On Integrability Conditions of a Framed Algebraic ε -Structure Manifold

Jai Pratap Singh¹, Kripa Sindhu Prasad², Aparna Verma³

B.S.N.V.P.G. College, Lucknow, India Email: *jaisinghjs[at]gmail.com*

Department of Mathematics, Thakur Ram Multiple Campus, Birgunj, Tribhuvan University, Nepal Email: *kripasindhuchaudhary[at]gmail.com*

> Deen Dayal Upadhyay Gorakhpur University, Gorakhpur, India Email: aparnaverma986@gmail.com

Abstract: The generalized para (ε , r) - contact structure manifolds have been defined and studied by the authors in their paper. In this paper we have studied the integrability conditions of a framed algebraic ε -structure manifold. Integrability of distributions has also been studied in this paper.

Keywords: Framed algebraic ε -structure, Integrability conditions, tangents of bundles, distributions

AMS Classification: 53B14, 53C15, 53C05

1. Preliminaries

Let M^{n+r} be an (n + r)-dimensional differentiable manifold of class C^{∞} . Suppose there exists on M^{n+r} , a tensor field $f(\neq 0)$ of type $(1,1) r(C^{\infty})$ contravariant vector fields ξ^p , $r(C^{\infty})$ l-forms n_p and a scalar ε satisfying

$$f^2 = a^2 I - \sqrt{\varepsilon} \sum_{p=1}^r n_p \otimes \xi^p \qquad (1.1)$$

'a' being a complex. Also

$$(i)f\xi^{p} + \sqrt{\varepsilon}\sum_{q=1}^{r}\theta_{q}^{p}\xi^{q} = 0$$

$$(ii)n_{p}of + \sqrt{\varepsilon}\sum_{q=1}^{r}\theta_{p}^{q}n_{q} = 0$$

$$(iii)n_{p}(\xi^{q}) + \sqrt{\varepsilon}\sum_{m=1}^{r}\theta_{m}^{q}\theta_{p}^{m} = \frac{a^{2}}{\sqrt{\varepsilon}}\delta_{p}^{q}$$
(1.2)

where p,q,m take the values 1,2,....r
$$\delta_p^q$$
 the Kronecker delta and θ_a^p are scalar fields.

Taking the scalor fields θ_q^p equal to zero the equations (1.1) and (1.2) take the form

$$f^{2} = a^{2}r - \sqrt{\varepsilon}\sum_{p=1}^{r} n_{p} \xi^{p}$$
(1.3)
(i) $f^{p} = 0$,
(ii) $n_{p} of = 0$
and
(iii) $n_{p}(q) = \frac{a^{2}}{\sqrt{\varepsilon}}\delta_{p}^{q}$

Let us call such a manifold M^{n+r} satisfying the equations (1.3) and (1.4) as the framed algebraic ε - manifold.

Theorem 1. Let M^{n+r} be an (n+r) - dimensional differentiate manifold admitting the framed algebraic ϵ - structure. Then there exist s eigen values each a and r eigen values each equal to zero of f.

Proof

Let λ be the eigen value of f and P the corresponding eigen vector. So

$$fP = \lambda P \tag{1.5}$$

Operating the above equation (1.5) with f again and using the equations (1.1) and (1.5) we get

$$\lambda^2 P = a^2 P - \sqrt{\varepsilon} \sum_{p=1}^r n_p \left(P\right)^p \tag{1.6}$$

Case I Suppose $P=\xi^q$, q=1,2,3...r. Then in view of the equation (1.4)(iii), the equation (1.6) takes the form

 $\lambda^2 p = 0 = \lambda^2 = 0 = \lambda = 0$ Hence there are r eigen values each equal to zero of f.

Case II Suppose that vectors P and ξ^{P} are linearly independent. Hence in view of the equation (1.6), we get $\lambda^{2} = a^{2} \Rightarrow \lambda = \pm a$

Thus if s eigen values are each equal to 'a' (n-s) values are each -a so that their sum is n. Thus the theorem is proved.

2. Integrability Conditions

As we have seen in the previous section that M^{n+r} admits the framed algebraic ε -structure, if and only if there are s eigen values each s and each 'a' (n-s) values each '-a' and r values each zero of f. Let U^1, U_2, \dots, U^s be the eigen vectors for the eigen value 'a', V^1, V_2, \dots, V^{n-s} vectors for the eigen values '-a' of f. We prove the following theorem.

Theorem 2. In order that M^{n+r} be a framed algebraic ε manifold, it is necessary and sufficient that it possesses a tangent subbundle. πs of dimension s, a subbundle $\pi_{(n-s)}$ of dimension (n-s and π_r of dimension r such that they are mutually disjoint and span together a manifold of dimension (n+r). Projections on subbundles π_s , $\pi_{(n-s)}$ and π_r are given by

$$(i)2L = \frac{f^{2x}}{a^{2}} + \frac{f^{x}}{a}$$

$$(ii)2M = \frac{f^{2x}}{a^{2}} + \frac{f^{x}}{a}$$

and

$$(2.1)$$

 $(iii)N = I - \frac{f^{2x}}{a^2}$, r some finite integer

Volume 10 Issue 9, September 2021

<u>www.ijsr.net</u>

Licensed Under Creative Commons Attribution CC BY

Proof.

