attribute provides the date the article was

published on.

Figure 1 depicts a snapshot of the dataset and its

associated attributes along with their respective values. As

mentioned previously all the data in the dataset are present

as categorical values and none are recurring. When

proceeding further in the following sections we will be

employing a way for our models to interpret the data but

not in the categorical format as it is difficult for a neural

network model to be able to map the individual words to

their corresponding meaning. Thus, we will be

representing each word by a vector space and will be

explained further in detail in the following sections. When

applying this dataset to our models we wish to correctly

map the words to their respective tags present in the

articles so as to not develop a model which misinterprets

tags found in an unmarked article.

Figure 1: Dataset Description

3. Data Preprocessing Stage

As mentioned earlier, the dataset is completely categorical

in nature and as such if we want our model to produce an

efficient implementation then conversion of the

categorical data into numeric data is highly necessary and

so even before the training and test split followed by some

data preprocessing. In this data preprocessing we have

used primarily Keras version 2.2.4 with Tensorflow 1.5 as

the backend and all their associated libraries. Initially, for

the purpose of data visualization we extracted all the

unique categories present in the dataset. Figure 2

illustrates the result after printing the categories and the

number of articles associated with each category.

Paper ID: SR211210154742 DOI: 10.21275/SR211210154742 329

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.803

Volume 11 Issue 1, January 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 2: Categories and number of articles

From Figure 2 it is apparent that the categories “The

WorldPost” and “WorldPost” are the same category. Thus,

the next transformation made to the dataset is the

combination of the mentioned two categories into a single

category labeled as “WorldPost”. Once accomplished we

now have to move onto the text processing part. The data

variable text was created as an amalgamation of the

headline and associated description of each respective

article. Thus, now each text variable represents a typical

bag of words type model. Now in order to convert the

categorical variables we employ the method of word

embedding. Word embedding is a class of approaches for

the representation of words and documents as a vector

space method. Thus, here the text variables are

represented as dense vectors where the vector represents

the projection of the continuous vector space. This

position of the word with respect to the vector space is

called an embedding [16]. We have chosen to go with the

Keras embedding scheme with the Tokenizer API to

perform the data preparation for converting the text data

into their individual words and then into sequences. The

Tokenizer API then passes it to the Keras embedding layer

which initializes the weights randomly. As for the learning

of the embeddings themselves, we have chosen to go with

the Global Vectors for Word Representation (GloVe).

This is actually a package of pretrained words converted

into a vector space in order to accelerate the learning of

the words. In the sense of a definition it can be expressed

as an unsupervised learning algorithm for obtaining vector

representation of words. Basically, instead of us

converting each word into a vector representation we use

the GloVe package to correlate the words in our document

and retrieve the vector representation of a word and thus

reducing the time complexity of the entire program. Also,

we use a padding length of 50 to fill the empty vector

values. Once this is done, we then call the Keras

embedding layer passing the index of the word vectors.

The vector word index then becomes our independent

variable labelled as ‘X’. With regards to our dependent

variable we have converted our categories into an integer

representation for the purpose of our validation. Once the

word index has been created along with the embedding

vector’s we now have to determine the size of each of

them and thus, we have obtained 86627 unique tokens and

400, 000 word vectors. Once the embedding layer is

completed, we will begin the split of the dataset into

training and test set. Choosing an optimal split of

paramount importance and thus we have chosen to go with

the test size as being 20% causing the training size to be

80%.

