
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 10 Issue 9, September 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Autonomous Scheduling for Recurring Tasks to

Manage Ingestion and Stream Processing

Mahidhar Mullapudi
1
, Satish Kathiriya

2
, Siva Karthik Devineni

3

Abstract: The need for effective large-scale heterogeneous distributed data ingestion pipelines, crucial for transforming and

processing data essential to advanced analytics and machine learning models, has seen a significant surge in importance. Modern

services increasingly depend on near-real-time signals to precisely identify or predict customer behavior, sentiments, and anomalies,

thereby facilitating informed, data-driven decision-making[1].In the rapidly evolving landscape of large-scale enterprise data

applications, the demand for efficient data ingestion and stream processing solutions has never been more critical[2]. This technical

paper introduces a groundbreaking autonomous self-schedulable library designed for recurring jobs, addressing the challenges faced by

enterprises in orchestrating complex data workflows seamlessly. Leveraging authoritative expertise in building robust enterprise

applications, this library provides a paradigm shift in how organizations manage and execute recurring tasks within data pipelines [3].

Keywords: Modern Ingestion Platform, Autonomous Scheduling Library, Parallel Stream Processing.

1. Introduction

Real-time data ingestion and processing systems play a

pivotal role in providing data to analytics and machine

learning platforms, enabling the extraction of invaluable

insights. At this scale the data is emitted from different data

sources which would need processing power to run several

jobs to ingest the data at different times. In this paper, we

propose a robust library for self-scheduling recurring jobs to

curate, process, and publish data to different downstream

services depending on the use case. We propose a unique

design that merges two different processing types –

streaming and micro-batching depending on the amount of

data at a certain time. Below are some of the key

considerations while designing data intensive applications

like these:

 Ease-of-configurability: Provide easy configuration

options to efficiently manage data at scale,

accommodating fluctuations in load and diverse data

schemas.

 Performance: Evaluating acceptable latency levels,

whether in seconds or minutes and determining the

required throughput both per machine and in aggregate

for each service.

 Scalability: Monitoring and addressing the scalability

requirements of the system, considering data bursting at

times and being able to handle the load [4].

 Reliability: Ensuring the system consistently performs

its intended functions, verifying its capability to handle

varying loads and data volumes without compromising

functionality.

 Fault-tolerance: Identifying the types of failures the

system can tolerate, establishing guaranteed semantics

for the processing or output frequency of data, and

detailing the storage and recovery mechanisms[4].

Within this paper, we meticulously detail the overarching

architecture, present a comprehensive overview of the

involved components, elucidate the system's design

intricacies, and diligently adhere to industry’s best practices

while integrating the considerations into our design

decisions.

The structure of this paper is as follows. In Section 2, we

provide a thorough examination of the system's architecture

and delineate the intricate relationships among its integral

components and takes deep dive into some of the key

components, delves into the specifics within the system,

shedding light on their roles, functionalities, and

contributions to the overall framework.Section3 serves as a

deep dive into the design and implementation phases of

autonomous schedulable recurring library for data ingestion.

Finally, in Section 4, we conclude by summarizing the

impact of this well-designed library.

2. Systems Overview

Designing and building a library that can handle autonomous

scheduling needs of data processing and ingestion pipelines

require thorough understanding of intricacies that these

large-scale data streaming services offer. In this section, we

delve into a comprehensive overview of the architecture and

diverse components integral to this library. Large-scale

distributed data applications often face challenges related to

unpredictable spikes in data traffic. To address this, a

proactive approach is required to predict these spikes and

choose the most suitable data processing strategy. Our

proposed solution integrates intelligent

Paper ID: SR24203215713 DOI: https://dx.doi.org/10.21275/SR24203215713 1731

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 10 Issue 9, September 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 1: Autonomous Recurring Job Orchestrator Architecture Overview

Algorithms and adaptable processing techniques to enhance

the overall efficiency of data applications. This paper mainly

talks about the components below:

 Data sources

 Export/Publish Endpoints

 Autonomous Recurring Task scheduler

 Job Orchestrator[5]

 Resource Manager[6]

Illustrated in Figure 1 is the holistic architecture, depicting

individual components and services. This depiction

showcases the process of capturing data from diverse

sources, ingesting and storing streaming data for real-time

analytics, responding to events in real-time, and

subsequently transporting the data across various processors

based on specific use cases. Finally, the processed data is

seamlessly fed into dependent systems for advanced data

analytics and machine learning applications.

