1, 10 - Phenanthroline as Reagent for the Spectrophotometric Determination of Nanoamounts of Certain Antiulcer Drugs in Pharmaceutical Formulations

Syeda Ayesha

Department of Chemistry, G. F. G. College, Kuvempu Nagara, Mysore - 570023, India

Abstract: Simple, sensitive and accurate spectrophotometric method for the determination of certain benzimidazole class of antiulcer drugs has been developed. The method is based on the reaction of omeprazole (OMZ), lansoprazole (LNZ), pantoprazole (PNZ), rabeprazole (RBZ) and esomeprazole (EMZ) with iron (III) and subsequent complexation with 1, 10 - phenanthroline which yields a orange coloured product with maximum absorption at 510 nm. The commonly encountered excipients and additives along with the drug did not interfere with the determination. Antiulcer drugs in the range of 200 - 4000 ng ml⁻¹ for LNZ, PNZ and RBZ, 80 - 2800 ng ml⁻¹ for OMZ and 200 - 3800 ng ml⁻¹ for EMZ can be determined by this method. Results of the analysis of commercial capsules/tablets (omelac capsule, lanpro capsule, pan tablet, rabeloc tablet and raciper tablet for OMZ, LNZ, PNZ, RBZ and EMZ, respectively) by this procedure agree well with those of the reported method.

Keywords: 1, 10 - phenanthroline, antiulcer drugs, spectrophotometry, determination.

1. Introduction

Various methods have been proposed for the determination of antiulcer drugs include; indirect argentometry [1], capillary electrophoresis [2], polarography [3 - 5], voltammetry [6, 7], flow injection analysis [8, 9], and high performance liquid chromatography [10 - 15]. Simple methods based on UV - Visible spectrophotometry have of late become an accepted analytical tool for the assay and evaluation of drugs.

Visible spectrophotometric methods are convenient, simple, relatively inexpensive. sensitive and are The spectrophotometric methods for the determination of antiulcer drugs employ different routes in the determination of chromogen produced and these are of four types. Type I method involves the oxidative coupling of the drug with an electrophilic reagent, in the presence of an oxidant and measurement of the resulting chromophore [16]; method of type II involves the use of electron acceptor and the antiulcer drug as electron donar in which the resultant product is coloured molecular complex [17]. Type III method consists in the formation of a charge transfer complex between the drug and the reagent [17]. Finally, Type IV method is based on the use of a suitable oxidant to produce colour for the spectrophotometric measurement [18]. Methods of Type I, II and III are lengthy; however, the method of Type IV although is simple and straightforward, but lacks selectivity as the coloured product is presumed to be the radical cation of the drug. Also, the above methods have not utilized a co ordinate complex as a chromogen for the determination of antiulcer drugs. These deficiencies have encouraged the authors to develop a simple, sensitive, rapid and reliable method for the determination of antiulcer drugs.

The work describes a new method for the determination of antiulcer drugs like OMZ, LNZ, PNZ, RBZ and EMZ and it

is based on the reduction of iron (III) to iron (II) by the drugs and subsequent complexation with 1, 10 - phenanthroline which produces a orange coloured product having a maximum absorption at 510 nm.

2. Experimental

Apparatus

UV - VIS spectrophotometer UVIDEC - 610 type with 1.0 - cm matched cell (Jasco, Tokyo, Japan) was employed for measuring the absorbance values.

Reagents

Omeprazole (OMZ), lansoprazole (LNZ), pantoprazole (PNZ), rabeprazole (RBZ) from Cipla, India, commercial tablets of esomeprazole (EMZ) ammonium iron (III) sulphate from BDH, India and 1, 10 - phenanthroline from SRL, India were used. All other chemicals and solvents used were of analytical grade. Double distilled water used throughout. Weighed (100 mg) samples of drugs were dissolved in about 10.0 ml of alcohol and the solution was diluted with distilled water in 100 - ml volumetric flask. The solutions were stored in a refrigerator and diluted daily to get the required concentrations. Aqueous solution of 0.001 N ammonium iron (III) sulphate containing few drops of dilute sulphuric acid and 0.2% (w/v) of 1, 10 - phenanthroline solution were prepared in double distilled water and alcohol, respectively.