4. Neural Network Techniques

1) Text CNN

Convolution Neural networks are a class of supervised

deep learning neural networks that are usually used for

analyzing visual imagery. They combine three

architectural methods for ensuring that some degree of

shift and distortion invariance, local receptive fields,

shared weights and spatial and temporal subsampling take

place efficiently [12]. The CNN basically consists of

input, output and several hidden layers. These hidden

layers typically consist of convolutional layers, an

activation layer i. e. RELU, pooling layers, fully

connected layers and normalization layers. This

convolutional layer emulates the response of an individual

neuron to stimuli, which in the case of this paper would be

the word vectors themselves. The easiest way to interpret

it would be to consider a convolution as a sliding window

function that slides over the embedding matrix of vectors

and simplifies into a convolved feature. This layer learns

the features and identifies the parameters and

hyperparameters that can be used to classify the data. The

pooling layers are used to reduce the dimensionality of the

data. It does this by combining the outputs of the

convolution layer into a single neuron for the next layer

and it combines these values either using the max or

average of each convolution cluster of neurons. The

convolution layers can be added at multiple times among

the model building layers to improve the learning rate of

the features and to generate a fully-connected output with

the proper training weights. The RELU layer, an

abbreviation for Rectified linear unit, is an activation

function that can be used when the generated convolution

matrix is predominant with negative values which can

then be converted to zero values by the RELU function. In

this paper we have elected to go with the RELU function

as it trains the model faster than other activation functions

like hyperbolic and sigmoid. After several iterations of the

convolution and pooling layers we have to initiate the full

connection of all the layers as this is how all the outputs of

the previous layers will be transferred to the

corresponding layer.

2) Bidirectional GRU with convolution

Recurrent Neural networks (RNN) are a class of

supervised neural network models which behave similarly

to feedforward networks but the difference between the

conventional feedforward network is that the connections

between the nodes form a directed graph amongst

particularly a sequence i. e. these are networks with a loop

feeding the output back to the input [20]. Figure 3

illustrates the typical structure of an RNN unit node.

Paper ID: SR211210154742 DOI: 10.21275/SR211210154742 330

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.803

Volume 11 Issue 1, January 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 3: RNN unit node [17]

A Gated Recurrent Unit (GRU) is a variation of the RNN

model and was proposed by Cho et al. [2014]. In this

variation we make each recurrent unit to adaptively

capture dependencies of different time scales [15]. The

benefit of the GRU scheme is its ability to handle the

vanishing gradient problem often faced by the standard

RNN and also the difficulty in memorizing words from far

away in the sequence [14]. Similar to the RNN LSTM

model, a GRU also has several gating units that modulate

and control the flow of information inside the unit but

without having separate units handling this information.

The main difference in these gating units is the presence

of the update and reset gate. Figure 4 illustrates the typical

unit of an GRU node.

Figure 4: Gated Recurrent Unit [13]

With respect to the Update gate, this gate helps the model

identify how much of the past information needs to be

passed along to the future. This is an important

contribution as it helps address the issue of the vanishing

gradient by holding the current memory content and the

memory content from the previous steps and deciding

which subset of the information needs to be saved for

future determination. The below mathematical

representation depicts the update gates operation in

processing the information.

Where xt is plugged into the network unit multiplied by its

own weight and the same goes for h (t-1). For the reset gate

it is used to determine how much of the past information

to forget and works hand in hand with the update gate to

determine how much information to send to the next layer

of nodes. The mathematical representation of the reset

gate is as below.

The above representation is similar to the update gate’s as

the weight and gate usage is similar to it, but the

difference is in their working. Now that we have a

thorough and in-depth understanding of the basic principle

of how the GRU works so we can now look at how

bidirectional GRU affects a model along with

convolution. Bidirectional GRU is realistically putting two

independent GRU units together, but the working is such

that the input sequence is fed in the normal i. e. positive

time order sequence for one of the units and in the reverse

time order for the other unit. The outputs of these two

nodes are concatenated at each time order. The benefit of

this structure allows the network to have both backward

and forward information about each sequence at each time

step. Thus, for the use of our paper, we have opted for

bidirectional GRU as a hypothetical test to see if the

addition of the reversed copy of the input sequence of

word index will help the learning rate coupled with the

time it might take to finish the computation. The idea for

the implementation is to pass each line of the word index

into the two parts of the BiGRU nodes providing each of

them the word index and the reversed copy of the same

part. As explained earlier traditional convolutional layers

are used to test the features and their respective role in the

dataset and by applying non-linearity and invariance to a

regular CNN, but as in the paper by Gil Keren et. al, they

proposed a model that enhances this feature extraction

process for the case of sequential data by feeding patches

of data into a regular RNN and using the outputs or the

hidden layers of the recurrent units to compute the

extracted features [8]. Thus, in this paper, we propose to

use the same technique but with some modification as

here we will use the convolution layer to slide through

part of the word index (after the BiGRU layer has been

fitted to the embedding layer) and build the convolutional

layer followed by the pooling layer.