2.1 Data Sources

The exponential growth of data in contemporary ecosystems

from various sources contributes to this expanding data

landscape, encompassing structured and unstructured

formats. Structured data, often originating from relational

databases like Oracle database, SQL server, Azure SQL etc.,

transactional systems, and organized datasets, poses unique

challenges in terms of schema variability and evolving data

structures. In contrast, unstructured data, derived from

sources like social media, sensor logs, and textual

documents, presents challenges related to lack of predefined

data models. Additionally, the influx of streaming data from

real-time sources like mobile/IOT devices further

complicates the data ingestion process [7][8].

These diverse data sources demand sophisticated recurring

scheduling service platforms capable of seamlessly

assimilating data in its varied forms, at different times with

variable loads. So, the focus, therefore, lies in a versatile

ingestion scheduling library capable of handling the

intricacies posed by the heterogeneity and dynamic nature of

data from diverse sources.

2.2 Export/Publish Endpoint

As we deal with different data sources, having a generic

class to perform some common operations like validations,

security, endpoints configuration, data ingestions, state

storage, testing etc., becomes crucial. We propose a

programming paradigm called Publish Endpoint that stores

metadata about the owner of the data, authority of this data,

necessary permissions, endpoint information of different

down streams, publish history, list of entities/artifacts to

publish and version data [9].

Maintaining owner data on the endpoint, allows retrieving

schema data and implementing logic for data validations,

and security checks implicitly. Below is a basic interface for

Publish Endpoint.

2.3 Job Orchestrator

A streaming application undergoes compilation and

optimization, resulting in the generation of a set of

orchestrated jobs, as detailed earlier. Once provisioned, the

Job Orchestration layer takes charge of ensuring that all jobs

remain aligned with configuration changes initiated either by

the user or internal services. This orchestration system

ensures that changes are executed in an ACIDF-compliant,

guaranteeing consistency [10][11]. To achieve this, the

orchestration system has three key components:

Paper ID: SR24203215713 DOI: https://dx.doi.org/10.21275/SR24203215713 1732

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 10 Issue 9, September 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

 Job Repository (Job Store): This repository houses the

current and desired configuration parameters for each

job.

 Orchestration Service (Job Service): Responsible to

ensure that job changes are committed to the Job

Repository atomically.

 State Synchronization Service (State Syncer): Executes

job update actions to transition jobs from their current

state to the desired state.

Configuration parameters encompass all the necessary

information for initiating the tasks of a given job. Examples

include details such as binary names and versions, the

required number of tasks for the job, and the allocated

resources for these tasks. ACIDF job updates play a pivotal

role in maintaining the manageability and high decoupling

of this intricate system. In environments with tens of

thousands of jobs, issues like job update failures and

conflicts are frequent due to updates originating from

various services. Consequently, these issues must be

automatically resolved, and the outcomes should be easily

comprehensible. Moreover, the job orchestration system

must exhibit flexibility and extensibility to accommodate

new services as needed. Notable examples of such services

include the auto scale, integrated into the system after its

initial deployment, and an auto root-causer.

2.4 Task Scheduling Library Overview

In the realm of building a robust autonomous schedulable

ingestion – orchestrating recurring jobs by proactively

identifying traffic patterns and scaling the resources plays a

pivotal role in seamlessly capturing huge amounts of data

from diverse sources and channeling it towards processing

systems for real-time data ensuring reliability, scalability,

and fault tolerance.

Basic components under this task scheduling library are

shown in Figure 2 below.

