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Abstract: In this paper, a Deterministic Model is evolving for the items decline by Demand as well as by Deterioration, where we take 

Demand as a Biquadratic Polynomial function of Time with the static rate of Deterioration. Here, Shortage is allowing and fully 

backlogging. An Organization can use this model where demand increases with time biquadratically with a static rate of Deterioration. 
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1. Introduction 
 

Inventory is the priority to run a business. But it may be a 

blessing or crush for a Business Owner. It is a blessing 

because when an owner buys a large no of goods then he 

gets benefit due to the lower wholesale price, which 

increases the quality of customer service. But it becomes a 

curse for an owner due to its large cost of maintenance: like 

its Deteriorating cost (because many of the physical goods 

undergo damage or chemically change with time for 

example product like milk, fruits, bread, butter, etc gets spoil 

with time), cost arises due to out of fashion of the product, 

storage and handling cost of goods, ordering cost, etc. So, an 

owner has to decide two main things; How much to order 

called EOQ and When to order to control Inventory. So, 

Inventory Management is very important to use working 

Capital Effectively. Because an owner’s main aim is to 

Maximize Profit and Minimize Cost. So, in previous years 

various mathematical models have been created by 

researchers to minimize cost. Some of them are discussed 

here. Datta & Pal (1998) [4], Lee & Wu (2002) [9], Sharma, 

Sharrma & Ramani (2012) [15] and Sharma and Preeti 

(2013) [14] considered Power Demand pattern for 

Deteriorating Items with time varying deterioration in their 

respective models. Wu (1999) [17], Wu (2002) [18] 

considered Weibull distributed Deterioration in their 

respective models. Giri & Chaudhuri (1998) [5] considered 

demand rate as a function of on hand inventory in their 

model. Bhowmic & Samanta (2007) [2] considered stock 

dependent time-varying demand rate, Mishra and singh 

(2011) [11], Singh & Srivastava (2017) [16] considered 

Linear Demand ,Mishra and Singh (2013) [10] considered 

time dependent demand and deterioration, Bhowmi Samanta 

(2011) [3] considered constant demand rate and variable 

production cycle, Roy(2008) [13] considered time dependent 

deterioration rate and assumed Demand rate as a function of 

the selling price, Karmakar & Choudhury (2014) [6] 

assumed general ramp type demand rate, Kumar & Kumar 

(2015)[8] assumed time-dependent demand, Rasel (2017) 

[12] considered power distribution deterioration, Priya & 

Senbagam (2018) [7] assumed two parameter Weibull 

deterioration with quadratic time-dependent demand, 

Bansal, Kumar et al.(2021)[1] took stock-dependent demand 

rates, in their respective model. In this paper, I have 

developed a model by assuming  demand as a biquadratic 

polynomial function of time with constant rate of  

deterioration. 

 

2. Assumptions and Notations 
 

Notations  

 C1    Inventory Carrying Charge per object per unit time. 

 C2    Cost due to deficiency of one object per unit time 

 C3       Cost of one Decayed Unit.  

 T       Length of every Production cycle.  

 C(t)    Average entire cost 

 S        Inventory at t = 0, where t is used for time.  

 I(t)     Inventory at any time t.  

 D(t)    Demand rate.  

 θ(t)     Deterioration rate function. 

 

Assumptions 

1) The Demand rate D(t) is considered  as  D(t) = α + βt + 

γt
2
 + δt

3
 +Ɛ t

4
 ,where  α, β, γ, δ, Ɛ   are> 0.  

2) Deterioration rate function, θ(t) = θ0 , where 0 < θ0<< 1  . 

3) Lead time has been taken as 0. 

4) Shortages are allowed and completely reserved. 

5) Refill magnitude is static and refill rate is unbounded. 

6) During the time period T, there is neither replacement 

nor repair of deteriorated units. 