3) LSTM with Attention

The final model in our implementation is again a variation

of Recurrent Neural networks called Long Short-Term

Memory (LSTM) [19]. This special type of RNN is a

network model capable of learning long-term

dependencies and it does so due to the fact that they

contain four neural network layers in each unit and are the

most suitable for transferring entire vectors amongst the

models themselves. Figure 5 contains the diagrammatic

representation of the typical LSTM network along with a

cross-sectional view of the underlying networks present in

it.

Figure 5: LSTM Neural Network [17]

The benefit of LSTM for our implementation is its ability

to memorize large sequences of data thus allowing it to

Paper ID: SR211210154742 DOI: 10.21275/SR211210154742 331

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.803

Volume 11 Issue 1, January 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

store our large word vectors. For its working, it too

contains gates that control the movement and modulation

of the data that is flowing through it. The gates in this

model are the input, output and forget gate. Each cell is

capable of and responsible for maintaining the

dependencies between the elements in the input sequence.

The input gate controls the extent to which a new value is

allowed to flow into the cell, the forget gate controls the

time period the new value is allowed to remain in the cell

and the output gate controls the extent to which the value

in the cell is used to compute the output activation of the

LSTM unit. The activation function used in our

implementation is the softmax function. The addition of

the attention mechanism is done to provide an extra sense

of interoperability with the LSTM network. Attention is

essentially a vector which is a byproduct of using the

softmax activation function. Without the addition of

Attention, the LSTM network would have to go through

all the word vectors and compute the dependencies among

the vectors. This is especially difficult if the sentence that

we are processing is a large one with several hundreds of

words. Thus, this would lead to a large amount of

information loss, inadequate translation etc. The addition

of attention does not combat all these problems or make a

huge impact on the performance of a regular network, but

still it has a way of correlating the dependencies found

among words. The cost of the addition of attention is the

bottleneck caused by the compulsory computation of the

attention weight values at each cell of the LSTM i. e. we

need to calculate the attention weight value for each

combination of the input and output word. For example, if

we had a 50-word input sentence and generated a 50-word

output sentence then we would have 2500 attention

values. But when it proceeds into hundreds of words then

it would get computationally intensive. The other

drawback being that if the attention vector is focused on a

particular correlation and omits another correlation that

might have the same weight as the other then we would

have some significant loss in our output.

5. Experimental Setup

This dataset was obtained in the json format and the

pandas library was used to obtain access to its contents

(which are depicted in Figure 1). The major libraries being

used for the implementation are the Keras version 2.2.4

with the tensorflow backend, Scikit-learn, seaborn,

matplotlib and Numpy. The code was programmed in

Spyder IDE. The next step that was performed was the

data preprocessing phase as explained in section III. This

phase was performed to bring the categorical data into a

vectorized matrix of embeddings for the words present in

the dataset. With this done we proceeded to split the

dataset with the sklearn. model_selection library for the

training and testing parts opting to go for the testing size

as 20% of the dataset. Once this milestone was completed,

we now proceeded to build each of our models as

described in section IV of their working and merits. The

goal of building the three models is to compare their

respective accuracy and determine how good they are and

also as to our approach about how the article information

was processed.

The first model that was developed was the Text based

CNN model. We have passed the embedding layer input

to the input variable for the CNN model thus storing the

word vectors in a list for processing by the convolutional

layer. Thus, the next step is to call the convolutional layer.

But before that we have set a varying kernel size integer

values, those being 2, 3 and 4 just to find the best possible

value for the convolution window. We then call the

convolution layer with 64 filters and padding being ‘same’

meaning that the output of the convolution step will be

padded to the same length as the input (i. e.50 as set

previously for the vectors). For the activation function we

have chosen to go with ‘RELU’ as it would help adjust the

negative values present amongst our vectors to come forth

to zero values. We are applying the convolution layer to

the embedding matrix. This convolution layer is then

passed to the pooling layer, which has a pool size of 3

indicating that the ‘max’ pooling scheme that is being

applied will have a window size of 3X3. Before

proceeding we have to first flatten the output so that we

are left with a one-dimensional view of the pooled layers.

The regularization scheme being used is Dropout

Regularization with a value set to 0.1 indicating that 10%

of our nodes are to be released as they may cause

overfitting and unnecessary adaptations amongst our

vectors. The next step involves creating the Dense layer

with a softmax activation layer. While the compilation of

our model is set to happen the parameters chosen for the

factors such as accuracy, loss and optimizer are

respectively set to categorical cross entropy (for loss) and

adam (for optimizer). Figure 6 illustrates the summary of

the Text CNN model before the fitting process has been

applied.