Figure 2: Task Scheduler Components Overview

 Ingestion Context

 Data Provider Factory

 Data Provider

 Recurring Task

 Scheduler

Once the data passes through basic evaluations for

permissions and is ready for publish, we check if

IngestionContext exists, and if it contains DataProvider

Factory. Based on the configured data provider factory, we

retrieve the data provider. Depending on the checks, we

await the task to complete or get the results of the ingestion

process and store state of the task in the endpoint container.

These tasks are executed in different ways:

 When there is an event with data change, the listener

activates the publish task and calls the corresponding

endpoint.

 Recurring tasks wake up at a given time interval and

create a micro-batch with the data changes from the last

successful sync and start publishing. We identify the

manifest last modified date to get delta of the changes.

As these tasks are configured at the endpoint level, there are

several instances of these tasks for different endpoint types.

So, scheduling these tasks, making sure they are executed in

parallel, sync the state of the current & next tasks and

perform scaling depending on the traffic needs a reliable

library that can handle all the different scenarios. Below are

some of the key considerations for the task scheduler:

 Ensure the scheduling of tasks without duplication,

emphasizing that the system should never have

concurrent instances of the same task. This holds true

even in the event of failures in other components of the

system. Additionally, it is crucial to prevent any loss of

tasks. In scenarios where system components fail, newly

created tasks may experience a delay in immediate

scheduling.

 Implement fail-over mechanisms to redirect tasks to

healthy hosts in the event of host failures. This

contributes to system resilience and ensures continuous

task execution.

 Automatically restart tasks that have encountered

crashes. This capability minimizes downtime and

maintains the integrity of task execution even during

unexpected failures.

 Finally, implement a robust load balancing strategy to

distribute tasks evenly across the cluster. This includes

balancing CPU, memory, and IO usage to optimize

resource utilization. Achieving a balanced distribution

enhances overall performance and efficiency.

These considerations collectively contribute to a resilient

and efficient task scheduling mechanism within the system,

promoting reliability, fault tolerance, and optimal resource

utilization [5][12].

2.5 Resource Manager

Paper ID: SR24203215713 DOI: https://dx.doi.org/10.21275/SR24203215713 1733

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 10 Issue 9, September 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 3: Architecture of Resource Manager.

We introduce Resource Evaluator and Plan Developer,

pivotal components within the architecture of Resource

Manager. The Resource Evaluator’s primary function is to

gauge the utilization of specific resources - such as CPU,

memory, network bandwidth, and disk I/O—within a given

job. The subsequent step involves the Plan Developer

utilizing these estimations to formulate a resource

adjustment plan. The accuracy of job resource estimation is

contingent upon the inherent characteristics of the job.

Stateless jobs, encompassing tasks like filtering, projection,

and transformation, do not necessitate state retention except

for checkpoints used in case of task restarts. Conversely,

stateful jobs, including aggregation and join operations,

maintain application-specific state, involving memory and

persistent storage, necessitating the restoration of relevant

state components upon restarts. Stateless jobs typically

exhibit high CPU intensity as they engage in input

deserialization, data processing, and output serialization.

Regardless of the dominant operation, CPU consumption

correlates with input and output data sizes. For such jobs,

metrics like input/output rates are harnessed to estimate the

maximum stable processing rate per single-threaded task [5].

The CPU resource unit required for an input rate 'X' is

estimated as:

X/(P * k * n)

where P denotes the maximum stable processing rate per

single thread. The CPU resource estimation for recovering

backlogged data 'B' within time 't' is expressed as:

(X + B/t) / (P * k * n)

In contrast, stateful jobs require estimation of CPU, memory,

and disk usage. For example, in an aggregation job, memory

size is proportional to the key cardinality of data held in

memory. Conversely, for a join operator, memory/disk size

correlates with join window size, degree of input matching,

and degree of input disorder. The Resource Evaluator is

configurable to estimate various dimensions of resource

consumption, reporting them to the Plan Formulator. The

Plan Formulator synthesizes decisions based on symptoms

and resource estimates. It ensures the final plan provides

adequate resources to execute a job by preventing

downscaling decisions from jeopardizing the health of a job,

averting untriaged problems from triggering unnecessary

scaling decisions, and executing correlated adjustments for

multiple resources. For instance, if a stateful job encounters

a CPU bottleneck and the number of tasks is increased, the

memory allocated to each task can be concurrently reduced

[5].