Procedure

Assay with iron (III) and 1, 10 - phenanthroline: Aliquots of standard solutions of OMZ, LNZ, PNZ, RBZ and EMZ were transferred into calibrated flasks (25 - ml). To each flask was added ammonium iron (III) sulphate (2.0 ml) and 1, 10 - phenanthroline (2.0 ml). The flasks were kept aside for 10 min. The solutions were made up to the volume with distilled water. The absorbance was measured at 510 nm

International Journal of Science and Research (IJSR) ISSN: 2319-7064 SJIF (2020): 7.803

against the corresponding reagent blank and calibration presented in Table 1. graphs were constructed. The optical characteristics are

Table 1. Optical characteristics of the antifucer drugs as determined using 2.2 - opytheme								
Parameters	OMZ	LNZ	PNZ RBZ		EMZ			
Colour	Orange	Orange	Orange Orange		Orange			
λ_{max} (nm)	510	510	510	510	510			
Stability (h)	24	24	24	24	24			
Beer's law (ng ml ⁻¹)	80 - 2800	200 - 4000	200 - 4000	200 - 4000	200 - 3800			
Recommended drug concentration (ng ml ⁻¹)	1400	2000	2200	2000	2000			
Molar absorptivity (L mol ⁻¹ cm ⁻¹)	8.63 x 10 ⁴	7.34×10^4	6.55 x 10 ⁴	6.83 x 10 ⁴	7.73 x 10 ⁴			
Sandell's sensitivity ($\mu g \ cm^{-2}$)	0.006	0.008	0.006	0.007	0.005			
Regression equation*								
Slope (a)	0.2654	0.2234	0.2165	0.1654	0.3421			
Intercept (b)	- 0.0054	0.0434	0.0324	0.0234	0.0451			
Correlation coefficient	0.9876	0.9778	0.9678	0.9998	0.9765			
			1-1					

Table 1: Optical characteristics of the antiulcer drugs as determined using 2.2' - bipyridine

*y=ax+b where x is the concentration of OMZ, LNZ, PNZ, RBZ or EMZ in μg ml⁻¹

Pharmaceutical preparations

Twenty capsules each of omeprazole and lansoprazole were emptied carefully and the mass of the collected contents was determined. The capsule contents were finely powdered in a mortar. In case of pantoprazole, rabeprazole and esomeprazole twenty tablets each were finely powdered. An accurately weighed 50 mg of the powdered drug was dissolved in about 10.0 ml of alcohol and filtered through a Whatman No.42 filter paper. The filtrate was made up to 100 ml with distilled water in a volumetric flask. A suitable volume of the filterate was accurately diluted with water so as to obtain a sample concentration of 10 μ g ml⁻¹. An aliquot of this solution was treated as per the procedure described earlier for the determination of antiulcer drugs.

3. Results and Discussion

Omeprazole (OMZ), lansoprazole (LNZ), pantoprazole (PNZ), rabeprazole (RBZ) and esomeprazole (EMZ) belong to a class of antisecretory compounds. These compounds are acid labile and reversibly transformed in acidic medium to a sulfenamide [19]. They are referred to as proton pump inhibitors (PPI) being introduced for the management of duodenal ulcer, gastric ulcer or pathogenic hypersecretory condition [20]. Gastric PPI is a prodrug that requires an acid induced activation. It is a weak base that is converted to its active form by gastric acid before acting on the proton pump. It inhibits gastric acid secretion by covalently binding to the proton pump ($H^{+/}K^+$ AT Pase) [21].

1, 10 - phenanthroline and it is used as a bacteriostatic, fungistatic, antifibrillating agent, inactivator, paint and oil drier, enzyme inhibitor and activator, antihelmintic and bactericidal agent, polymerization agent, catalyst and electroplating agent [22].

The method for the determination of antiulcer drugs involves the reaction of these drugs with iron (III) salts, in the presence of 1, 10 - phenanthroline to produce a orange colour with maximum absorption at 510 nm. The reaction involves the reduction of iron (III) to iron (II) by OMZ, LNZ, PNZ, RBZ and EMZ which subsequently reacts with 1, 10 - phenanthroline to give a orange colour in neutral medium. Beer's law limits, molar absorptivity, sandell's sensitivity, regression equation and correlation coefficients obtained by least squares treatment of these results are given in Table 1.

Spectral characteristics

A orange coloured product with maximum absorbance at 510 mm was formed when OMZ reacts with ammonium iron (III) sulphate, in the presence of 1, 10 - phenanthroline in neutral medium.

Optimization of analytical variables

Maximum and constant absorbance values were obtained when the standard flasks were kept aside for 10 min after adding the reagents to the drug solutions which remained stable for 24 h. It was found that a 0.001N ammonium iron (III) sulphate in the range 1.0 - 3.0 ml, 0.2% (w/v) of 1, 10 phenanthroline in the range of 1.0 - 4.0 ml were necessary to get maximum intensity of colour and stability. Hence, 2.0 ml each of ammonium iron (III) sulphate and 1, 10 phenanthroline solutions were found appropriate.

The sequence of addition of ammonium iron (III) sulphate, 1, 10 - phenanthroline and drug solution was studied *via* the formation of the orange complex. Absorbance or colour of the product did not change appreciably when the order of addition of these reactants was varied.

Table 1 shows the linear calibration ranges and equation parameters for different drugs. Separate determinations at different drugs. Separate determination at difference concentrations of each drug gave a coefficient of variation not exceeding 2%.