Figure 6: Text CNN Summary

The final step is to fit the model to our training set

variables X_train and Y_train. Regarding the parameters

we have set the number of epochs initially to 20 and the

batch size being 120. The batch size indicates the number

of samples to be considered at each gradient update. Thus,

for the first run we have placed it at 120 and will progress

to 150 for the next run to see if there is any significant

change to the accuracy and loss. Similarly, we shall

observe if there is any change in the accuracy by the

Paper ID: SR211210154742 DOI: 10.21275/SR211210154742 332

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.803

Volume 11 Issue 1, January 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

increase in the number of epochs when set at 50. For the

validation data we have set it to X_test and Y_test in order

to test the variation of the loss at the end of each epoch.

We have also made use of the ‘Timeit’ library to identify

the total run time in nanoseconds for all the models. The

results and discussions for all the models will be presented

in the next section.

The next model to be implemented was the Bidirectional

Gated Recurrent Units (BiGRU) with convolution.

Initially, we call the SpatialDropout function to drop the

excess number of feature maps present in the embedding

matrix with the value set to 20%. Then we call the BiGRU

function of keras which has a recurrent dropout of 10%

which tells it to drop a fraction of the units for each

recurrent unit and set the dimensionality of the output

space as 128 units. We have also set the last output in the

output sequence to be returned to the next unit as memory

for the next unit. The bidirectional aspect comes from the

reversal of the sequence being passed as the input to the

current GRU layer. Then once the BiGRU layer has been

built we then build the convolution layer with window

size as half the size passed to the BiGRU layer as we will

be processing only the changes from the previous i. e.

BiGRU layer. And we have set the kernel window size as

a fixed value of 3. Finally, we construct the Dense layer

with the ‘softmax’ activation function. For the

compilation of the model we have used the same

parameters as we did in the previous model i. e. loss as

categorical cross entropy and the optimizer as ‘adam’.

Figure 7 illustrates the summary of the BiGRU with a

convolution model before fitting it to the dataset.

Figure 7: BiGRU with convolution Summary

The next step involves fitting the model to our training set

and this involves the same condition as the previous

model wherein we rotate the values for the batch size and

the number of epochs and see the effect they have on the

accuracy and loss of the model.

The final model that was implemented was the Long

Short-term Memory (LSTM) with Attention. Before

building the model and its associated layers we first have

to build the Attention class so that we will be able to call it

when our model is being built. For the Attention module

we first build the weight and bias regularizer along with

its associated constraints and the fact that it can acquire

the feature maps i.e. the word vectors for our

implementation when we pass the LSTM layer to it. We

then build the masking layer and the build that performs

the correlations and the handling of the additional

dependencies present on the input dimension. Then we

finally proceed to the LSTM layer. The parameters we are

passing to the LSTM layer are more or less the same as

the GRU layer in the previous model. This is no surprise

as the LSTM and GRU are variations of the RNN model.

For the LSTM layer we have specified a dimension size

for output space as 300 due to the additional weights that

have to be stored due to the addition of the attention

module. The recurrent dropout is set to 25% so as to drop

any units for the linear transformation of the input space

and the return sequence type is also used to return the last

sequence of the output sequence to the attention module

so that it stores the correlation value vector. We then

apply the LSTM layer to the embedding matrix and after

applying the Attention module we use dropout to remove

the problem of overfitting if it ever comes forth. We also

apply BatchNormalization for maintaining the mean close

to zero at each batch layer. We then build the Dense layer

with the ‘softmax’ activation function. We then compile

the model with the same parameters as the previous

models. Figure 8 illustrates the summary of the LSTM

model before it is fit to the training set.

Figure 8: LSTM with Attention Summary

For the fitting of the model we have applied the same

parameters as in the previous models so as to maintain the

consistency across the models so that their evaluation and

comparison is thorough and accurate. For each model we

have also created plots for the training and validation

accuracy along with the plots for the training and

validation loss. And we have derived the confusion

matrices for each of the models and will be illustrated in

the next section along with the discussion for them as

well.