Suppose the manifold M^{n+r} admits the framed algebraic ε structure. Hence there exists s eigen vectors U^1, U^2, \dots, U^s corresponding to the eigen value a(n-s) vectors V^1, V^2, \dots, V^{n-s} for the eigen values -a and r eigen vectors 1,2,...,r for the eigen value zero of f. As the vectors are linealy independent so

$$(i)a_{x}U^{x} = 0 \Longrightarrow a_{x} = 0, x = 1,2,...s$$

$$(ii)b_{y}V^{y} = 0 \Longrightarrow b_{y} = 0, y = 1,2,...,(n-s)$$

and

$$(iii)c_{x}W^{z} = 0 \Longrightarrow c_{x} = 0, z = 1,2,...,r$$

Suppose

$$a_x U^x + b_y V^Y + c_z W^z = 0 (2.3)$$

Operating the above equation by f and using the fact that U^x , V^Y and W^z are eigen vector for the eigen values a, -a and o, we have

$$a_x U^x - b_y V^y = 0$$

Premultiplying the above equation by f and using the same fact that U^x , V^y , W^z are eigen vectors corresponding to eigen values as -a and O respectively we obtain

$$a_x U^x + b_y V^y = 0.$$
 (2.4)

Thus we have from above equations

$$a_x = 0, x = 1, 2, \dots s$$
 and
 $b_y = 0, y = 1, 2, \dots (x - s)$

Hence from the equation (2.3), it follows that $c_z = 0$, z=1,2,...r. So the set of vectors U^x , V^y , W^z is linearly independent. Now in view of the equations (2.1), it follows that

Thus there exist tangent subbundles π_s of dimension s, $\pi_n - s$ of dimension (n-s) and π_r of the dimension r such that they are mutually disjoint and span together the manifold M^{n+r} .

Suppose convertly that for M^{n+r} , there exist tangent subbundles π_s , π_{n-s} and π_r as said earlier. Let U^x be the set of s eigen vectors in π_s , V^y , (n-s) eigen vectors in π_{n-s} and $\varepsilon^{1/2}R^2$, r eigen vectors in the distributions π_r . Such that they are largly independent and span together a manifold of dimension (n + r).

If
$$u_x$$
, v_y , $\frac{\varepsilon^{1/4}}{a}(r_z)$ be the set dual to U^x , V^y , $\frac{\varepsilon^{1/4}}{a}(R^z)$. Then
 $u_x U^x + v_y V^y + \frac{\sqrt{\varepsilon}}{a^2} r_z R^Z = I$ (2.6)
I denote the unit tensor field. Let us now put

$$f = au_x U^x - v_y V^Y \tag{2.7}$$

Operating above equation (2.7) by f both sides and using the fact that U^x and V^y are eigen vectors for the eigen values 'a' and '-a' of f we get

$$f^2 = a^2 u_x U^x + v_y V^y$$
(2.8)

In view of the equations (2.6) and (2.8), it follows that $f^2 = a^2 I - \sqrt{\epsilon r_z} R^z$

Hence the manifold M^{n+r} admits the framed algebraic ε structure.

3. Integrability of distributions

In this section we shall establish some theorems on the integrability of distributions π_s , π_{n-s} and π_x .

Theorem 3. In order that the distribution π_x be integrable it is necessary and sufficient that for arbitrary vector fields X and Y.

$$\frac{\frac{2r}{[X,Y]}}{\frac{r}{[X,Y]}} = \pm a^r \frac{r}{[X,Y]}$$
where $\overline{[X,Y]} = f^r([X,Y])$ etc. (3.1)

Proof

The distribution
$$\pi_r$$
 is given by
 $L(X) = 0, M(X) = 0, \text{ and } N(x) = X,$

Hence in order that the distribution π_r be integrable, it is necessary and sufficient that L(X) = 0 are M(X) = 0 be completely integrable. Thus

$$(i)(dL)(X,Y) = 0$$

and (3.2)
 $(ii)(dM)(X,Y) = 0$

Thus we have

L[X,Y] = M[X,Y] = 0 (3.3)

In view of the equations (2.1) and (3.1) we get the desired result

Theorem 4. For the integrability of the distributions π_s and π_{n-s} the necessary and sufficient conditions are

$$(i)\overline{[X,Y]} = a^{r}\overline{[X,Y]} = a^{2r}[X,Y]$$

and
$$(ii)\overline{[X,Y]} = -a^{r}\overline{[X,Y]} = a^{2r}[X,Y]$$

(3.4)

Proof.

The distribution π_s is given by

L(X) = X, M(X) = 0, N(X) = 0 (3.5)

Hence for the integrability of π_s , the necessary and sufficient conditions are

$$(dM)(X,Y) = 0$$
 and $(dN)(X,Y) = 0$ (3.6)

In a way similar to the previous theorem, above equation takes the form

$$\frac{2r}{[X,Y]} = a^r \frac{r}{[X,Y]} = a^{(2r)} [X,Y]$$

which proves (3.4)(i). The condition (3.4)(ii) for π_{n-s} can also be obtained in a similar manner.

References

- A. Aqueel, A. Hamoui and M.D. Upadhyay(1987). On algebraic structure manifolds. Tensor, N.S. vol.45, pp. 37-41.
- [2] Mishram R.S.(1984) Structure on a differentiable manifold and their applications. Chandrama Prakashan, Allahabad, India.

Volume 10 Issue 9, September 2021

<u>www.ijsr.net</u>

Licensed Under Creative Commons Attribution CC BY

- [3] N.J. Hicks (1964) Notes on differential geometry D. Van Nostrand Company. Inc., New York.
- [4] Jai Pratap Singh, Kripa Sindhu Prasad, Aparna Verma (2022) On certain submanifolds of an H-structure manifold Communicated
- [5] L. Das, S. K. Srivastava (2005) Induced structures on the tangent bundles of an ε-Framed Metric Manifold, Algebras groups and Geometries, USA Vol 22, pp. 183-192

Volume 10 Issue 9, September 2021 <u>www.ijsr.net</u> Licensed Under Creative Commons Attribution CC BY