On Integrability Conditions of a Framed Algebraic ε-Structure Manifold

Jai Pratap Singh ${ }^{1}$, Kripa Sindhu Prasad ${ }^{2}$, Aparna Verma ${ }^{3}$
B.S.N.V.P.G. College, Lucknow, India
Email: jaisinghjs[at]gmail.com
Department of Mathematics, Thakur Ram Multiple Campus, Birgunj, Tribhuvan University, Nepal
Email: kripasindhuchaudhary[at]gmail.com
Deen Dayal Upadhyay Gorakhpur University, Gorakhpur, India
Email: aparnaverma986@gmail.com

Abstract

The generalized para (ε, r) - contact structure manifolds have been defined and studied by the authors in their paper. In this paper we have studied the integrability conditions of a framed algebraic ε-structure manifold. Integrability of distributions has also been studied in this paper.

Keywords: Framed algebraic ε-structure, Integrability conditions, tangents of bundles, distributions
AMS Classification: 53B14, 53C15, 53C05

1. Preliminaries

Let M^{n+r} be an $(n+r)$-dimensional differentiable manifold of class C^{∞}. Suppose there exists on M^{n+r}, a tensor field $f(\neq 0)$ of type $(1,1) r\left(C^{\infty}\right)$ contravariant vector fields ξ^{p}, $r\left(C^{\infty}\right)$ 1-forms n_{p} and a scalar ε satisfying

$$
\begin{equation*}
f^{2}=a^{2} I-\sqrt{\varepsilon} \sum_{p=1}^{r} n_{P} \otimes \xi^{p} \tag{1.1}
\end{equation*}
$$

'a' being a complex. Also

$$
\begin{align*}
& \text { (i) } f \xi^{p}+\sqrt{\varepsilon} \sum_{q=1}^{r} \theta_{q}^{p} \xi^{q}=0 \\
& \text { (ii) } n_{p} o f+\sqrt{\varepsilon} \sum_{q=1}^{r} \theta_{p}^{q} n_{q}=0 \tag{1.2}\\
& \text { (iii) } n_{p}\left(\xi^{q}\right)+\sqrt{\varepsilon} \sum_{m=1}^{r} \theta_{m}^{q} \theta_{p}^{m}=\frac{a^{2}}{\sqrt{\epsilon}} \delta_{p}^{q}
\end{align*}
$$

where $\mathrm{p}, \mathrm{q}, \mathrm{m}$ take the values $1,2, \ldots . \mathrm{r} \delta_{p}^{q}$ the Kronecker delta and θ_{q}^{p} are scalar fields.
Taking the scalor fields θ_{q}^{p} equal to zero the equations (1.1) and (1.2) take the form

$$
\begin{equation*}
f^{2}=a^{2} r-\sqrt{\varepsilon} \sum_{p=1}^{r} n_{p} \xi^{p} \tag{1.3}
\end{equation*}
$$

(i) $f^{p}=0$,
(ii) $n_{p} o f=0$
and

$$
\begin{equation*}
(i i i) n_{p}(q)=\frac{a^{2}}{\sqrt{\epsilon}} \delta_{p}^{q} \tag{1.4}
\end{equation*}
$$

Let us call such a manifold M^{n+r} satisfying the equations (1.3) and (1.4) as the framed algebraic ε - manifold .

Theorem 1. LetM ${ }^{n+r}$ be an $(n+r)$ - dimensional differentiate manifold admitting the framed algebraic ϵ structure. Then there exist s eigen values each a and reigen values each equal to zero of f.

Proof

Let λ be the eigen value of f and P the corresponding eigen vector. So

$$
\begin{equation*}
f P=\lambda P \tag{1.5}
\end{equation*}
$$

Operating the above equation (1.5) with f again and using the equations (1.1) and (1.5) we get

$$
\begin{equation*}
\lambda^{2} P=a^{2} P-\sqrt{\varepsilon} \sum_{p=1}^{r} n_{p}(P)^{p} \tag{1.6}
\end{equation*}
$$

Case I Suppose $\mathrm{P}=\xi^{q}, \mathrm{q}=1,2,3 \ldots \ldots$. r. Then in view of the equation (1.4)(iii), the equation (1.6) takes the form

$$
\lambda^{2} p=0=\lambda^{2}=0=\lambda=0
$$

Hence there are r eigen values each equal to zero of f.
Case II Suppose that vectors P and ξ^{P} are linearly independent. Hence in view of the equation (1.6), we get

$$
\lambda^{2}=a^{2} \Rightarrow \lambda= \pm a
$$

Thus if s eigen values are each equal to 'a' ($n-s$) values are each -a so that their sum is n. Thus the theorem is proved.