6. Experimental Results

The models that were implemented in the previous section

were used for the training and testing of the news article

dataset and have successfully classified the over 200, 000

instances with 6 features each present in the dataset. For

Paper ID: SR211210154742 DOI: 10.21275/SR211210154742 333

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.803

Volume 11 Issue 1, January 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

the purpose of corroboration of results, we have

successfully plotted their confusion matrix for each model

along with their respective accuracy and loss plots and

finally computed their overall accuracy for each model

along with their runtime for each of them. The entire

program was run on a Windows 64-bit environment with

the CPU as Intel i7-5500u with clock speed as 2.40 GHz

and RAM at 8 GB and a Nvidia 850m GPU. For the Text

CNN model, Figure 9 illustrates the confusion matrix that

was obtained after fitting the model to the dataset.

Figure 9: Confusion Matrix for Text CNN model

From the above figure it is readily observable that the

classifier has predicted the majority of the samples of the

test set into the right class, but still a large number of

samples were misclassified especially for the eighth and

seventeenth class. The optimal confusion matrix for this

type of problem would be if the matrix would be a sparse

matrix where the diagonal holds the majority of the

samples. Figure 10 and 11 depicts the plot of the accuracy

and loss for this model.

Figure 10: Text CNN accuracy

Figure 11: Text CNN loss

The plots for the accuracy and loss were obtained when

the number of epochs was set to 20. But with regards to

the batch size being either 120 or 150 it generated the

similar plots for both criteria. From the plot of the

accuracy we can observe that for the training accuracy we

are seeing a steep increase in the accuracy as the number

of epochs progress forth, but while training the accuracy

starts out at a much higher point due to the fact that for

training we have tried at three different kernel sizes and

identified the optimal one when passing it to the

convolution layer. Thus, the testing stage has learnt the

right kernel size and put it forth to the layer when

predicting the output. Table 1 contains the accuracy that

was obtained for this model. With regards to the loss of

this model in direct proportion to the accuracy we are

seeing a sharp decline in the loss as the number of epochs

progress for the training set and almost similarly for the

test set as well. Figure 12 and 13 indicates the plots of

having the number of epochs set to 50 and how it affects

the learning rate. From the plots below we can see that the

training accuracy starts at a higher point and we can safely

assume that the error rates have been minimized and

hence the model is starting at a higher level as it knows

the optimal starting point. But the problem arises for the

testing accuracy wherein we are getting no increase in the

accuracy of the model and also the problem of overfitting

has raised, thus the only way to counter this is to increase

the dropout value and. The total runtime of the whole

model is depicted in table 2.

Figure 12: Text CNN accuracy with epochs as 50

Paper ID: SR211210154742 DOI: 10.21275/SR211210154742 334

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.803

Volume 11 Issue 1, January 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 13: Text CNN loss with epochs as 50

For the case of the BiGRU model with convolution,

Figure 14 illustrates the confusion matrix that was

extrapolated from the program. The confusion matrix

when compared to the confusion matrix of the Text CNN

model is slightly better when it comes to the number of

samples that have been accurately classified.

Figure 14: Confusion Matrix of BiGRU model with

convolution

Just by observation and intuition we can assume that the

results of the BiGRU model will be slightly better than the

Text CNN model. Figure 15 and 16 illustrates the plots for

the accuracy and loss for the BiGRU model with

convolution when the number of epochs is 20 and the

batch size is 150.

Figure 15: BiGRU with convolution accuracy

Figure 16: BiGRU with convolution loss

The plot for the accuracy and loss of the model shows the

learning rate as being similar to the previous model. For

the accuracy again we see a sharp increase in the accuracy

from below 50% all the way to over 65% close to 67%.