 

3. Analysis of Model 
 

Let the no of objects in stock at any time t be I(t).  In time 

period 0 < t < t1, I(t)  lessens   gradually due to requirement  

and decaying of items and falls to zero at t = t1. In the time 

period (t1, T), deficiency of items occurs which are wholly 

backlogged, where  t1< T.  The equations of this process are 

given by: 
     

  
 + θ(t) I(t)= -{D(t)}      0 ≤ t ≤ t1                 (1) 

     

  
    =  -{D(t)} t1≤ t ≤ T                                (2) 
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Put θ = θ0   and D(t) = = α + βt + γt
2
 + δt

3 
+Ɛ t

4
  in (1) and 

(2), we get 

 
     

  
 + θ0  I(t) =-{ α + βt + γt

2
 + δt

3
 +Ɛt

4
}        (3) 

 
     

  
 = -{ α + βt + γt

2
 + δt

3
 +Ɛ t

4
}                    (4) 

 

Solution of (3) is      

I(t       =  -  α + βt + γt
2
 + δt

3
 +Ɛ t

4
)    dt + C 

=  -  α + βt + γt
2
 + δt

3
 +Ɛt

4
) ( 1+ θ0t) dt  + C 

= -  [ (αt + 
 β  

 
 +

 γ  

 
 + 

 δ  

 
 + 

Ɛ  

 
) + θ0(

   

 
 + 

 β  

 
 +

 γ  

 
 + 

 δ  

 
 + 

Ɛ  

 
)] + C        (5) 

 

Place t = 0 in (5) , we obtain I(0) = C , but I(0) = S,  So C = 

S. Hence (5) implies 

I(t        =  S - [ (α t+ 
 β  

 
 +

 γ  

 
 + 

 δ  

 
 + 

Ɛ  

 
) +  θ0(

   

 
 + 

 β  

 
 

+
 γ  

 
 + 

 δ  

 
 + 

Ɛ  

 
)]  ;    0 ≤ t ≤ t1(6) 

 

Since I(t1) = 0,  So (6) implies 

S  = [ (α t1 + 
 β  

 

 
 +

 γ  
 

 
 + 

 δ  
 

 
 + 

Ɛ  
 

 
) + θ0(

   
 

 
 + 

 β  
 

 
 +

 γ  
 

 
 + 

 δ  
 

 
 + 

Ɛ  
 

 
)]    (7) 

 

Putting the value of S from  (7)  into  (6),   we get 

 I (t) = ( 1 -θ0t) [{ α( t1 - t) + 
    

       

 
 +

 γ   
       

 
 +  

  δ   
       

 
 +

Ɛ   
       

 
 } + θ0 {  

α   
       

 
 +  

    
       

 
 +  

 γ   
       

 
 +  

  δ   
       

 
 +  

Ɛ   
       

 
 }] 

 I (t) =  { α( t1 - t) + 
    

       

 
 +

 γ   
       

 
 +  

  δ   
       

 
 

+
Ɛ   

       

 
 } + θ0{  

α   
       

 
 +  

    
       

 
 +  

 γ   
       

 
 +  

  δ   
       

 
 +  

Ɛ   
       

 
 } -  θ0 {  α( t1t - t

2
) + 

    
       

 
 

+
 γ   

        

 
 +  

  δ   
        

 
 +

Ɛ   
        

 
 }        (8) 

(neglecting terms containing θ
2 
, which is very small) 

 

Also, solution of (4) is 

I (t) = - (αt + 
 β  

 
 +

 γ  

 
 + 

 δ  

 
 + 

Ɛ  

 
) + A               (9) 

 

Applying   I(t1) = 0 in (9),  we get   

I(t) = α( t1 - t) + 
    

       

 
 +

 γ   
       

 
 +  

  δ   
       

 
 +

Ɛ   
       

 
 

;       t1≤ t ≤ T               (10) 

 

Therefore  amount  of  Deteriorated   Items  =  I(0) - Stock  

loss  due  to  Demand  

= S   -     α   β    γ     δ    Ɛ     
  
 

