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Abstract: The need for effective large-scale heterogeneous distributed data ingestion pipelines, crucial for transforming and 

processing data essential to advanced analytics and machine learning models, has seen a significant surge in importance. Modern 

services increasingly depend on near-real-time signals to precisely identify or predict customer behavior, sentiments, and anomalies, 

thereby facilitating informed, data-driven decision-making[1].In the rapidly evolving landscape of large-scale enterprise data 

applications, the demand for efficient data ingestion and stream processing solutions has never been more critical[2]. This technical 

paper introduces a groundbreaking autonomous self-schedulable library designed for recurring jobs, addressing the challenges faced by 

enterprises in orchestrating complex data workflows seamlessly. Leveraging authoritative expertise in building robust enterprise 

applications, this library provides a paradigm shift in how organizations manage and execute recurring tasks within data pipelines [3]. 
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1. Introduction 
 

Real-time data ingestion and processing systems play a 

pivotal role in providing data to analytics and machine 

learning platforms, enabling the extraction of invaluable 

insights. At this scale the data is emitted from different data 

sources which would need processing power to run several 

jobs to ingest the data at different times. In this paper, we 

propose a robust library for self-scheduling recurring jobs to 

curate, process, and publish data to different downstream 

services depending on the use case. We propose a unique 

design that merges two different processing types – 

streaming and micro-batching depending on the amount of 

data at a certain time. Below are some of the key 

considerations while designing data intensive applications 

like these: 

 Ease-of-configurability: Provide easy configuration 

options to efficiently manage data at scale, 

accommodating fluctuations in load and diverse data 

schemas. 

 Performance: Evaluating acceptable latency levels, 

whether in seconds or minutes and determining the 

required throughput both per machine and in aggregate 

for each service. 

 Scalability: Monitoring and addressing the scalability 

requirements of the system, considering data bursting at 

times and being able to handle the load [4]. 

 Reliability: Ensuring the system consistently performs 

its intended functions, verifying its capability to handle 

varying loads and data volumes without compromising 

functionality. 

 Fault-tolerance: Identifying the types of failures the 

system can tolerate, establishing guaranteed semantics 

for the processing or output frequency of data, and 

detailing the storage and recovery mechanisms[4]. 

 

Within this paper, we meticulously detail the overarching 

architecture, present a comprehensive overview of the 

involved components, elucidate the system's design 

intricacies, and diligently adhere to industry’s best practices 

while integrating the considerations into our design 

decisions. 

 

The structure of this paper is as follows. In Section 2, we 

provide a thorough examination of the system's architecture 

and delineate the intricate relationships among its integral 

components and takes deep dive into some of the key 

components, delves into the specifics within the system, 

shedding light on their roles, functionalities, and 

contributions to the overall framework.Section3 serves as a 

deep dive into the design and implementation phases of 

autonomous schedulable recurring library for data ingestion. 

Finally, in Section 4, we conclude by summarizing the 

impact of this well-designed library. 

 

2. Systems Overview 
 

Designing and building a library that can handle autonomous 

scheduling needs of data processing and ingestion pipelines 

require thorough understanding of intricacies that these 

large-scale data streaming services offer. In this section, we 

delve into a comprehensive overview of the architecture and 

diverse components integral to this library. Large-scale 

distributed data applications often face challenges related to 

unpredictable spikes in data traffic. To address this, a 

proactive approach is required to predict these spikes and 

choose the most suitable data processing strategy. Our 

proposed solution integrates intelligent 
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Figure 1: Autonomous Recurring Job Orchestrator Architecture Overview 

 

Algorithms and adaptable processing techniques to enhance 

the overall efficiency of data applications. This paper mainly 

talks about the components below: 

 Data sources  

 Export/Publish Endpoints 

 Autonomous Recurring Task scheduler 

 Job Orchestrator[5] 

 Resource Manager[6] 

 

Illustrated in Figure 1 is the holistic architecture, depicting 

individual components and services. This depiction 

showcases the process of capturing data from diverse 

sources, ingesting and storing streaming data for real-time 

analytics, responding to events in real-time, and 

subsequently transporting the data across various processors 

based on specific use cases. Finally, the processed data is 

seamlessly fed into dependent systems for advanced data 

analytics and machine learning applications. 