2. Integrability Conditions

As we have seen in the previous section that M^{n+r} admits the framed algebraic ε-structure, if and only if there are s eigen values each s and each ' a ' ($n-s$) values each '- a ' and r values each zero of f. Let $U^{1}, U_{2}, \ldots U^{s}$ be the eigen vectors for the eigen value ' a ', $V^{1}, V_{2}, \ldots . V^{n-s}$ vectors for the eigen values '-a' of f . We prove the following theorem.

Theorem 2. In order that M^{n+r} be a framed algebraic ε manifold, it is necessary and sufficient that it possesses a tangent subbundle. πs of dimension s, a subbundle $\pi_{(n-s)}$ of dimension ($n-s$ and π_{r} of dimension r such that they are mutually disjoint and span together a manifold of dimension $(n+r)$. Projections on subbundles $\pi_{s}, \pi_{(n-s)}$ and π_{r} are given by

$$
\begin{align*}
& \text { (i) } 2 L=\frac{f^{2}}{a^{2}}+\frac{f^{x}}{a} \\
& \text { (ii) } 2 M=\frac{f^{2}}{a^{2}}+\frac{f^{x}}{a} \tag{2.1}\\
& \text { and }
\end{align*}
$$

(iii) $N=I-\frac{f^{2 x}}{a^{2}}$,r some finite integer

Proof.

Suppose the manifold M^{n+r} admits the framed algebraic ε structure. Hence there exists s eigen vectors $U^{1}, U^{2}, \ldots U^{s}$ corresponding to the eigen value $\mathrm{a}(\mathrm{n}-\mathrm{s})$ vectors $V^{1}, V^{2}, \ldots, V^{n-s}$ for the eigen values -a and r eigen vectors $1,2, \ldots ., \mathrm{r}$ for the eigen value zero of f . As the vectors are linealy independent so

$$
\begin{align*}
& \text { (i) } a_{x} U^{x}=0 \Rightarrow a_{x}=0, x=1,2, \ldots s \\
& \text { (ii) } b_{y} V^{y}=0 \Rightarrow b_{y}=0, y=1,2, \ldots \ldots,(n-s) \tag{2.2}\\
& \text { and } \\
& \text { (iii) } c_{z} W^{z}=0 \Rightarrow c_{z}=0, z=1,2, \ldots ., r .
\end{align*}
$$

$$
\begin{equation*}
a_{x} U^{x}+b_{y} V^{Y}+c_{z} W^{z}=0 \tag{2.3}
\end{equation*}
$$

Operating the above equation by f and using the fact that U^{x}, V^{Y} and W^{z} are eigen vector for the eigen values $\mathrm{a},-\mathrm{a}$ and o , we have

$$
a_{x} U^{x}-b_{y} V^{y}=0
$$

Premultiplying the above equation by f and using the same fact that U^{x}, V^{y}, W^{z} are eigen vectors corresponding to eigen values as -a and O respectively we obtain

$$
\begin{equation*}
a_{x} U^{x}+b_{y} V^{y}=0 \tag{2.4}
\end{equation*}
$$

Thus we have from above equations

$$
\begin{gathered}
a_{x}=0, x=1,2, \ldots . s \quad \text { and } \\
b_{y}=0, y=1,2, \ldots .(x-s)
\end{gathered}
$$

Hence from the equation (2.3), it follows that $c_{z}=0$, $\mathrm{z}=1,2, \ldots \mathrm{r}$. So the set of vectors U^{x}, V^{y}, W^{z} is linearly independent. Now in view of the equations (2.1), it follows that
(i) $L U^{x}=U^{x}, M U^{x}=0, N U^{x}=0$
(ii) $L V^{y}=0, M V^{y}=V^{y}, N V^{y}=0$
and

$$
\begin{equation*}
(i i i) L W^{z}=0, M W^{z}=0, N W^{z}=0 \tag{2.5}
\end{equation*}
$$

Thus there exist tangent subbundles π_{s} of dimenstion s , $\pi_{n}-s$ of dimenstion ($\mathrm{n}-\mathrm{s}$) and π_{r} of the dimension r such that they are mutually disjoint and span together the manifold M^{n+r}.

Supoose convertly that for M^{n+r}, there exist tangent subbundles π_{s}, π_{n-s} and π_{r} as said earlier. Let U^{x} be the set of s eigen vectors in $\pi_{s}, V^{y},(n-s)$ eigen vectors in π_{n-s} and $\varepsilon^{1 / 2} R^{2}$, r eigen vectors in the distributions π_{r}. Such that they are largly independent and span together a manifold of dimension $(n+r)$.