(11) 

(Using  (7))  

= θ0   ( 
   

 

 
 + 

 β  
 

 
 +

 γ  
 

 
 + 

 δ  
 

 
 + 

Ɛ  
 

 
)                                

(12) 

 

Total amount of Inventory held during [0, t1] is 

I1 =         
  
 

 = 

    α           
    

       

 
  

 γ   
       

 
    

  δ   
       

 
  

  
 

Ɛ   
       

 
       θ     

α   
       

 
    

    
       

 
  

  
 

  
 γ   

       

 
    

  δ   
       

 
 

Ɛ   
       

 
     θ   α       

  
 

       
    

       

 
  

 γ   
        

 
    

  δ   
        

 
  

Ɛ   
        

 
    (13) 

= [ (
   

 

 
+ 

 β  
 

 
 +

 γ  
 

 
 + 

 δ  
 

 
 + 

Ɛ  
 

 
) +θ0( 

   
 

 
 + 

 β  
 

 
 +

 γ  
 

  
 + 

 δ  
 

  
 + 

Ɛ  
 

  
)]  (14) 

 

No. of shortage units=          
 

  
  =    α           

  
 

  ( 12 −  2)2 + γ( 13 −  3)3 +    δ( 14 −  4)4 +Ɛ( 15 − 
 5)5 }dt  (using (10)) 

= T {ɑ (  
 

 
 -    ) + 

 

 
 ( 

  

 
 -   

 ) + 
 γ

 
 ( 

  

 
 -   

 ) + 
 δ

 
 ( 

  

 
 -   

 ) + 

Ɛ

 
 ( 

  

 
 -    

  ) } + 

 { 
   

 

 
+ 

 β  
 

 
 +

 γ  
 

 
 + 

 δ  
 

 
 + 

Ɛ  
 

 
} (15) 

 

Inventory  carrying  cost  =   C1 * Amount of Inventory 

carried   

=    C1 (
   

 

 
+ 

 β  
 

 
 +

 γ  
 

 
 + 

 δ  
 

 
 + 

Ɛ  
 

 
) + C1 θ0( 

   
 

 
 + 

 β  
 

 
 

+
 γ  

 

  
 + 

 δ  
 

  
 + 

Ɛ  
 

  
)  (16)

 

 

Shortage cost = C2* quantity of shortage units 

   =  C2 T { ɑ (  
 

 
 -    ) + 

 

 
 ( 

  

 
 -   

 ) + 
 γ

 
 ( 

  

 
 -   

 ) + 
 δ

 
 ( 

  

 
 - 

  
 ) + 

Ɛ

 
 ( 

  

 
 -    

  ) } + 

  C2 {
   

 

 
+ 

 β  
 

 
 +

 γ  
 

 
 + 

 δ  
 

 
 + 

Ɛ  
 

 
}                (17) 

 

Cost due to Deterioration = C3 * quantity of Decayed units 

=  C3θ0 ( 
   

 

 
 + 

 β  
 

 
 +

 γ  
 

 
 + 

 δ  
 

 
 + 

Ɛ  
 

 
)         (18) 

Entire cost per unit time   =  Inventory carrying cost + 

shortage  cost  + cost due to Decaying objects 

C(t)  =    C1 (
   

 

 
+ 

 β  
 

 
 +

 γ  
 

 
 + 

 δ  
 

 
 + 

Ɛ  
 

 
) + C1 θ0( 

   
 

 
 + 

 β  
 

 
 +

 γ  
 

  
 + 

 δ  
 

  
 + 

Ɛ  
 

  
)]  +  C2 T { ɑ (  

 

 
 -    ) + 

 

 
 ( 

  

 
 -   

 ) 

+ 
 γ

 
 ( 

  

 
 -   

 ) + 
 δ

 
 ( 

  

 
 -   

 ) + 
Ɛ

 
 ( 

  