 

2.1 Data Sources 

 

The exponential growth of data in contemporary ecosystems 

from various sources contributes to this expanding data 

landscape, encompassing structured and unstructured 

formats. Structured data, often originating from relational 

databases like Oracle database, SQL server, Azure SQL etc., 

transactional systems, and organized datasets, poses unique 

challenges in terms of schema variability and evolving data 

structures. In contrast, unstructured data, derived from 

sources like social media, sensor logs, and textual 

documents, presents challenges related to lack of predefined 

data models. Additionally, the influx of streaming data from 

real-time sources like mobile/IOT devices further 

complicates the data ingestion process [7][8]. 

 

These diverse data sources demand sophisticated recurring 

scheduling service platforms capable of seamlessly 

assimilating data in its varied forms, at different times with 

variable loads. So, the focus, therefore, lies in a versatile 

ingestion scheduling library capable of handling the 

intricacies posed by the heterogeneity and dynamic nature of 

data from diverse sources. 

 

 

 

2.2 Export/Publish Endpoint 

 

As we deal with different data sources, having a generic 

class to perform some common operations like validations, 

security, endpoints configuration, data ingestions, state 

storage, testing etc., becomes crucial. We propose a 

programming paradigm called Publish Endpoint that stores 

metadata about the owner of the data, authority of this data, 

necessary permissions, endpoint information of different 

down streams, publish history, list of entities/artifacts to 

publish and version data [9]. 

 

Maintaining owner data on the endpoint, allows retrieving 

schema data and implementing logic for data validations, 

and security checks implicitly. Below is a basic interface for 

Publish Endpoint. 

 

 
 

2.3 Job Orchestrator 

 

A streaming application undergoes compilation and 

optimization, resulting in the generation of a set of 

orchestrated jobs, as detailed earlier. Once provisioned, the 

Job Orchestration layer takes charge of ensuring that all jobs 

remain aligned with configuration changes initiated either by 

the user or internal services. This orchestration system 

ensures that changes are executed in an ACIDF-compliant, 

guaranteeing consistency [10][11]. To achieve this, the 

orchestration system has three key components: 
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 Job Repository (Job Store): This repository houses the 

current and desired configuration parameters for each 

job. 

 Orchestration Service (Job Service): Responsible to 

ensure that job changes are committed to the Job 

Repository atomically. 

 State Synchronization Service (State Syncer): Executes 

job update actions to transition jobs from their current 

state to the desired state. 

 

Configuration parameters encompass all the necessary 

information for initiating the tasks of a given job. Examples 

include details such as binary names and versions, the 

required number of tasks for the job, and the allocated 

resources for these tasks. ACIDF job updates play a pivotal 

role in maintaining the manageability and high decoupling 

of this intricate system. In environments with tens of 

thousands of jobs, issues like job update failures and 

conflicts are frequent due to updates originating from 

various services. Consequently, these issues must be 

automatically resolved, and the outcomes should be easily 

comprehensible. Moreover, the job orchestration system 

must exhibit flexibility and extensibility to accommodate 

new services as needed. Notable examples of such services 

include the auto scale, integrated into the system after its 

initial deployment, and an auto root-causer. 

 

2.4 Task Scheduling Library Overview 

 

In the realm of building a robust autonomous schedulable 

ingestion – orchestrating recurring jobs by proactively 

identifying traffic patterns and scaling the resources plays a 

pivotal role in seamlessly capturing huge amounts of data 

from diverse sources and channeling it towards processing 

systems for real-time data ensuring reliability, scalability, 

and fault tolerance. 

Basic components under this task scheduling library are 

shown in Figure 2 below. 