The testing accuracy is starting higher and this is due to

the addition of the spatial dropout before calling the

convolution layer. The benefit of the spatial dropout is

that even though it is deleting the feature maps i. e. the

word vectors in our case even before the BiGRU layer can

build the correlation map for these word vectors, we are

training the model initially such that we prevent co-

adaptation of the vectors amongst its neighbors such that it

learns as if there are no other feature maps existing

currently. Thus, we are making the nodes learn and store

memory initially and for a significant amount of time. The

other reason that this model could present higher accuracy

than the previous layer is the fact that we are using the

keras GlobalMaxpooling and GlobalAveragepooling as

the pooling layers consecutively. The benefit of these two

methods is that they take the max and average vector over

the whole steps dimension i. e. in one go rather than by

reducing them at each iteration until it finally comes to the

final reduction step. The accuracy and total time run will

Paper ID: SR211210154742 DOI: 10.21275/SR211210154742 335

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.803

Volume 11 Issue 1, January 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

be illustrated in tables 1 and 2. From the total time taken

to run the whole model it is evident that the model which

would have 50 epochs would be computationally intensive

and could not be run on the current hardware platform but

would run successfully on high-performance systems.

The final model that was implemented is the LSTM model

with attention. Figure 17 illustrates the confusion matrix

of the model.

Figure 17: Confusion Matrix of LSTM with attention.

The confusion matrix for this model when compared to

the confusion matrix of the other models is by far the best

model when a high percentage of samples being classified

accurately. The addition of the attention module has

significantly improved the classification process and

identified the optimal word vectors and their associated

correlations that can be used to bring forth the right words

and their associations so as to identify the important and

correct words that could be used to predict the headline of

the given description. Figure 18 and 19 illustrates the

accuracy and loss of the model.

Figure 18: LSTM with attention accuracy

The plot of the accuracy above shows that there is no

problem of overfitting that may occur as there isn’t much

overlap of the training and testing parts. Also, the we can

derive from the graph that the accuracy is the highest for

this model than all of them and is reaching approximately

65%. The attention module isn’t the only exquisite thing

about this model but also the LSTM itself, this LSTM [18]

is holding the information until the next output sequence

and then passing the specific part of the sequence as

determined by the Attention module as the relevant

information and this again is held by the LSTM in its

memory and passed to the next node as the input thus

having multiple layers of processing of each instance of

the testing dataset. The loss plot as seen below in Figure

19 corroborates the same information.

Figure 19: LSTM with attention loss

The loss coming forth in this model is again the least thus

depicting that the error rate and number of

misclassifications will be the least and this is due to above

stated answer of why this is a good model. predict the

headline of the given description. Figure 18 and 19

illustrates the accuracy and loss of the model.

Table 1: Models and their Accuracy Score
Training Model Model Accuracy (in %)

Text CNN

BiGRU with convolution

LSTM with Attention

59.055

63.294

65.076

Table 2: Time for fitting the model

Training Model
Model Fitting Time (in

nanoseconds)

Text CNN

BiGRU with convolution

LSTM with Attention

186072.84

765789.99

1217550.72

The above tables illustrate the implemented models and

their respective accuracies and also the total run time for

the fitting process. The reason to have gone with the

fitting time rather than the testing time is because when

running the model, the observation made was that the

testing and training time was miniscule even on the

current hardware and even if we were to increase the

number of computations to be run then hypothetically it

wouldn’t change much. But the fitting as observed from

running the program is that the fitting time takes an

extreme amount of time and computation power. Thus, in

Paper ID: SR211210154742 DOI: 10.21275/SR211210154742 336

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.803

Volume 11 Issue 1, January 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

the future for increasing the scale of this problem and the

number of computations to be run then having this

information will be useful and we will be able to plot a

time-series extrapolation as to how much time it might

take based on the current hardware and what would

happen if we were to switch to a high-performance

system. That being said, from Table 2 we can observe that

the LSTM model with attention is the most time-

consuming and this is a result of the continuous

backpropagation of the vectors to the input sequence.

Unlike the other models in the LSTM model we are not

applying dropout regularization multiple times and as a

result it takes longer for the computations to run for each

epoch. With regards to Table 1, as we noticed from the

confusion matrices and the plots and as we predicted the

LSTM model with Attention is the best performing model

comparatively and as such can be used in the future for

such similar datasets. The loss also for that model

indicates that it can be modified further, and the error rate

is amenable. In the next section we will discuss how these

results could be used for further and future ideas and

implementations.