 
 -    

  ) } +  C2  {
   

 

 
+ 

 β  
 

 
 +

 γ  
 

 
 + 

 δ  
 

 
 + 

Ɛ  
 

 
} +   

 C3θ0 ( 
   

 

 
 + 

 β  
 

 
 +

 γ  
 

 
 + 

 δ  
 

 
 + 

Ɛ  
 

 
)         (19)      

 
Average entire cost per unit time 

C ( t1)  =  
 

 
  [Complete  cost  per  unit  time] 

=  
  

 
(
   

 

 
+ 

 β  
 

 
 +

 γ  
 

 
 + 

 δ  
 

 
 + 

Ɛ  
 

 
) + 

    

 
( 

   
 

 
 + 

 β  
 

 
 +

 γ  
 

  
 + 

 δ  
 

  
 + 

Ɛ  
 

  
) +  C2  { ɑ (  

 

 
 -    ) + 

 

 
 ( 

  

 
 -   

 ) + 
 γ

 
 ( 

  

 
 -   

 ) + 

 δ

 
 ( 

  

 
 -   

 ) + 
Ɛ

 
 ( 

  

 
 -    

  ) } +  
  

 
  {

   
 

 
+ 

 β  
 

 
 +

 γ  
 

 
 + 

 δ  
 

 
 + 

Ɛ  
 

 
} +   

    

 
 { 

   
 

 
 + 

 β  
 

 
 +

 γ  
 

 
 + 

 δ  
 

 
 + 

Ɛ  
 

 
}               
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For least  average cost   put   
       

   
  =  0 

D(t) [  
    

  
 t1

2 
+ (

  

 
 + 

    

 
 +   

  

 
  )t1 -   C2 ] = 0 

 [  
    

  
 t1

2 
+ (

  

 
 + 

    

 
 +   

  

 
  )t1 -   C2 ] = 0 

 

Which is quadratic in t1 with last term negative so, it has 

atleast one positive root say t1
* 

and 
      

   

   
  

>  0. So optimum 

value of t1 is t1
* 
. Hence the optimum value of S is 

S
*
 = (α t1

*
+ 

 β  
   

 
 +

 γ  
   

 
 + 

 δ  
   

 
 + 

Ɛ  
   

 
   + θ0( 

   
   

 
 + 

 β  
    

 
 

+
 γ  

   

 
 + 

 δ  
   

 
 + 

Ɛ  
   

 
)        (20) 

 

Minimum value of C( t1)  is  

C (t1
* 

) =  
  

 
 ( 

    
   

 
+ 

β  
   

 
 +

  
   

 
 + 

 δ  
   

 
 + 

Ɛ  
   

 
)  + 

    

 
 ( 

   
   

 
 + 

 β  
   

 
 +

 γ  
   

  
 + 

 δ  
   

  
 + 

Ɛ  
   

  
 ) +  C2  { ɑ (  

 

 
 -   

  ) + 
 

 
 

( 
  

 
 -   

   ) + 
 γ

 
 ( 

  

 
 -   

   ) + 
 δ

 
 ( 

  

 
 -   

   ) + 
Ɛ

 
 ( 

  

 
 -    

    ) } 

+  
  

 
  { 

   
   

 
+ 

 β  
   

 
 +

 γ  
   

 
 + 

 δ  
   

 
 + 

Ɛ  
   

 
 }  +  

    

 
  { 

   
   

 
 + 

 β  
   

 
 +

 γ  
  

 
 + 

 δ  
   

 
 + 

Ɛ  
   

 
}                                                                                           

(21) 

 

Thus (20) gives optimal value of total average cost per unit 

time. 

 

4. Conclusion  
 

Here, an Inventory model has been created for items 

depleted due to demand as well as Deterioration by taking 

demand as a biquadratic polynomial function of time and 

constant  deterioration rate and I have obtained minimum 

total average cost. This model can be extended further for 

other values of demand. 
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