 

 
Figure 2: Task Scheduler Components Overview 

 

 Ingestion Context 

 Data Provider Factory 

 Data Provider 

 Recurring Task 

 Scheduler 

 

Once the data passes through basic evaluations for 

permissions and is ready for publish, we check if 

IngestionContext exists, and if it contains DataProvider 

Factory. Based on the configured data provider factory, we 

retrieve the data provider. Depending on the checks, we 

await the task to complete or get the results of the ingestion 

process and store state of the task in the endpoint container. 

These tasks are executed in different ways: 

 When there is an event with data change, the listener 

activates the publish task and calls the corresponding 

endpoint. 

 Recurring tasks wake up at a given time interval and 

create a micro-batch with the data changes from the last 

successful sync and start publishing. We identify the 

manifest last modified date to get delta of the changes. 

 

As these tasks are configured at the endpoint level, there are 

several instances of these tasks for different endpoint types. 

So, scheduling these tasks, making sure they are executed in 

parallel, sync the state of the current & next tasks and 

perform scaling depending on the traffic needs a reliable 

library that can handle all the different scenarios. Below are 

some of the key considerations for the task scheduler: 

 Ensure the scheduling of tasks without duplication, 

emphasizing that the system should never have 

concurrent instances of the same task. This holds true 

even in the event of failures in other components of the 

system. Additionally, it is crucial to prevent any loss of 

tasks. In scenarios where system components fail, newly 

created tasks may experience a delay in immediate 

scheduling. 

 Implement fail-over mechanisms to redirect tasks to 

healthy hosts in the event of host failures. This 

contributes to system resilience and ensures continuous 

task execution. 

 Automatically restart tasks that have encountered 

crashes. This capability minimizes downtime and 

maintains the integrity of task execution even during 

unexpected failures. 

 Finally, implement a robust load balancing strategy to 

distribute tasks evenly across the cluster. This includes 

balancing CPU, memory, and IO usage to optimize 

resource utilization. Achieving a balanced distribution 

enhances overall performance and efficiency. 

 

These considerations collectively contribute to a resilient 

and efficient task scheduling mechanism within the system, 

promoting reliability, fault tolerance, and optimal resource 

utilization [5][12]. 

 

2.5 Resource Manager 
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Figure 3: Architecture of Resource Manager. 

 

We introduce Resource Evaluator and Plan Developer, 

pivotal components within the architecture of Resource 

Manager. The Resource Evaluator’s primary function is to 

gauge the utilization of specific resources - such as CPU, 

memory, network bandwidth, and disk I/O—within a given 

job. The subsequent step involves the Plan Developer 

utilizing these estimations to formulate a resource 

adjustment plan. The accuracy of job resource estimation is 

contingent upon the inherent characteristics of the job.  

 

Stateless jobs, encompassing tasks like filtering, projection, 

and transformation, do not necessitate state retention except 

for checkpoints used in case of task restarts. Conversely, 

stateful jobs, including aggregation and join operations, 

maintain application-specific state, involving memory and 

persistent storage, necessitating the restoration of relevant 

state components upon restarts. Stateless jobs typically 

exhibit high CPU intensity as they engage in input 

deserialization, data processing, and output serialization. 

Regardless of the dominant operation, CPU consumption 

correlates with input and output data sizes. For such jobs, 

metrics like input/output rates are harnessed to estimate the 

maximum stable processing rate per single-threaded task [5]. 

The CPU resource unit required for an input rate 'X' is 

estimated as:  

 

X/(P * k * n) 

 

where P denotes the maximum stable processing rate per 

single thread. The CPU resource estimation for recovering 

backlogged data 'B' within time 't' is expressed as: 

 

(X + B/t) / (P * k * n) 

 

In contrast, stateful jobs require estimation of CPU, memory, 

and disk usage. For example, in an aggregation job, memory 

size is proportional to the key cardinality of data held in 

memory. Conversely, for a join operator, memory/disk size 

correlates with join window size, degree of input matching, 

and degree of input disorder. The Resource Evaluator is 

configurable to estimate various dimensions of resource 

consumption, reporting them to the Plan Formulator. The 

Plan Formulator synthesizes decisions based on symptoms 

and resource estimates. It ensures the final plan provides 

adequate resources to execute a job by preventing 

downscaling decisions from jeopardizing the health of a job, 

averting untriaged problems from triggering unnecessary 

scaling decisions, and executing correlated adjustments for 

multiple resources. For instance, if a stateful job encounters 

a CPU bottleneck and the number of tasks is increased, the 

memory allocated to each task can be concurrently reduced 

[5]. 