3. Autonomous Scheduler-Deep Dive

This section dives deep into the autonomous scheduler and

takes an opiniated view of how this can be implemented

with code samples. We start by defining some interfaces that

are needed to implement custom logic to create a

autonomous scheduler:

Ingestion Publish Scope: this defines the scope of the

ingestion – list of entities or artifacts that are available for

processing and publishing.

Here is a concrete implementation for the entity manifest,

which takes in a manifest-snapshot of data changes and

transform that into artifacts.

Below are interfaces to capture information for scheduling,

and retrieving data for ingestion:

Paper ID: SR24203215713 DOI: https://dx.doi.org/10.21275/SR24203215713 1734

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 10 Issue 9, September 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Calculate Availability Delay: below is the method to

calculate the availability delay which is the time when the

task is scheduled to start. This is calculated based on when

the recurring schedule is and when the previous task started

to execute and completed. This configuration can be updated

to match the requirements and needs of the SLAs.

Retrieve Data Provider for the job: The algorithm below

describes how to check and retrieve data for ingestion and

maintain consistency [3][9]:

 Check if the IngestionContext exists.

 If it doesn’t exist, create a context for the given catalog

and publishing task.

 If the context exists and has a reporting provider:

prepare the reporting provider.

 Set DataProvider to the existing provider.

 If the IngestionContext does not exist or has no

DataProvider: create or use an existing data provider.

 Prepare the data provider, which sets the required data

to be executed.

 If there is an availability delay, throw away a transient

exception and return the reporting data provider.

Calculate Effective Auto Schedule Interval:

 Calculate total processing time by subtracting the

planned start time from the current time.

 Check if the auto-schedule interval is greater than the

total processing time.

 If yes, calculate the effective auto-schedule interval by

subtracting the total processing time from the original

auto-schedule interval.

Reschedule or Set Next Task:

 If the effective auto-schedule interval is calculated, call

the ScheduleNextTask with the effective interval to

create next recurring task.

 Set the previous task for the new task asynchronously.

Save the new task with the messages provided and

cancellation token.

 If the saving is successful, return the newly created task.

If the effective auto-schedule interval is not calculated

or the next task cannot be scheduled: no rescheduling

occurs.

Handling Next Task:

 Get a new task from the ScheduleNextTask.

 Set the obtained task as the next task.

 Asynchronously, set the next task, save changes, and

handle any exceptions.

4. Conclusion

We presented an expansive autonomous task scheduling

library tailored for large-scale stream processing

applications. This library capitalizes on a robust cluster

management system, augmenting it with loosely coupled

Paper ID: SR24203215713 DOI: https://dx.doi.org/10.21275/SR24203215713 1735

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

SJIF (2019): 7.583

Volume 10 Issue 9, September 2021

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

microservices dedicated to determining job execution (Job

Orchestrator), orchestrating task scheduling (Task

Scheduler), and optimizing resource management strategies

(Resource Manager). This integration results in a highly

scalable and resilient management infrastructure, adept at

supporting numerous pipelines processing extensive data

volumes with minimal human intervention [6][9][13][14].

Moving forward, our trajectory involves integrating machine

learning techniques for automating root cause analysis and

incident mitigation, thereby alleviating the need for manual

intervention in incidents. Additionally, we are exploring

avenues to enhance resource utilization by minimizing

reserved capacity headroom and refining task placement

through the implementation of a continuous resource

estimation algorithm. These advancements aim to further

streamline and optimize the operational efficiency of our

stream processing framework.

References

[1] "ADVANTAGES OF DATA-DRIVEN DECISION-

MAKING," [Online]. Available:

https://online.hbs.edu/blog/post/data-driven-decision-

making.

[2] "Beyond The Buzzword: What Does Data-Driven

Decision-Making Really Mean?," [Online]. Available:

https://graduate.northeastern.edu/resources/data-

driven-decision-making./.

