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Abstract: In the present paper, an inventory model is generated for deteriorating items with shortages which are fully reserved. 

Demand rate is assumed as polynomial function of time and deterioration rate is dependent of time. 
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1. Introduction 
 

Inventory management has become the most concerning 

thing in working of any organization. Deterioration of items 

has affected inventory management. Deterioration takes 

place for many reasons like environment, weather, time, etc., 

for example, some items are only useable in a certain 

season, some items deteriorate with time, like food products. 

So there is a need for Inventory management keeping in 

mind the effect of deterioration. In history, many researchers 

have worked in this direction and created certain models. 

Some of them are listed here based on Demand and 

Deterioration. 

 

Datta & Pal (1988) [3], Lee & Wu (2002) [7], Sharma, 

Sharma & Ramani (2012) [16] and Sharma & Preeti (2013) 

[15] considered Power demand pattern for items that 

deteriorates with time, using varying deterioration in their 

respective models. Wu (1999) [20], Wu (2002) [19], Lee & 

Wu (2002) [7], Skouri et. Al. (2009)[18],Sharma et. Al. 

(2012)[16] considered Weibull distributed deterioration in 

their respective models. 

 

Sharma et. Al. (2012) [16], Karmakar et.al. (2014) [6], Ibe 

et. Al. (2016) [5], Shah (2018) [14] considered time varying 

holding cost in their respective models. Lee (2004) [8] 

created model with exponential distributed deterioration and 

Wu (2002) [19] & Ghosh (2004) [4] created model with 

time varying quadratic demand. Wu (1999) [20] and Skouri 

(2009)[18]developed models with ramp type demand rate. 

 

Ouyang (2005) [12], Shah (2010) [13] and Aliyu (2020) [1] 

developed models with exponentially declining demand. 

Mukherjee (2010) [11] developed a model in which the time 

of duration of shortages varies directly with deterioration. 

Bhowmick (2011) [2] et. Al., developed a model with 

continuous production model for deteriorating items with 

shortages. 

 

Maragatham (2017) [10] et. Al., presented Model for Items 

in a single warehouse and assumed constant lead time. 

Sharma (2018) [17] developed a model for items that 

deteriorates with time, such as fruits, vegetables, and 

foodstuffs by considering demand as time-dependent. Long 

(2019) [9] demonstrated that structural deterioration affects 

the value of damage detection information. In the present 

paper, working is done based on the above papers by 

considering demand as a polynomial function of time and 

time-dependent deterioration. 

 

2. Assumptions and Notations 
 

2.1 Notations 

 

The following are the notations used here:- 

1) C1 = Inventory Holding Cost per unit per unit time. 

2) C2 = Shortage cost per unit per unit time. 

3) C3 = Deterioration cost per unit per unit time. 

4) T = Length of each cycle. 

5) I(t) = Inventory at any time t. 

6) C(t) = Average total cost. 

7) D(t) = Demand Rate 

8) I(t) = Deterioration Rate Function 

9) S = Initial Inventory 

 

2.2 Assumptions 

 

The following are the assumptions used here:- 

1) Demand Rate D(t) is assumed as polynomial function of 

time, given by D(t) = t + 2t
2
+ 3t

3
+ ::: + nt

n
. 

2) The deterioration rate function,   (t) is assumed in the 

form  (t) =   t ; 0 <  <<1; t >0. 

3) Replenishment size is constant and the replenishment 

rate is infinite. 

4) The Lead time is zero. 

5) Shortages are considered and are totally reserved. 

6) During the period T, neither is replacement nor repair of 

deteriorated units.  

 

3. Analysis of Model 
 

Let Inventory level at any time t be I(t). Inventory level 

slowly decreases during time interval (0, t1), t1<T and 

becomes exactly zero at t = t1. Shortages takes place in the 
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interval (0,t1), which are totally reserved. Differential 

equations which governs this inventory system during the 

interval 0 ≤t ≤T using demand and deterioration rate are 
     

   
                                      (1) 

 

and 

     

  
                                              (2)      

Solution of differential equation (1) is 

          
  
 

  
                      

  
 

  
     

                        
  

 
        

                      

 
  

 
                       

    
 

 
   

 

 
     

 

   
     

 
  

 
 
 

 
   

 

 
     

   

   
      

   

Putting  t = 0, I(0) = C. But  I(0)=S. Therefore C = S. Thus 

     
  