Stability

The coloured product remained stable for 24 h.

Interference

The effect of common ingredients usually present in pharmaceutical preparations was studied, by taking omeprazole as a representative drug. Commonly encountered pharmaceutical additives and excipients such as glucose, lactose, dextrose, starch, sodium alginate and sodium lauryl sulphate did not interfere, while vitamin C was found to interfere seriously. The results are presented in Table 2.

excipients and other substances						
Material	Amount	% Recovery of OMZ*				
Waterfai	(mg)	±RSD**				
Glucose	50	99.6 ± 0.98				
Lactose	50	100.8 ± 0.71				
Dextrose	50	98.6 ± 0.56				
Magnesium stearate	50	99.4 ± 0.78				
Starch	50	99.2 ± 0.96				
Gum acacia	50	98.6 ± 0.66				
Talc	50	99.4 ± 0.84				
Vitamin B ₆	50	99.4 ± 0.96				
Carboxyl methyl cellulose	50	98.2 ± 0.88				
Sodium alginate	50	100.4 ± 0.80				
Vitamin C	10	[#] >50<60				

 Table 2: Recovery of omeprazole (OMZ) in the presence of excipients and other substances

Analysis of pharmaceutical formulations

Commercial formulations (capsules/tablets) containing OMZ, LNZ, PNZ, RBZ and EMZ were subjected to analysis by the proposed new method. The values obtained by the proposed and the reference methods for the pharmaceutical preparations were compared statistically using the F - and t - tests and no difference was found significantly. The results are summarized in Table 3.

*1000 ng ml⁻¹ of OMZ taken, ** relative standard deviation (n=5), [#]erratic values

phenanthroline								
Drug	Label claim (mg per drug)	*Recovery% ± SD**	Additional analyte added (mg)	*Recovery% ± SD**	Reported method found%			
Omelac capsule (Omeprazole)	20	$\begin{array}{c} 99.2 \pm 0.60 \\ \text{F=}2.65 \ (5.32) \\ \text{t=}1.96 \ (2.84) \\ (\text{n=}5) \end{array}$	20	99.2 ± 0.90	98.6 ± 0.98 (n=5)			
Lanpro capsule (Lansoprazole)	15	$\begin{array}{c} 98.6 \pm 0.81 \\ F{=}2.34 \ (5.65) \\ t{=}2.25 \ (3.65) \\ (n{=}5) \end{array}$	15	99.6 ± 0.85	98.4 ± 0.62 (n=5)			
Pan tablet (Pantoprazole)	20	$98.6 \pm 0.68 \\ F=3.14 (6.36) \\ t=2, 24 (3.78) \\ (n=4)$	20	98.6 ± 0.94	99.5± 0.67 (n=4)			
Dahalaa tahlat (Dahammarala)	20	99.7 ± 0.68 F=3.00 (2.35)	20	99.8 ± 1.02	99.6 ± 0.80			

t=2.34 (2.66)

(n=7)

 99.4 ± 0.88

20

20

 Table 3: Determination of certain antiulcer drugs in commercial samples by the proposed method using 1, 10

Raciper tablet (Esomeprazole) *proposed method **standard deviation

Rabeloc tablet (Rabeprazole)

The figures in parentheses are the tabulated F - and t - values at 95 % confidence level

20

20

4. Conclusion

Today, an extensive array of modern analytical techniques has been employed for pharmaceutical analysis. Nevertheless, spectrophotometry will survive even in the presence of purely instrumental approaches. The proposed spectrophotometric method provides accurate measurement for the determination of OMZ, LNZ, PNZ, RBZ and EMZ in pharmaceutical tablets. We hope that this recommended method using common reagent such as 1, 10 phenanthroline and iron (III) salts is simple, sensitive, selective and cost - effective and thus it is well suited for the routine assay and evaluation of drugs in preformulation and dosage forms to assure high standard of quality control.

References

[1] Eberle, D. Hummel R. P. and Kuhn, R.1997. Chiral resolution of pantoprazole sodium and related sulfaoxides by complex formation with bovine serum albumin in capillary electrophoresis. Journal of Chromatography A, 759: 185 - 192.

[2] Oelschlaeger H. and Knoth, H.1998. Polarographic analysis of omeprazole formulations. Drug analysis by polarographic methods. Part 38. Pharmazie, 53: 242 -244.