7. Discussions and Conclusions

Upon completion of all the phases namely the

preprocessing, model building, evaluation and assessment

of the dataset and the results, we can now begin to discuss

how exactly this implementation can be put forth for

further review and how it will benefit the usage of this

implementation for the real world. The significance of this

paper was done to help the daily reader of online content

and as an extrapolation to the physical reader of the

newspaper as well. It does this by making the headlines of

an article as appealing to the user as possible so that it not

only benefits the writers of the article by gaining a larger

and appropriately targeted audience but also benefits the

reader as well benefits by gaining essential information as

and when required. Let’s explain how this implementation

will help the readers with an example. Consider a natural

or manmade calamity that has affected an area that may or

may not be in the immediate surroundings of the reader, if

the reader casually browses through the newspaper and

doesn’t come across any article about the disaster that

interests him then he may not choose to further pursue it

and in doing so is losing out on crucial information that

could potentially benefit him and all because even though

there may have been articles relating to the disaster, but

the headlines or the following context may not have been

properly summarized due to improper usage of grammar

and context thus, leading to a huge impact and loss for

many people. Thus, with this implementation we are

providing a way for online worded content to be more

appealing to the reader by providing at least one model

that accurately goes through the worded context present in

the description of an article and puts forth the words that

have the highest number of correlations such that they can

then be used as the tags for the headline of the said article.

With regards to the creation of this paper and what it

contributes to the field of Natural Language Processing, it

gives us a way to extract a word with significant meaning

from any passage or block of text. A good extension of

this implementation would be the shifting over from the

news articles section to the extraction of tags that can be

used while searching for a video in a video platform such

as YouTube, vine, Periscope, Instagram etc. Basically, on

platforms such as YouTube where it is possible to

generate the subtitles of the entire video using Speech

processing, we can implement this paper onto the subtitles

which is essentially a block of text such that we can

generate suitable hashtags and other such markers and

place them in the database along with the respective

video. Thus, when any user wishes to view a video with

those specific hashtags then we can obtain faster lookup

times due to the presence of syntactically and

topologically correct wordings based on the context as

spoken on the video. For the future advancement of this

paper we have already discussed which model is the most

apt that being the LSTM model with Attention. The only

further goal would be to improve the accuracy of the

model such that we have deeper and much more

correlations amongst the words that are getting generated

from the text. The future implementation would be to look

at how and what would be the effect of the Bidirectional

nature on the LSTM model and also look at implementing

spatial dropout initially before the LSTM layer is created.

The addition of a spatial dropout scheme as used in the

BiGRU model was found to improve the accuracy as seen

in Figure 15. Thus, we can test these further and try to

obtain the accuracy. Thus, for now the optimal model to

apply on similar such datasets is the LSTM with

Attention. There were no papers that have been

implemented before for such an application especially

using the methods which have been put forth in this paper

as per the research that has been conducted; we decided

that this paper would be a new step in this category. But

with any application there is a drawback and the major

drawback for this implementation is in its applied usage

and that being majorly advertisement specifically for the

online usage, and that being if the publishers are making a

good turnover in their audience then they would naturally

attract advertisers and thus we could see an influx of ads

being posted along with the articles and this could dip the

interests of the readers.

Appendix

In this paper for the sake of corroboration all the code

along with the dataset and their associated images have

been placed in a Google drive folder and made available

to everyone.

The link is –

https://drive.google.com/drive/folders/1_xzWgWTyKtj3_

DYUjTFMEwLPJ5YL1YWf.

References

[1] Geert Brône & Seana Coulson (2010): Processing

Deliberate Ambiguity in Newspaper Headlines:

Double Grounding, Discourse Processes, 47: 3, 212-

236.

[2] Petr Kroha & Ricardo Baeza-Yates. “A Case Study:

News Classification Based on Term Frequency” in

International Workshop on Database and expert

Paper ID: SR211210154742 DOI: 10.21275/SR211210154742 337

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2020): 7.803

Volume 11 Issue 1, January 2022

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Systems applications, Denmark, 2005,

https://doi.org/10.1109/DEXA.2005.6.

[3] Mazhar Iqbal Rana, Shehzad Khalid & Muhammad

Usman Akbar. “News Classification Based on their

Headlines: A Review” in 17
th

 IEEE International

Multi-topic Conference 2014, Karachi,

https://doi.org/10.1109/INMIC.2014.7097339.