 

  
       

 

 
   

 

 
     

 

   
      

 0214 4+25 5+…+  +3  +3;  0≤ ≤                (3) 

Again from (3), I(t1)=0. So 
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Putting the value of S in (3), we get 
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 +3 2 1 +1+2  +3                                                                          
(5) 

       
 

   
   

          
  

 

 

          
     

 

1 1 +3− +3 2  1 +1  +2  +3                  (6) 

 
Solution of differential equation (2) is  
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Since I(t1) = 0, we have 

     
 

 
  
  

 

 
  
    

 

   
  
       

 

This implies  

  
 

 
  
  

 

 
  
    

 

   
  
    

 

Hence  

     
 

 
   

      
 

 
   

        
 

   
   

    

  +1; 1≤ ≤   (8) 

 

Thus the entire amount of deteriorated units = I(0) – stock 

loss due to demand  

                      
  

 

 

     
 

 
  
  

 

 
  
    

 

   
  
     

  
 

 
  
  

 

 
  
    

 

   
  
    

 
  

 
 
 

 
  
  

 

 
  
    

 

   
  
    

  
 

 
  
  

 

 
  
    

 

   
  
     

 
  

 
 
 

 
  
  

 

 
  
    

 

   
  
                                                                                  

(9) 

 

Total value of inventory held in [0,t1] is  

           
  

 

 

      
 

 
   

      
 

 
   

       
  

 

 
 

   
   

               

  

 
  

 

 
      

      
  

 

 

          
        

   

          
             

    
 

 
  
  

 

 
  
    

 

   
  
    

 
  

 
 

 

  
  
    

  

      
  
     

 

Inventory Holding Cost = C1 * total inventory 

     
 

 
  
  

 

 
  
    

 

   
  
     

  

 
 

 

  
  
    

2 3 +4 1 +4      (10) 

 

Deterioration Cost = C3  *the entire amount of deteriorated 

units 

    
  

 
 
 

 
  
  

 

 
  
    

 

   
  
                                                                  

(11)         
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Shortage units Quantity            
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Shortage Cost = C2* shortage units quantity 
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The Total Cost per unit time 

= Inventory Holding Cost + Deterioration Cost + Shortage 

Cost 

     
 

 
  
  

 

 
  
    

 

   
  
    

 
  

 
 

 

  
  
    

  

      
  
     

     
  

 
 
 

 
  
  

 

 
  
   

              
 

   
  
     

      
 

 
 
 

 
     

   
 

 
 
 

 
     

  

   
 

   
 

 

   
       

        

   
 

 
  
  

 

 
  
    

 

   
  
     

 

The Average Total Cost per unit time, 

      
 

 
                              

      
  

 
  

 

 
  
  

 

 
  
    

 

   
  
    

 
  

 
 

 

  
  
    

  

      
  
     

 
  

 
 
  

 
 
 

 
  
  

 

 
  
    

 

   
  
     

     
 

 
 
 

 
     

   
 

 
 
 

 
     

    

 
 

   
 

 

   
       

      

 
  

 
 
 

 
  
  

 

 
  
     

 

   
  
      

 
For minimum average total cost , the necessary and 

sufficient conditions are 
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Which further implies 

 
    

  
  
  

    

  
  
  

       

 
            (14) 

 

Since (14) is a cubic equation in t1having last term negative, 

thus it has at least one positive root. Also  
       

   
    . Let 

t1
*
be the positive root of (14). So optimum value of t1is t1

*
. 

Substituting it in (4), the optimized value of S is 
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Minimum value of C(t1) is  

    
   

  

 
  

 

 
  
   

 

 
  
     

 

   
  
      

 

 
  

 
 

 

  
  
     

  

      
  
      

  

 
  

 
 
  

 
 
 

 
  
   

 

 
  
    

 
 

   
  
        

     
 

 
 
 

 
     

    
 

 
 
 

 
     

   

   
 

   
 

 

   
       

      
   

 
  

 
 
 

 
  
   

 

 
  
      

 

   
  
      

    (16) 

Thus equation (16) gives optimal value of total average cost 

per unit time. These equations can be further solved for 

different values of variables used here, using software’s like 

Matlab and Mathematica. 

 

4. Conclusion 
 

In this paper, an inventory model is generated for items that 

deteriorate with time by considering demand as polynomial 

function of time with time dependent deterioration. 
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