 99.8 ± 0.92

- [3] Dogrukol Ak D. and Tuncel, M.1995. Determination of omeprozole in capsules by certain polarographic techniques, Pharmazie, 50: 701 702.
- [4] Ozaltin N. and Temizer, A.1994. Differential pulse polarographic determination of omeprozole in pharmaceutical preparations. Electroanaytical chemistry, 6: 799 - 803.
- [5] Radi, A. Abd N. El Ghany and Wahdan, T.2004. Voltammetric behaviour of rabeprazole at a glassy carbon electrode and its determination in tablet dosage form. Il Farmaco, 59: 515 - 518.
- [6] Pinzauti, S. Gratteri, P. Furianetto, S. Mura, P. Dreassi E and Phan - Tan - Luu, R.1996. Experimental design in the development of voltammetric method for the assay of omeprazole. Journal of Pharmaceutical and Biomedical Analaysis, 14: 881 - 889.
- [7] Tuncel M. and Dogrukol Ak, D.1997. Flow through spectophotometric determination of omeprozole in

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

DOI: 10.21275/SR21916233729

(n=7)

pharmaceutical preparations containing enteric coated pellets. Pharmazie, 52: 73 - 74.

- [8] Yeniceli, D. Dogrukol Ak D. and Tuncel, M.2004. Determination of lansoprazole in pharmaceutical capsules by flow injection analysis using UV detection. Journal of Pharmaceutical and Biomedical Analaysis, 36: 145 - 148.
- [9] Cass, Q. B. Degani, A. L, G. Cassiano N. M and Pedrazolli Jr J.2001. Enantiomeric determination of pantoprazole in human plasma by multidimensional high - performance liquid chromatography. Journal of Chromatography B, 766: 153 - 160.
- [10] Katsuki, H. Hamada, A. Nakamura, C. Arimori K. and Nakano, M.2001. High - performance liquid chromatographic assay for the simultaneous determination of lansoprazole enantiomers and metabolites in human liver microsomes. Journal of Chromatography B, 757: 127 - 133.
- [11] Macek, J. Ptacek P. and Klima, J.1997. Determination of omeprazole in human plasma by high - performance liquid chromatography. Journal of Chromatography B, 689: 239 - 243.
- [12] Karol, M. D. Granneman G. R. and Alexander, K.1995. Determination of lansoprazole and five metabolites in plasma by high - performance liquid chromatography. Journal of Chromatography B, 668: 182 - 186.
- [13] Andersson, T. Pre Olof, L. Miners, J. O. Veronese, M. E. Weidolf L. and Birkett, D. J.1993. High performance liquid chromatographic assay for human liver microsomal omeprazole metablosim. Journal of Chromatography, 619: 291 - 297.
- [14] Delhotal Lades, B. Miscoria, G. and Flouvat, B.1992. Determination of lansoprazole and its metabolites in plasma by high - performance liquid chromatography using a loop column. Journal of Chromatography, 577: 117 - 122.
- [15] Sastry, C. S. P. . Naidu P. Y and Murty, S. S. N.1997. Spectrophotometric methods for the determination of omeprozole in bulk form and pharmaceutical formulations. Talanta, 44: 1211 - 1217.
- [16] Moustafa, A. A. M.2000. Spectrophotometric methods for the determination of lansoprazole and pantoprazole sodium sesquihydrate. Journal of Pharmaceutical and Biomedical Analysis, 22: 45 - 48.
- [17] Salama, F. El Abasawy, N. Abdel Razeq, S. S. Ismail M. M. F. and Fouad, M. M.2003. Validation of the spectrophotometric determination of omeprozole and pantaprozole sodium via their metal chelates. Journal of Pharmaceutical and Biomedical. Analysis, 33: 411 -421.
- [18] McClean, S. O'Kane, E. Ramachandran V. N. and. Smyth, W. F.1994. Differential pulse polarographic study of the degradation of hydrogen ion/potassium ion ATPase inhibitors SK and F 95601 and omeprozole in acidic media and the subsequent reactions with thiols. Analytica Chimica Acta, 292: 81 - 89.
- [19] Antono Caos, M. D. Morry Moskovitz, M. D. Yogeshwar Dayal M. D. and Carlos Perdomo, M. S.2000. Rabeprazole for the prevention of pathologic and symptomatic relapse of erosive or ulcerative gastroesophageal reflux disease. American Journal of Gastroenterology, 95: 3031 - 3088.

- [20] Morii, M. Takata H. and Fujisaki, H.1990. The potency of substituted benzimidazoles such as E3810. omeprozole, Ro 18 5364 to inhibit gastric H^+/K^+ ATPase is correlated with the rate of acid activation of the inhibitor. Biochemical Pharmacology, 39: 661 667.
- [21] Belcher, R. and Freiser, H.1969. Analytical Applications of 1, 10 - Phenanthroline and Related Compounds, Pergamon Press Ltd., Oxford: .3.
- [22] El Gindy, A. El Yazby F. and Maher, M. M.2003. Spectrophotometric and chromatographic determination of rabeprazole in presence of its degradation products. Journal of. Pharamaceutical and Biomedical Analysis, 31: 229 - 242

Volume 10 Issue 9, September 2021

<u>www.ijsr.net</u>

Licensed Under Creative Commons Attribution CC BY