If $u_{x}, v_{y}, \frac{\varepsilon^{1 / 4}}{a}\left(r_{z}\right)$ be the set dual to $U^{x}, V^{y}, \frac{\varepsilon^{1 / 4}}{a}\left(R^{z}\right)$. Then

$$
\begin{equation*}
u_{x} U^{x}+v_{y} V^{y}+\frac{\sqrt{\varepsilon}}{a^{2}} r_{z} R^{Z}=I \tag{2.6}
\end{equation*}
$$

I denote the unit tensor field. Let us now put

$$
\begin{equation*}
f=a u_{x} U^{x}-v_{y} V^{Y} \tag{2.7}
\end{equation*}
$$

Operating above equation (2.7) by f both sides and using the fact that U^{x} and V^{y} are eigen vectors for the eigen values 'a' and '-a' of f we get

$$
\begin{equation*}
f^{2}=a^{2} u_{x} U^{x}+v_{y} V^{y} \tag{2.8}
\end{equation*}
$$

In view of the equations (2.6) and (2.8), it follows that

$$
f^{2}=a^{2} I-\sqrt{\varepsilon} r_{z} R^{z}
$$

Hence the manifold M^{n+r} admits the framed algebraic ε structure.

3. Integrability of distributions

In this section we shall establish some theorems on the integrability of distributions π_{s}, π_{n-s} and π_{x}.

Theorem 3. In order that the distribution π_{x} be integrable it is necessary and sufficient that for arbitrary vector fields X and Y.

$$
\begin{align*}
\frac{2 r}{[X, Y]} & = \pm a^{r} \frac{r}{[X, Y]} \tag{3.1}\\
\text { where } \frac{r}{[X, Y]} & =f^{r}([X, Y]) \quad \text { etc. }
\end{align*}
$$

Proof

The distribution π_{r} is given by

$$
L(X)=0, M(X)=0, \quad \text { and } \quad N(x)=X
$$

Hence in order that the distribution π_{r} be integrable, it is necessary and sufficient that $L(X)=0$ are $M(X)=0$ be completely integrable. Thus

$$
\begin{align*}
& (i)(d L)(X, Y)=0 \\
& \text { and } \tag{3.2}\\
& (i i)(d M)(X, Y)=0
\end{align*}
$$

Thus we have

$$
\begin{equation*}
L[X, Y]=M[X, Y]=0 \tag{3.3}
\end{equation*}
$$

In view of the equations (2.1) and (3.1) we get the desired result

Theorem 4. For the integrability of the distributions π_{s} and π_{n-s} the necessary and sufficient conditions are

$$
\begin{align*}
& \text { (i) } \frac{2 r}{[X, Y]}=a^{r} \frac{r}{[X, Y]}=a^{2 r}[X, Y] \\
& \text { and } \tag{3.4}\\
& \text { (ii) } \overline{2 r}[X, Y] \\
& =-a^{r} \frac{r}{[X, Y]}=a^{2 r}[X, Y]
\end{align*}
$$

Proof.

The distribution π_{s} is given by

$$
\begin{equation*}
L(X)=X, M(X)=0, N(X)=0 \tag{3.5}
\end{equation*}
$$

Hence for the integrability of π_{s}, the necessary and sufficient conditions are

$$
\begin{equation*}
(d M)(X, Y)=0 \operatorname{and}(d N)(X, Y)=0 \tag{3.6}
\end{equation*}
$$

In a way similar to the previous theorem, above equation
takes the form

$$
\frac{2 r}{[X, Y]}=a^{r} \bar{r} \overline{[X, Y]}=a^{(2 r)}[X, Y]
$$

which proves (3.4)(i). The condition (3.4)(ii) for π_{n-s} can also be obtained in a similar manner.

References

[1] A. Aqueel, A. Hamoui and M.D. Upadhyay(1987). On algebraic structure manifolds. Tensor, N.S. vol.45, pp. 37-41.
[2] Mishram R.S.(1984) Structure on a differentiable manifold and their applications. Chandrama Prakashan, Allahabad, India.
[3] N.J. Hicks (1964) Notes on differential geometry D. Van Nostrand Company. Inc., New York.
[4] Jai Pratap Singh, Kripa Sindhu Prasad, Aparna Verma (2022) On certain submanifolds of an H-structure manifold Communicated
[5] L. Das, S. K. Srivastava (2005) Induced structures on the tangent bundles of an ε-Framed Metric Manifold, Algebras groups and Geometries, USA Vol 22, pp. 183192