 

3. Autonomous Scheduler-Deep Dive 
 

This section dives deep into the autonomous scheduler and 

takes an opiniated view of how this can be implemented 

with code samples. We start by defining some interfaces that 

are needed to implement custom logic to create a 

autonomous scheduler: 

 

Ingestion Publish Scope: this defines the scope of the 

ingestion – list of entities or artifacts that are available for 

processing and publishing. 

 

 
 

Here is a concrete implementation for the entity manifest, 

which takes in a manifest-snapshot of data changes and 

transform that into artifacts. 

 

 
 

Below are interfaces to capture information for scheduling, 

and retrieving data for ingestion: 
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Calculate Availability Delay: below is the method to 

calculate the availability delay which is the time when the 

task is scheduled to start. This is calculated based on when 

the recurring schedule is and when the previous task started 

to execute and completed. This configuration can be updated 

to match the requirements and needs of the SLAs. 

 

 
 

Retrieve Data Provider for the job: The algorithm below 

describes how to check and retrieve data for ingestion and 

maintain consistency [3][9]: 

 Check if the IngestionContext exists. 

 If it doesn’t exist, create a context for the given catalog 

and publishing task. 

 If the context exists and has a reporting provider: 

prepare the reporting provider. 

 Set DataProvider to the existing provider. 

 If the IngestionContext does not exist or has no 

DataProvider: create or use an existing data provider. 

 Prepare the data provider, which sets the required data 

to be executed. 

 If there is an availability delay, throw away a transient 

exception and return the reporting data provider. 

 
 

Calculate Effective Auto Schedule Interval: 

 Calculate total processing time by subtracting the 

planned start time from the current time.  

 Check if the auto-schedule interval is greater than the 

total processing time.  

 If yes, calculate the effective auto-schedule interval by 

subtracting the total processing time from the original 

auto-schedule interval. 

 

Reschedule or Set Next Task: 

 If the effective auto-schedule interval is calculated, call 

the ScheduleNextTask with the effective interval to 

create next recurring task. 

 Set the previous task for the new task asynchronously. 

Save the new task with the messages provided and 

cancellation token. 

 If the saving is successful, return the newly created task. 

If the effective auto-schedule interval is not calculated 

or the next task cannot be scheduled: no rescheduling 

occurs. 

 

Handling Next Task: 

 Get a new task from the ScheduleNextTask. 

 Set the obtained task as the next task. 

 Asynchronously, set the next task, save changes, and 

handle any exceptions. 

 

 
 

4. Conclusion 
 

We presented an expansive autonomous task scheduling 

library tailored for large-scale stream processing 

applications. This library capitalizes on a robust cluster 

management system, augmenting it with loosely coupled 
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microservices dedicated to determining job execution (Job 

Orchestrator), orchestrating task scheduling (Task 

Scheduler), and optimizing resource management strategies 

(Resource Manager). This integration results in a highly 

scalable and resilient management infrastructure, adept at 

supporting numerous pipelines processing extensive data 

volumes with minimal human intervention [6][9][13][14]. 

 

Moving forward, our trajectory involves integrating machine 

learning techniques for automating root cause analysis and 

incident mitigation, thereby alleviating the need for manual 

intervention in incidents. Additionally, we are exploring 

avenues to enhance resource utilization by minimizing 

reserved capacity headroom and refining task placement 

through the implementation of a continuous resource 

estimation algorithm. These advancements aim to further 

streamline and optimize the operational efficiency of our 

stream processing framework. 
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