[3] T. H. a. J. Puniš, "An Overview of Current Trends in

Data Ingestion and Integration," no. 2021 44th

International Convention on Information,

Communication and Electronic Technology (MIPRO),

Opatija, Croatia, 2021, pp. 1265-1270, doi:

10.23919/MIPRO52101.2021.9597149..

[4] Kleppmann, Martin, Designing Data-Intensive

Applications, O'Reilly Media, 2017.

[5] C. L. T. V. L. M. Y. J.-S. G. N. S. A. B. Mei Yuan,

"Turbine: Facebook’s service management platform for

stream processing," IEEE, pp. 1591-1602, 2020.

[6] "Hadoop Capacity Scheduler.," [Online]. Available:

https://hadoop.apache.org/docs/r1.2.1/.

[7] "Apache Spark," [Online]. Available:

https://spark.apache.org/.

[8] A. Flink. [Online]. Available: https://flink.apache.org/.

[9] S. E. G. F. S. H. S. R. a. K. T. P. Carbone, "State

management in Apache Flink: Consistent stateful

distributed stream processing," VLDB, 2017.

[10] "Apache Aurora.," [Online]. Available:

http://aurora.apache.org/.

[11] -"No shard left behind: dynamic work rebalancing in

Google," [Online]. Available:

https://cloud.google.com/blog/products/gcp/.

[12] J. L. W. S. I. A. J. R. L. Guoqiang Jerry Chen,

"Realtime Data Processing at Facebook," SIGMOD, p.

1, 2016.

[13] "Integrate Azure Stream Analytics with Azure Machine

Learning," [Online]. Available:

https://learn.microsoft.com/en-us/azure/stream-

analytics/machine-learning-

udf?source=recommendations.

[14] A. A. G. G.-G. G. H. F. C. a. K. M. P. Ta-Shma, "An

Ingestion and Analytics Architecture for IoT Applied to

Smart City Use Cases," IEEE Internet of Things

Journal, vol. 5, pp. 765-774, 2018.

[15] "Azure Event Hubs," [Online]. Available:

https://learn.microsoft.com/en-us/azure/event-

hubs/event-hubs-about.

[16] "Apache Kafka," [Online]. Available:

https://kafka.apache.org/.

[17] "Spark Streaming vs Flink vs Storm vs Kafka Streams

vs Samza : Choose Your Stream Processing

Framework," [Online]. Available:

https://medium.com/@chandanbaranwal/spark-

streaming-vs-flink-vs-storm-vs-kafka-streams-vs-

samza-choose-your-stream-processing-91ea3f04675b.

[18] "Why the Data You Use Is More Important Than the

Model Itself," [Online]. Available:

https://medium.com/swlh/why-the-data-you-use-is-

more-important-than-the-model-itself-4a49736ea70c.

[19] "Is Data More Important Than Algorithms In AI?,"

[Online]. Available:

https://www.forbes.com/sites/quora/2017/01/26/is-

data-more-important-than-algorithms-in-

ai/?sh=111664a542c1.

[20] "Process data from your event hub using Azure Stream

Analytics," [Online]. Available:

https://learn.microsoft.com/en-us/azure/event-

hubs/process-data-azure-stream-analytics.

[21] "Use Azure Schema Registry in Event Hubs from

Apache Kafka and other apps," [Online]. Available:

https://learn.microsoft.com/en-us/azure/event-

hubs/schema-registry-overview.

[22] "Azure Event Hubs," [Online]. Available:

https://learn.microsoft.com/en-us/azure/event-

hubs/event-hubs-about#how-it-works.

[23] "Deploy and score a machine learning model by using

an online endpoint," [Online]. Available:

https://learn.microsoft.com/en-us/azure/machine-

learning/how-to-deploy-online-endpoints.

[24] J. L. M. H. D. D. M. F. T. R. V. Kalavri, "Three steps is

all you need: fast, accurate, automatic scaling decisions

for distributed streaming dataflows.," OSDI, 2018.

Paper ID: SR24203215713 DOI: https://dx.doi.org/10.21275/SR24203215713 1736