[4] Bin He, Yi Guan & Rui Dai, “Convolutional Gated

Recurrent Units for Medical Relation Classification”

July 2018 from

https://www.researchgate.net/publication/326696595_

Convolutional_Gated_Recurrent_Units_for_Medical_

Relation_Classification

[5] Miwa, Makoto & Bansal, Mohit. (2016). End-to-End

Relation Extraction using LSTMs on Sequences and

Tree Structures.1105-1116.10.18653/v1/P16-1105.

[6] Zhou Peng, Qi Zhenyu, Suncong Zheng, Jiaming Xu,

Hongyun Bao & Bo Xu, “Text Classification

Improved by Integrating Bidirectional LSTM with

Two-dimensional Max Pooling”, November 2016 in

https://ui.adsabs.harvard.edu/#abs/2016arXiv1611066

39Z/.

[7] Gao, Shang & T Young, Michael & X Qiu, John &

Yoon, Hong-Jun & B Christian, James & A Fearn,

Paul & Tourassi, Georgia & Ramanathan, Arvind.

(2017). Hierarchical attention networks for

information extraction from cancer pathology reports.

Journal of the American Medical Informatics

Association: JAMIA.25.10.1093/jamia/ocx131.

[8] Gil Keren & Bjorn Schuller, “Convolutional RNN:

An Enhanced Model for Extracting Features from

Sequential Data”, February 2016, in

https://arxiv.org/abs/1602.05875

[9] Volkova, Svitlana & Shaffer, Kyle & Yea Jang, Jin &

Hodas, Nathan. (2017). Separating Facts from

Fiction: Linguistic Models to Classify Suspicious and

Trusted News Posts on Twitter.647-

653.10.18653/v1/P17-2102.

[10] Kaggle. (2018, Jun 21), “News Categorization

Dataset” [Online]. Available from

https://www.kaggle.com/rmisra/news-category-

dataset/metadata.

[11] Jefferey Pennington, Richard Socher, Christopher D.

Manning, “GloVe: Global Vectors for Word

Representation” [Online] available in

https://nlp.stanford.edu/pubs/glove.pdf.

[12] Yann Lecun & Yoshua Bengio, “Convolutional

Networks for Images, Speech and Time-series”

[Online] available in

http://yann.lecun.com/exdb/publis/pdf/lecun-bengio-

95a.pdf.

[13] Simon Kostadinov, (2017, Dec 16), “Understanding

GRU networks” [Online] available at

https://towardsdatascience. com/understanding-gru-

networks-2ef37df6c9be

[14] Jungoung Chung, Caglar Gulcehre, KyungHyun Cho

& Yoshua Bengio, “Empirical Evaluation of Gated

Recurrent Neural Networks on Sequence Modeling”.

[15] Simon Kyunghyun Cho, Bart Van Merrienboer,

Caglar Gulchre, Dzmitry Bahdanau, Fethi Bougares,

Holger Schwenk, Youshua Bengio, “Learning Phrase

Representations using RNN Encoder-Decoder for

statistical Machine Translation”, June 2014,

https://ui.adsabs.harvard.edu/#abs/2014arXiv1406.10

78C/.

[16] Simon Jason Brownlee (2017, Oct 4), “How to Use

Word Embedding Layers for Deep Learning with

Keras” [Online] available from

https://machinelearningmastery.com/use-word-

embedding-layers-deep-learning-keras/.

[17] Colah’s Blog (2015, Aug 27), “Understanding LSTM

networks” [Online] available from

http://colah.github.io/posts/2015-08-Understanding-

LSTMs/.

[18] Shubham Khandelwal, Benjamin Lecouteux &

Laurent Besacier, “Comparing GRU and LSTM for

Automatic Speech Recognition”, [Research Report]

LIG.2016. <hal-01633254>.

[19] Peng Zhou, Wei Shi, Jun Tian, Zhenyu Qi, Bingchen

Li, Hongwei Hao, Bo Xu, “Attention-Based

Bidirectional Long Short-Term Memory Networks

for Relation Classification”, ACL 2016,

https://doi.org/10.18653/v1%2FP16-2034.

[20] George E. Dahl, Tara N Sainath, Geoffrey Hinton,

“Improving Deep Neural Networks for LVCSR using

rectified linear units and dropout”, IEEE International

Conference on Acoustics, Speech and Signal

Processing, May 2013, in

https://doi.org/10.1109/ICASSP.2013.6639346

Paper ID: SR211210154742 DOI: 10.21275/SR211210154742 338

